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Theorem 1. Let P be any distribution over H , fixed before observing the sample S. Then for any
δ > 0 the following holds uniformly for all distributions Q over H with probability at least 1− δ:

er(Q) ≤ êr(Q) +
1√
m

KL(Q||P ) +
1 + 8 log(1/δ)

8
√
m

. (1)

Proof. Let f(Q) = er(Q) − êr(Q) = Eh∼Q
(
E(x,y)∼D`(h(x), y)− 1

m

∑m
i=1 `(h(xi), yi)

)
. From

Donsker-Varadhan’s variational formula one obtains that for any λ > 0:

f(Q) ≤ 1

λ

(
KL(Q||P ) + logEh∼P expλ

(
E(x,y)∼D`(h(x), y)− 1

m

m∑
i=1

`(h(xi), yi)

))
. (2)

Since loss function is bounded by 1, from Hoeffding’s lemma we know that:

E(xi,yi)∼D exp

(
λ

m
(E(x,y)∼D`(h(x), y)− `(h(xi), yi))

)
≤ exp

(
λ2

8m2

)
. (3)

Because the sample points are i.i.d., we can obtain that:

ES∼Dm expλ

(
E(x,y)∼D`(h(x), y)− 1

m

m∑
i=1

`(h(xi), yi)

)
≤ exp

(
λ2

8m

)
. (4)

By combining the fact, that P doesn’t depend on S, and Markov’s inequality, we obtain that with
probability at least 1− δ:

Eh∼P expλ

(
E(x,y)∼D`(h(x), y)− 1

m

m∑
i=1

`(h(xi), yi)

)
≤ 1

δ
exp

(
λ2

8m

)
. (5)

By plugging it into (2) and setting λ =
√
m we obtain the statement of the theorem.

Lemma 2. Let X1, . . . , Xn ∈ Ω be a sequence of random variables and g : Ω → [0, 1] be a
function such that E[g(Xi)|X1, . . . , Xi−1] = bi. Let Z1, . . . , Zn be independent Bernoulli random
variables such that E[Zi] = bi. Then for any convex function f :

E[f(g(X1), . . . , g(Xn))] ≤ E[f(Z1, . . . , Zn)]. (6)

Proof. Any point x = (x1, . . . , xn) ∈ [0, 1]n can be written as a linear combination of the extreme
points ν = (ν1, . . . , νn) ∈ {0, 1}n in the following way:

x =
∑

ν∈{0,1}n

(
n∏
i=1

((1− xi)(1− νi) + xiνi)

)
ν. (7)
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Therefore by convexity of f we have that:

f(x) ≤
∑

ν∈{0,1}n

(
n∏
i=1

((1− xi)(1− νi) + xiνi)

)
f(ν). (8)

By taking expectations on both sides we obtain that:

EXn
1
f(g(X1), . . . , g(Xn)) ≤

EXn
1

 ∑
ν∈{0,1}n

(
n∏
i=1

((1− g(Xi))(1− νi) + g(Xi)νi)

)
f(ν)

 =

∑
ν∈{0,1}n

EXn
1

[
n∏
i=1

((1− g(Xi))(1− νi) + g(Xi)νi)

]
f(ν) =

∑
ν∈{0,1}n

EXn−1
1

[
EXn

[
n∏
i=1

((1− g(Xi))(1− νi) + g(Xi)νi)|Xn−1
1

]]
f(ν) =

∑
ν∈{0,1}n

EXn−1
1

[(
n−1∏
i=1

((1−g(Xi))(1−νi)+g(Xi)νi)

)
EXn

[(1−g(Xn))(1−νi)+g(Xn)νi|Xn−1
1 ]

]
f(ν)=

∑
ν∈{0,1}n

EXn−1
1

[(
n−1∏
i=1

((1− g(Xi))(1− νi) + g(Xi)νi)

)
((1− bn)(1− νi) + bnνi)

]
f(ν)= . . .

∑
ν∈{0,1}n

(
n∏
i=1

((1− bi)(1− νi) + biνi)

)
f(ν) = EZn

1
[f(Zn1 )].

Theorem 5. For any fixed hyper-prior distribution P with probability at least 1 − δ the following
holds uniformly for all hyper-posterior distributions Q:

ẽr(Q) ≤ êr(Q)+
1

(n− 1)
√
m

KL(Q×Q2×· · ·×Qn||P×P2×· · ·×Pn)+
(n− 1) + 8 log(1/δ)

8(n− 1)
√
m

,

(9)
where P2, . . . , Pn are some reference prior distributions that should not depend on the training sets
corresponding to subsequent tasks. In particular, it can be just one prior distribution P fixed before
observing any data, or posterior distribution corresponding to the previous task, ie Pi = Qi−1.

Proof. By applying KL-inequality we obtain:

ẽr(Q)− êr(Q) ≤ 1

λ

(
KL(Q×Q2 × · · · ×Qn||P × P2 × · · · × Pn)+

logEA∼PEh2∼P2
. . .Ehn∼Pn

exp
( λ

n− 1

n∑
i=2

(
E(x,y)∼Di

`(hi(x), y)− 1

m

m∑
j=1

`(h(xij), y
i
j)
)))

.

Due to independence of any prior Pi and consequent sample sets Si, . . . , Sn, we obtain that:

ES1,...,Sn
EA∼PEh2∼P2

. . .Ehn∼Pn
f2(h2, S1) · · · · · fn(hn, Sn) =

EA∼PES1
Eh2∼P2

ES2
f2(h2, S2) . . .Ehn∼Pn

ESn
fn(hn, Sn),

where

fi(hi, Si) =
λ

n− 1

(
E(x,y)∼Di

`(hi(x), y)− 1

m

m∑
j=1

`(hi(x
i
j), y

i
j)
)
. (10)

Due to Hoeffding’s lemma, boundness of the loss and the fact that training samples are i.i.d., the
following holds:

ESnfn(hn, Sn) ≤ exp
( λ2

8(n− 1)2m

)
. (11)
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Therefore:

ES1,...,Sn
EA∼PEh2∼P2

. . .Ehn∼Pn
f2(h2, S12) · · · · · fn(hn, Sn) ≤ exp

( λ2

8(n− 1)m

)
. (12)

By using Markov’s inequality and setting λ = (n− 1)
√
m we obtain the statement of the theorem.

The KL-term in the above theorem can be simplified:

KL(Q×Q2 × · · · ×Qn||P × P2 × · · · × Pn) = KL(Q||P) +

n∑
i=2

EA∼QKL(Qi||Pi).
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