
Supplementary Material for Fast Distributed
k-Center Clustering with Outliers on Massive Data

Gustavo Malkomes, Matthew J. Kusner, Wenlin Chen
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

luizgustavo, mkusner, wenlinchen @wustl.edu

Kilian Q. Weinberger
Department of Computer Science

Cornell University
Ithaca, NY 14850

kqw4@cornell.edu

Benjamin Moseley
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

bmoseley@wustl.edu

Here we give the omitted proofs of intermediate results left out of the main text of the paper as well
as the complexity analysis of the algorithms.

k-center with Outliers

Proof of [Lemma 4.2] For the sake of contradiction say the lemma is not true for some point u ∈ Ui

for some fixed i. By definition of GREEDY for any pair of points v, v′ ∈ Ci it must be the case
that d(v, v′) ≥ dCi(u) > 2OPT. Thus, in the set {u} ∪ Ci there are k + z + 1 points all of
distance greater than 2OPT from each other. However, then two of these points v, v′ ∈ ({u} ∪ Ci)
must be assigned to the same center v∗ in the optimal solution because OPT can discard at most
z of these points. Using the triangle inequality and the definition of OPT it must be the case that
d(v, v′) ≤ d(v∗, v) + d(v∗, v′) ≤ 2OPT, a contradiction. Thus, for all points u ∈ Ui, it must be
that dCi

(u) ≤ 2OPT. 2

Oi

U 0

v⇤

v8c(v)

d(u, c(v)) 5OPT

 OPT

 2OPT
u :=c(v⇤)

 2OPT

Figure 1: The 5OPT bound in Lemma 4.3.

Proof of [Lemma 4.3] Consider any unmarked
cluster Oi at time j. Since the cluster is un-
marked, it is the case that c(v) ∈ U ′ just before
xj is added to X for any point v ∈ Oi. Fix a
point u where u := c(v∗) for the optimal solu-
tion’s center v∗ that defined Oi. Our goal is first
to show that u is distance at most 5OPT from
c(v) for any point v ∈ Oi.

To bound this, it suffices to bound the sum of
the distance of u to any point v in Oi and v to
c(v) by the triangle inequality. We know that
any point v ∈ Oi is distance at most OPT from
v∗ by definition of OPT. Thus, u is distance
at most 2OPT from v∗ by definition of u and
Lemma 4.2 and therefore 3OPT from any point
in Oi by the triangle inequality. Further, by Lemma 4.2 every point v ∈ Oi is distance at most 2OPT
from c(v). Thus, u is distance at most 5OPT from any point c(v) for v ∈ Oi.

Now we show that
∑

v∈Bu
wv ≥ |Oi|. This is because, every point c(v) must be in Bu by definition

of Bu and the fact that d(u, c(v)) ≤ 5OPT by the above argument. Further, every point in v ∈ Oi

1

contributes to the weight of c(v). Knowing that our algorithm always choses the point xj such that∑
u∈Bxj

wu is maximized, this completes the proof. 2

Proof of [Lemma 4.4] Fix some cluster Oi in the optimal solution and some point v ∈ Oi where
c(v) ∈ Bxj

. Note that it suffices to prove that d(xj , c(u)) ≤ 11OPT by definition of B′xj
for

any point u ∈ Oi. Fix some point u. To prove this, we will use several applications of the triangle
inequality. In particular, we will construct a path from xj , c(v), v, u, c(u). By the triangle inequality,
if d(xj , c(v)) + d(c(v), v) + d(v, u) + d(u, c(u)) ≤ 11OPT then the proof is complete.

Consider d(xj , c(v)) this is at most 5OPT by definition of Bxj
and the assumption that c(v) ∈ Bx,j .

We know that d(c(v), v) ≤ 2OPT and d(u, c(u)) ≤ 2OPT by Lemma 4.2. Finally, we know that
d(u, v) ≤ 2OPT. This is because both u and v are assigned to the same center in the optimal
solution and, therefore, both of them at distance OPT from some point. By triangle inequality, they
must be at most 2OPT from each other. Putting this all together completes the proof. 2

U 0
Oi

v

c(v)

Bxj

xj

u

 5OPT

 2OPT

c(u)

 2OPT

 2OPT

d(xj , c(u)) 11OPT

Figure 2: The 11OPT bound of
Lemma 4.4.

Proof of [Lemma 4.5] To prove the lemma, we will show
a one-to-one mapping of each point in ∪ 1≤i≤kOi to a
unique unit of weight in

∑k
i=1

∑
u∈B′

xi

wu. The proof
proceeds by induction. We will show that for any 0 ≤
j ≤ k, each unique point in ∪ 1≤i≤jOi can be mapped to
a unique unit of weight of the points in ∪ji=1B

′
xi

where
O1, O2, . . . Oj is some ordering of the clusters in the op-
timal solution that we fix inductively.

Assume we have mapped each point in ∪ 1≤i≤jOi where
O1, O2, . . . Oj for some 0 ≤ j ≤ k − 1 to a unique unit
of weight of the points in ∪ji=1B

′
xi

. Now consider the
weight of the points in the set B′xj+1

. We break the anal-
ysis into two cases. For the first case, say that for some
i′ /∈ [1, 2, . . . j] and u ∈ Oi′ it is the case that c(u) is in
Bxi

for some i ≤ j+1. Then by Lemma 4.4 it is the case
that just after xj+1 is added to X all of the points c(u)
are no longer in U ′ for all u ∈ Oi′ . Thus, in the case, we
map each point in u ∈ Oi′ to a unit of the weight of c(u).
Intuitively, this is the unit of weight that u contributes to
c(u).

Otherwise say that the first case does not hold. Then we
know that for all u ∈ Oi′ for any i′ /∈ [1, 2, . . . j] it is
the case that c(u) is in U ′ after xj+1 is added to X . By Lemma 4.3 it must be the case that∑

u∈Bxj+1
wu ≥ |Oi′ | for any i′ /∈ [1, 2, . . . j]. In this case, take any cluster in the optimal so-

lution that is not Oi′ for 1 ≤ i ≤ j and fix this cluster to be Oj+1. Map each of the points in Oj+1

to a unique unit of weight of the points in B′xj+1
. This completely defines the mapping.

Notice that each point must be assigned to a unique unit of weight. This is because, in the first case,
each point is charged to the weight it contributes to and then it is removed from U ′. By removing
them from U ′, we can never later charge to them in the second case. Further, since we charge the
points to the weight they contribute to, no two points charge to the same unit of weight in the first
case. In the second case, we charge each point u ∈ Oi′ to a unit of weight in B′xj+1

. Knowing
that B′xj+1

is removed from U ′, the second case will not charge to this weight again. Further, since
B′xj+1

does not contain a point c(u) where u ∈ Oi′′ for any i′′ /∈ [1, 2, . . . j], none of the points’
weight in B′xj+1

comes from a point in Oi′′ for any i′′ /∈ [1, 2, . . . j], so no weight of the points in
B′xj+1

can be charged to by the first case later. 2

Complexity

To assess the complexity of the sequential and distributed methods let us assume that computing a
distance between any two inputs requires O(f) time, where f is some distance function complexity.

2

The complexity of GREEDY, the sequential k-center method is then O(nkf) as we have to at most
compute the distance between all n points and the k centers. The complexity of the distributed
version GREEDY-MR is O((n

m +mk)kf) as there are two rounds of greedy and different sets of
points to consider. For k-center clustering with outliers, we give the complexity of the case where,
before the loops of Algorithms 4 and 5, we can compute the full distance matrix between all inputs,
which is O(n2f). And that for each point u ∈ U , we can sort the remaining points by closeness to u,
giving a complexity of O(n2 log n) For both algorithms, all operations within the loop have smaller
order than these initial operations. Therefore, for OUTLIERS the complexity is O(n2(log n+f)).
Finally, for OUTLIERS-MR as we first run GREEDY and then a variation of OUTLIERS the final
complexity is O(n

m (k + z)f + ((k + z)m)2[log((k + z)m) + f]).

3

