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1 Proofs

Lemma 3.1. The Markov properties defined by superactive routes (walks) [10] in CGs, m-separation
[8] in ADMGs, and d-separation [6] in DAGs are special cases of the Markov property defined by
s-separation in SGs.

Proof: An argument that d-separation in DAGs is a special case of the separation criterion based
on superactive routes appears in [10]. An argument that d-separation in DAGs is a special case of
m-separation in ADMGs trivially follows by definition. That separation based on superactive routes
is a special case of s-separation follows from the fact that CGs are a special case of SGs with no↔
edges, which implies only directed edges can result in collider sections in CGs. That m-separation
is a special case of s-separation follows by extension of the argument in [10]. �

Lemma 4.1. For V sensitive in a SG G, let G〈V 〉 be the graph be obtained from G by replacing all−
edges adjacent to V by→ edges pointing away from V . Then G〈V 〉 is an SG, and P(G) = P(G〈V 〉).

Proof: Since G〈V 〉 is constructed from an SG by replacing certain − edges by→, then if G does not
contain ◦ ↔ ◦ − ◦, then neither does G〈V 〉. If G〈V 〉 contains a partially directed cycle not including
V , so does G, which is a contradiction. If G〈V 〉 contains a partially directed cycle including V , then
it must be via a subpath ◦ → V → ◦, with all other edges on the path present in G. But either the
outgoing edge from V that is on the cycle is also present in G or it is undirected. In both cases,
there is still a partially directed cycle in G, which is a contradiction. Thus G〈V 〉 is a SG. If V has no
adjacent − edges, G = G〈V 〉.

Assume (A 6⊥⊥ B | C)G〈V 〉 . Fix a walk α from A to B s-connected by C in G〈V 〉. We will
construct an s-connected walk α∗ from A to B given C in G. By definition, every collider section
in α intersects C and every non-collider section in α is free of C. Any section of α where V does
not occur either remains a section of α in G, and retains its open status (if its neighboring edges do
not change status in G), or is subsumed by the argument for the following case. We now consider
all sections βi of α where V occurs. Note that βi is a singleton section. If βi is a collider section,
V ∈ C, and βi exists in G. Assume βi is a non-collider section. Then V 6∈ C. If βi is in G,
we are done. Otherwise, consider a section βj in α∗ containing sections βi−l, . . . , βi+k in α. By
definition of G〈V 〉, all sections except possibly βi−l and βi+k are either of the form ← V → or
collider sections. Note that since α is open, all collider sections intersect C.

If βj is a collider section, we are done. Otherwise, we have two cases. If both neighboring edges
along α∗ into βj are not into βj , then βi ← V → βi+k shares the same endpoint behavior as βj and
is open, since βi,← V →, and βi+k are non-collider sections in α and thus do not intersect C. If a
single neighboring edge along α∗ into βj is into βj (say into βi−l), then either that edge is from V
or not. If it is from V , the section V → βi+k shares the same endpoint behavior as βj and is open. If
it is not from V , but another edge W , then since V is sensitive, W → V exists in G, and the section
W → V → βi+k shares the same endpoint behavior as βj and is open.
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Assume (A 6⊥⊥ B | C)G . Fix a walk α from A to B s-connected by C in G. We will construct an
s-connected walk from A to B given C in G〈V 〉. By definition, every collider section in α intersects
C and every non-collider section in α is free of C. Any section of αwhere V does not occur remains
a section of α in G〈V 〉, and retains its open status. We now consider all sections βi of α where V
occurs.

Assume βi is a collider section with end points Z,W . If V ∈ C, then since V is sensitive, Z →
V ←W is present in G〈V 〉. Then we can construct a walk α′ which shares all sections with α except
βi is replaced by Z → V ← W , which is open since V ∈ C. If V 6∈ C, then there must be some
section βj in βi in G〈V 〉 intersecting C. This section either has V as both endpoints, or V and an
endpoint Z of βi with an arrowhead into βi. We can then replace α with another walk α′ which
shares all sections with α except βi is replaced either by W → V βjV ← Z, or W → V βj ← Z,
which is open since βj intersects C. In either case, we then repeat the argument for other sections
of α′.

Assume βi is a non-collider section with end points Z,W , and does not intersect C. This means
there is at most one arrowhead into βi, say from Z, or no arrowheads into βi. In the former case,
fix the section βj (possibly of length 0 if V =W ) in G〈V 〉 between the last occurrence of V and W
in βi. Replace α by a walk α′ sharing all sections with α except βi is replaced with Z → V βjW ,
which is open. If no arrowheads are into βi, let βj be the part of βi from Z to first occurrence of
V , and βk be the part of βi from the last occurrence of V to W . Replace α by a walk α′ sharing all
sections with α except βi is replaced by ZβjV βkW . In all cases, the newly added sections to α′ are
open and share end edge behavior with sections they are replacing. We then repeat the argument for
other sections of α′. Thus, (A 6⊥⊥ B | C)G〈V 〉 . �

Lemma 4.2. Let G be an SG, and G′ a graph obtained from adding an edge W → V for two
non-adjacent vertices W,V where W → ◦− . . .− ◦ − V exists in G. Then G′ is an SG.

Proof: Since G is an SG, and we are adding only→ edges to G′, then there is no ◦ ↔ ◦−◦ structure
in G′. If there were a partially directed cycle involving W → V in G′, then replacing W → V by
W → ◦− . . .− ◦ − V in the cycle would still result in a partially directed cycle, which would also
be present in G. But this is a contradiction. �

Lemma 4.3. For any V in an SG G, let GV be obtained from G by adding W → Z, whenever
W → ◦− . . .− ◦ − Z ← V exists in G. Then GV is an SG, and P(G)V = P(GV )V .

Proof: GV is an SG by an inductive application of Lemma 4.2. If A ⊥⊥ B | C holds in GV , then
A ⊥⊥ B | C holds in G, since G is an edge subgraph of GV .

Assume (A ⊥⊥ B | C)G , where V 6∈ A ∪ B ∪ C. Fix a walk α from A to B in GV . If α exists
in G, then it retains the same edges in GV , which implies if α is s-separated by S in G, it is also in
GV . Assume α does not exist in G and is s-connected given C. This means α contains a set of edges
of the form W → Z which do not exist in G. We will repeatedly replace edges W → Z in α by
sections that exist in G while preserving the open status of the resulting walk. In this way, we will
construct a new walk that is s-connected given C and exists in G, deriving a contradiction.

Pick an edge W → Z in α that does not exist in G, let βj be the section of α starting at Z with
W → Z pointing into it. By definition of GV , there exists βi ≡W → ◦− . . .−◦−Z in G. If βj is
a collider section, then replace W → βj by βiβj . The new extended section is thus also a collider
section intersecting C, and exists in G. If βj is not a collider section, then either βi intersects C or
not. If it does, replace W → βj by βi ← V → βj . This results in three new sections which are all
open given C, exist in G, and have same endpoint behavior as βj . If it does not, replace W → βj by
βiβj . This results in a new extended section which is a non-collider section that does not intersect
C, exists in G, and has same endpoint behavior as βj .

Repeating the argument for every W → V that does not exist in G gives us the contradiction. �

Theorem 4.1. If G is an SG with at least 2 vertices V, and V ∈ V, there exists an SG GV with
vertices V \ {V } such that P(G)V = P(GV )V .

Proof: Construct GV as in Lemma 4.4. Construct GV from GV as follows. Retain all vertices in
V \ {V } and edges between them. For any two vertices W,Z: if W → V → Z, add W → Z; if
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W ← V → Z, add W ↔ Z; if W − V − Z, add W − Z; if W − V → Z, add W → Z; and if
W → V − Z, add W → Z.

Because GV is a SG with no V → ◦−◦, there is no ◦ ↔ ◦−◦ structure in GV . Assume there exists
a partially directed cycle in GV involving new edges. Then we can systematically replace them by
the two edge paths in G to yield a partially directed cycle in G, giving a contradiction.

Let GV † be an edge supergraph of GV where we add all edges in GV that do not exist in G. We first
show P(GV †)V = P(GV )V . If (A ⊥⊥ B | C)GV † , then (A ⊥⊥ B | C)GV because GV † is an edge
supergraph of GV . Assume (A ⊥⊥ B | C)GV , and fix a walk α from A to B that is s-connected
given C in GV † . If α exists in GV , we have a contradiction. Otherwise, since V 6∈ A ∪ B ∪C, it
is easy to construct a walk α′ that is s-connected given C and exists in GV by replacing edges in α
that do not exist in GV by their corresponding two edges used in the construction of GV .

Finally, we show thatP(GV †)V = P(GV )V . Since GV † is an edge supergraph of GV , if A ⊥⊥ B | C
in GV † , then A ⊥⊥ B | C in GV . If A ⊥⊥ B | C in GV , and there is a s-connecting walk α from
A to B given C in GV † , it must involve V . But we can construct a walk α′ that does not contain V
by replacing V containing segments by edges connecting nodes adjacent to V following above rules
used to construct GV . It is easy to see α′ is s-connecting given C if α is. This is a contradiction. �

Corollary 4.1. Let G be an SG with vertices V. Then for any W ⊂ V, there exists an SG G∗ with
vertices V \W such that P(G)W = P(G∗).

Proof: Follows by an inductive application of Theorem 4.1 for any ordering of vertices in W. �

Lemma 5.1. If p(V) factorizes with respect to G then fS(S | pasG(S)) = p(S | pasG(S)) for every
S ∈ B∗(G), and fS(S | pasG(S)) =

∏
V ∈S p(V | preG,≺(V ) ∩ antG(S)) for every S ∈ Da(G) and

any topological ordering ≺ on G.

Proof: We will proceed by induction on anterial subgraphs. We will add either a singleton vertex
that will be become a new singleton district or a part of an existing district, or a block of vertices
S to construct G with vertices V, such that V \ S ∈ A(G). For the base case, the conclusion
clearly holds for G with a single vertex. Assume the inductive hypothesis holds for Gi, and we
added a block S to Gi to yield G, where S ∈ B∗(G). By the inductive hypothesis, p(V) = fS(S |
pasG(S)) ·

∏
S∈D(Gi)∪B∗(Gi) p(S | pasGi(S)). This implies our conclusion. Assume the inductive

hypothesis holds for Gi, and we added V to Gi to yield G, where V ∈ S ∈ D(G). Then the
conclusion follows by a simple extension of the argument used to prove Lemma 1 in [11]. �

Theorem 5.1. If p(V) factorizes with respect to a SG G, then p(V) ∈ Pa(G).

Proof: Implied by the fact that the UG factorization implies the UG global Markov property [5]. �

Lemma 5.2. If there exists a walk α in G between A ∈ A, B ∈ B with all non-collider sections not
intersecting C, and all collider sections in antG(A ∪ B ∪ C), then there exist A∗ ∈ A, B∗ ∈ B
such that A∗ and B∗ are s-connected given C in G. 1

Proof: Let D be the last vertex on α in antG(A) \ antG(C) if such a vertex exists, or D ≡ A
otherwise. Let E be the first vertex in antG(B)\antG(C) which occurs between the last occurrence
of D in α and B, if such a vertex exists, or E ≡ B otherwise. If D 6= A, let A∗ be any vertex such
that D ∈ antG(A

∗), otherwise let A∗ ≡ A. Similarly, if E 6= B, let B∗ be any vertex such that
E ∈ antG(B

∗), otherwise let B∗ ≡ B.

Let α∗ be the subwalk of α between the last occurrence of D and the first occurrence of E. Then:
(a) every vertex in α∗ is in antG(C); (b) there is a partially directed path δ fromD toA∗, and ε from
E to B∗; (c) other than possibly D or E, no vertex in δ or ε is in antG(C); and (d) no vertex in ε
other than possibly E is an ancestor of A∗.

It follows from (a) and (c) that α∗ and ε only intersect at E, and α∗ and δ only intersect at D. Let
β be a walk obtained by concatenating δ, α∗, and γ. By construction, every collider section in α∗ is
in antG(C), every non-collider section in α∗ does not intersect C. Furthermore, every section in δ
and ε is non-collider and does not intersect C. Thus β is s-connecting given C. �

1The proof follows the proof of lemma 1 in [8].
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Theorem 5.2. P(G) = Pa(G). 2

Proof: Fix disjoint A,B,C, and consider the smallest anterial set A† containing A,B,C. By
definition of s-separation, it suffices to restrict our attention to walks contained in A†. Fix a walk α
from A ∈ A to B ∈ B open in GA† given C. We will construct a path β from A to B in (GA†)a
which does not intersect C. Since α is open, every section α1, . . . , αk in α is open. We will first
construct a walk α† in (GA†)a consisting of fragments corresponding to sections in αi, and then
simplify this walk to a path that does not intersect C. If αi is a non-collider section, let α†i consist of
the undirected edges corresponding to those in αi. If αi is a collider section with end points C,D,
let α†i consist ofC−D. Then the starting vertex of α†1 isA, the ending vertex of α†k isB, α†1, . . . , α

†
k

are undirected walks that do not intersect C by construction, and for each i ∈ 1, . . . , k− 1 either α†i
shares the ending vertex with the starting vertex of α†i+1, or the ending vertex of α†i and the starting
vertex of α†i+1 are neighbors. Thus, we can construct a walk from these walks with a starting vertex
A, ending vertex B, and which does not intersect C. But this means we can construct a path β with
the same property.

Fix a minimal path β fromA ∈ B toB ∈ B that does not intersect C in (GA†)a. We will construct a
walk α from A to B s-connected given C in GA† . Let the edges of β be b1, . . . bk. We will construct
α by replacing all bi that do not exist in GA† by a witnessing collider walk, and all other bi between
C,D by the (possibly directed or bidirected) edge betweenC,D in GA† . The result is clearly a walk.
Furthermore, all non-collider sections on this walk do not intersect C, and all collider sections are
in A†, so in the anterior of A∪B∪C. By lemma 5.2, there exists a walk from A to B s-connected
given C in A†. �

Theorem 5.3. For a SG G, if p(V) ∈ P(G) and is positive, then p(V) factorizes with respect to G.

Proof: Fix any D ∈ A(G), and a topological ordering ≺. By the chain rule of probabilities,
p(D) =

∏
V ∈D p(V | preG,≺(V ) ∩ D) which is equal to

∏
S∈Da(GD)∪B∗(GD)

∏
V ∈S p(V |

preG,≺(V ) ∩ D) since non-trivial blocks and districts partition V. This in turn is equal to∏
S∈Da(GD)∪B∗(GD)

∏
V ∈S p(V | preG,≺(V )∩pa∗G(S)), by assumption. This implies that we obtain

the outer level factorization: p(D) =
∏

S∈Da(GD)∪B∗(GD) fS(S | pasG(S)). That the inner factoriza-
tion holds for any fS(S | pasG(S)) for S ∈ B∗(G) for a positive p(V) follows from Theorem 3.36 in
[5] (and ultimately the Hammersley Clifford theorem for UG models). �
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