
A Proof of Lemma 1

In this section we prove Lemma 1. First we present two propositions which are used of proving
Lemma 1.
Proposition 7. Consider the following general problem:

min
z

φ(z) s.t. z ∈ Z, (11)

where φ : Z → R is a subdifferentiable convex function and Z ⊂ Rd is a convex set. Then a
solution z∗ is the optimal solution of (11) if and only if there exists a subgradient ξ ∈ ∂φ(z∗) such
that

ξ⊤(z∗ − z) ≤ 0, ∀ z ∈ Z,

where ∂φ(z∗) is the set of all subgradients of convex function φ at z = z∗.

See, for example, Proposition B.24 in [22] for the proof of Proposition 7.
Proposition 8. Let p, q ∈ Rd be arbitrary d-dimensional vectors and r > 0 be an arbitrary positive
constant. Then, the solutions of the following optimization problem can be explicitly obtained as
follows:

p⊤q − ∥p∥r = min
z∈Rd

p⊤z s.t. ∥z − q∥2 ≤ r2, (12)

p⊤q + ∥p∥r = max
z∈Rd

p⊤z s.t. ∥z − q∥2 ≤ r2. (13)

Proof of Proposition 8. Using a Lagrange multiplier λ > 0, the problem (12) is rewritten as

min
z∈Rd

p⊤z s.t. ∥z − q∥2 ≤ r2

= min
z∈Rd

max
λ>0

(
p⊤z + λ(∥z − q∥2 ≤ r2)

)

=max
λ>0

(
− λr2 +min

z

(
λ∥z − p∥2 + p⊤z

))

=max
λ>0

H(λ) :=
(
− λr2 − ∥p∥

2

4λ
+ p⊤q

)
,

where λ is strictly positive because the constraint ∥p − q∥2 ≤ r2 is strictly active at the optimal
solution. By letting ∂H(λ)/∂λ = 0, the optimal λ is written as

λ∗ :=
∥p∥
2r

= argmax
λ>0

H(λ).

Substituting λ∗ into H(λ),

p⊤q − ∥p∥r = max
λ>0

H(λ).

The upper bound of p⊤z in (13) can be shown similarly. !

Proof of Lemma 1. From Proposition 7, the optimal solution w∗
C satisfies

⎛

⎝w∗
C + C

∑

i∈[n]

ξi(w
∗
C)

⎞

⎠
⊤

(w∗
C − ŵC̃) ≤ 0, (14)

where ξi(w∗
C) is a subgradient of ℓi at w = w∗

C for any i ∈ [n] .

Since from ℓi is convex for any i ∈ [n] and the definition of a subgradient, we have the following
two inequalities:

ℓi(w
∗
C) ≥ ℓi(ŵC̃) + ξi(ŵC̃)

⊤(w∗
C − ŵC̃).

ℓi(ŵC̃) ≥ ℓi(w
∗
C) + ξi(w

∗
C)

⊤(ŵC̃ − w∗
C).

10

Combining these two inequalities, we have

ξi(w
∗
C)

⊤(w∗
C − ŵC̃) ≥ ξi(ŵC̃)

⊤(w∗
C − ŵC̃). (15)

Substituting (15) into (14),

w∗⊤
C (w∗

C − ŵC̃) + C
∑

i∈[n]

ξi(ŵC̃)
⊤(w∗

C − ŵC̃) ≤ 0. (16)

From (4),
∑

i∈[n]

ξi(ŵC̃) =
1

C̃

(
g(ŵC̃)− ŵC̃

)
. (17)

Substituting (17) into (16),

w∗⊤
C (w∗

C − ŵC̃) +
C

C̃

(
g(ŵC̃)− ŵC̃

)⊤
(w∗

C − ŵC̃) ≤ 0

⇔
∥∥∥w∗

C −
1

2

(
ŵ − C

C̃
(g(ŵ)− ŵ)

)∥∥∥
2
≤
(1
2

∥∥∥ŵ +
C

C̃
(g(ŵ)− ŵ)

∥∥∥
)2

.

The lower bound LB(w∗⊤
C x′

i|ŵC̃) is given by solving the following optimization problem:

min
w∗

C

w∗⊤
C x′

i s.t.
∥∥∥w∗

C −
1

2

(
ŵ − C

C̃
(g(ŵ)− ŵ)

)∥∥∥
2
≤
(1
2

∥∥∥ŵ +
C

C̃
(g(ŵ)− ŵ)

∥∥∥
)2

. (18)

Using Proposition 8, the solution of (18) is given as

LB(w∗⊤
C x′

i|ŵC̃) =
1

2
x′⊤
i

(
ŵ − C

C̃
(g(ŵ)− ŵ)

)
− ∥x′

i∥
∥∥∥
1

2

(
ŵ +

C

C̃
(g(ŵ)− ŵ)

)∥∥∥

≤ 1

2
x′⊤
i

(
ŵ − C

C̃
(g(ŵ)− ŵ)

)
− 1

2
∥x′

i∥
(∣∣∣1−

C

C̃

∣∣∣∥ŵ∥+
C

C̃
∥g(ŵ)∥

)

=

{
α(ŵC̃ , x

′
i)− 1

C̃
(β(ŵC̃ , x

′
i) + γ(g(ŵC̃), x

′
i))C, if C ≥ C̃,

−β(ŵC̃ , x
′
i) +

1
C̃
(α(ŵC̃ , x

′
i) + δ(g(ŵC̃), x

′
i))C, if C < C̃.

Similarly, the upper bound UB(w∗⊤
C x′

i|ŵC̃) is given by solving the following optimization problem

max
w∗

C

w∗⊤
C x′

i s.t.
∥∥∥w∗

C −
1

2

(
ŵ − C

C̃
(g(ŵ)− ŵ)

)∥∥∥
2
≤
(1
2

∥∥∥ŵ +
C

C̃
(g(ŵ)− ŵ)

∥∥∥
)2

, (19)

and the solution of (19) is given as

UB(w∗⊤
C x′

i|ŵC̃) =
1

2
x′⊤
i

(
ŵ − C

C̃
(g(ŵ)− ŵ)

)
+ ∥x′

i∥
∥∥∥
1

2

(
ŵ +

C

C̃
(g(ŵ)− ŵ)

)∥∥∥

≥ 1

2
x′⊤
i

(
ŵ − C

C̃
(g(ŵ)− ŵ)

)
+

1

2
∥x′

i∥
(∣∣∣1−

C

C̃

∣∣∣∥ŵ∥+
C

C̃
∥g(ŵ)∥

)

=

{
−β(ŵC̃ , x

′
i) +

1
C̃
(α(ŵC̃ , x

′
i) + δ(g(ŵC̃), x

′
i))C, if C ≥ C̃,

α(ŵC̃ , x
′
i)− 1

C̃
(β(ŵC̃ , x

′
i) + γ(g(ŵC̃), x

′
i))C, if C < C̃.

!
Remark 9 (Extended version of Remark 5 in the main text). We note that the idea of us-
ing Propositions 7 and 8 for proving Lemma 1 is inspired from recent studies on safe screen-
ing [12, 13, 14, 15, 16]. Safe screening has been introduced in the context of sparse modeling.
It allows us to identify sparse features or instances before actually solving the optimization prob-
lem. A key technique used in those studies is to bound Lagrange multipliers at the optimal solution
(Lagrange multiplier values at the optimal solution tell us which features or instances are active
or non-active) in somewhat similar way as we did in §3. Our main contribution is to borrow this
idea for representing a validation error lower bound as a function of the regularization parameter,
and show that it can be used for finding an approximately optimal regularization parameter with
theoretical guarantee.

11

Figure 4: An illustrative example of Algorithm
2 behavior. The blue real lines represent the
validation error lower bound. The red chained
lines and green dashed lines indicate the cur-
rent best validation error upper bound Ebest

v
and Ebest

v − ε, respectively. If the blue vali-
dation error lower bound falls below the green
ones, the validation error can be smaller by ε
than the current best. In such a case, the algo-
rithm computes the next approximate solution,
and update the validation error lower bound
based on the new approximate solution. The
plot is an enlarged view of the region from C̃13

to C̃17 in Figure 3 (a) in §5.

B Details of the speed-up tricks for finding an ε-approximate regularization
parameter

In this appendix, we first describe two modifications of the basic algorithm for finding an ε-
approximate regularization parameter presented in §4.2 for further speed-up.

Trick1 The efficiency of the algorithm depends on how far one can step forward in each iteration.
We see in (10) that the step size C̃t+1 − C̃t is large if the current minimum validation error upper
bound Ebest

v is small. In other words, the step size will be small until we have sufficiently small
Ebest

v . It suggests that, if we can find small enough Ebest
v at an earlier stage of the algorithm, we

can reduce the total computational cost of the algorithm. In order to find sufficiently small Ebest
v as

early as possible, we propose a simple heuristic approach, where we first roughly search over the
entire range by a rough grid search.

Trick2 Our next modification for speed-up is to use
LB(Ev(w

∗
C)|ŵC̃t

, ŵC̃t+1
) := max{LB(Ev(w

∗
C)|ŵC̃t

), LB(Ev(w
∗
C)|ŵC̃t+1

)},

for computing the validation error lower bound in C ∈ [C̃t, C̃t+1]. It provides a tighter validation
error lower bounds than using LB(Ev(w∗

C)|ŵC̃t
) alone, meaning that larger step might be allowed

in each iteration. However, we cannot actually compute LB(Ev(w∗
C)|ŵC̃t+1

) before we fix C̃t+1.
We thus propose a simple trial-and-error approach. Specifically, we step forward a little bit further
than (10) when we select the next C̃t+1. After we fix C̃t+1, we compute an approximate solution
ŵC̃t+1

and then check whether the validation error Ev(w∗
C) is not smaller by ε than the current

minimum for C ∈ [C̃t, C̃t+1] by using now available LB(Ev(w∗
C)|ŵC̃t

, ŵC̃t+1
).

Algorithm 3 is the pseudo-code of the proposed algorithm along with tricks 1 and 2.

There are two additional input parameters m ∈ N and ρ > 1. The former is used for trick1, where
we initially compute m approximate solutions for regularization parameter values evenly allocated
in the interval [Cl, Cu] in the logarithmic scale. Trick1 is described at lines 2-9 in Algorithm 3.

The latter ρ > 1 is used for trick2, where the next regularization parameter value is determined in
trial-and-error manner. To formally describe trick2, let us define a set Γ as a function of w in the
following way

Γ(wC̃) :=
{ β(wC̃ , x

′
i)

α(wC̃ , x
′
i) + δ(g(wC̃), x

′
i)
C̃
}

i∈P
∪
{ α(wC̃ , x

′
i)

β(wC̃ , x
′
i) + γ(g(wC̃), x

′
i)
C̃
}

i∈N
.

Then, our initial trial step is written as

Ctmp := (⌊n′(LB(Ev(w
∗
C̃t
)|ŵC̃t

)−Ebest
v +ρε)⌋+1)th(Γ(ŵC̃t

)), (20)

where ρ > 1 represents how far we step forward. We then compute an approximate solu-
tion ŵCtmp , and obtain a validation error lower bound LB(Ev(w∗

C)|ŵC̃t
, ŵC̃tmp) by combining

12

Algorithm 3 : Finding an ε-approximate regularization parameter with approximate solutions using
tricks 1 and 2
Input: {(xi, yi)}i∈[n], {(x′

i, y
′
i)}i∈[n′], Cl, Cu, ε, m, ρ

1: Cbest ← Cl, Ebest
v ← 1

2: s← log10(Cu)−log10(Cl)
m

3: for h = 0 to m− 1 do
4: C̄h ← 10(log10(Cl)+h×s)

5: ŵC̄h
← solve (1) approximately for C = C̄h

6: if UB(Ev(w∗
C̄h

)|ŵC̄h
) < Ebest

v then
7: Ebest

v ← UB(Ev(w∗
C̄h

)|ŵC̄h
), Cbest ← C̄h

8: end if
9: end for

10: C̄m ← Cu , t← 1
11: for h = 0 to m− 1 do
12: C̃t ← C̄h , ŵC̃t

← ŵC̄h

13: while C̃t ≤ C̄h+1 do
14: Set Ctmp by (20) using ŵC̃t

15: if Ctmp > C̄h+1 then
16: Set Ctmp by (22) using ŵC̃t

17: if Ctmp > C̄h+1 then
18: break while loop
19: end if
20: end if
21: ŵCtmp ← solve (1) approximately for C = Ctmp

22: Compute UB(Ev(w∗
Ctmp)|ŵCtmp) by (8b).

23: if UB(Ev(w∗
Ctmp)|ŵCtmp) < Ebest

v then
24: Ebest

v ← UB(Ev(w∗
Ctmp)|ŵCtmp)

25: Cbest ← Ctmp

26: end if
27: r ← 0
28: RecursiveCheck(C̃t, Ctmp, ŵC̃t

, ŵCtmp , r)
29: C̃t+r+1 ← Ctmp, ŵC̃t+r+1

← ŵCtmp

30: t← t+ r + 1
31: end while
32: end for
Output: Cbest ∈ C(ε).

LB(Ev(w∗
C)|ŵC̃t

) and LB(Ev(w∗
C)|ŵCtmp). For accepting this trial step, we need to make sure

that the lower bounds are not smaller by ε than the current best Ebest
v for any C ∈ [Ct, Ctmp]. To

this end, we investigate where the two lower bounds LB(Ev(w∗
C)|ŵC̃t

) and LB(Ev(w∗
C)|ŵCtmp)

go below Ebest
v − ε. To formulate this, let us define the following two functions

CR(ŵC(L)) := (⌊n′(LB(Ev(w
∗
C(L))|ŵC(L)) −Ebest

v +ε)⌋+1)th(Γ(ŵC(L))), (21)

CL(ŵC(R))) := (⌊n′(LB(Ev(w
∗
C(R))|ŵC(R)) −Ebest

v +ε)⌋+1)TH(∆(ŵC(R))), (22)

where, for the latter, we define

∆(wC̃) :=
{ α(wC̃ , x

′
i)

β(wC̃ , x
′
i) + γ(g(wC̃), x

′
i)
C̃
}

i∈P
∪
{ β(wC̃ , x

′
i)

α(wC̃ , x
′
i) + δ(g(wC̃), x

′
i)
C̃
}

i∈N
,

and denote the kTH-largest element of ∆ as kTH(∆) for any natural number k. The trial step to
Ctmp is accepted if

CL(ŵCtmp) < CR(ŵC̃t
).

13

Algorithm 4 : RecursiveCheck (C(L), C(R), ŵC(L), ŵC(R), r)

Compute CR(ŵC(L)) in (21).
Compute CL(ŵC(R)) in (22).
if CL(ŵC(R)) < CR(ŵC(L)) then

return
else
r ← r + 1
C̃t+r ← 1

2 (C
L(ŵC(R)) + CR(ŵC(L)))

ŵC̃t+r
← solve (1) approximately for C = C̃t+r

if UB(Ev(w∗
C̃t+r

)|ŵC̃t+r
) < Ebest

v then
Ebest

v ← UB(Ev(w∗
C̃t+r

)|ŵC̃t+r
)

Cbest ← C̃t+r

end if
RecursiveCheck(C(L), C̃t+r, ŵC(L), ŵC̃t+r

, r)
RecursiveCheck(C̃t+r, C(R), ŵC̃t+r

, ŵC(R), r)
end if

If not, we need to shrink the trial step by using the procedure described in Algorithm 4. Briefly
speaking, Algorithm 4 conducts a bisection search until we find two approximate solutions ŵC(L)

and ŵC(R) that satisfy CL(ŵC(L)) < CR(ŵC(L)). We note that, with the use of trick2, the sequence
of the regularization parameter values C̃1, . . . , C̃T is not necessarily in increasing order because they
are computed in trial-and-error manner.

C Adaptation to cross-validation setup

All the methods presented above can be straightforwardly adapted to a cross-validation (CV) setup.
Consider k-fold CV where n instances are divided into k disjoint subsets {Fκ}κ∈[k] with almost
equal size. Let w(κ)∗C be the optimal solution trained without using the instances in Fκ. Then, the
k-fold CV error is defined as

EkCV(C) :=
1

n

∑

κ∈[k]

∑

i∈Fκ

I
(
yiw(κ)

∗⊤
C xi < 0

)
,

where, note that, the CV error is not a function of w, but a function of C. Our algorithm can find an
ε-approximate regularization parameter at which the k-fold CV error is guaranteed to be no greater
by ε than the smallest possible k-fold CV error. For each of the k folds, we can compute a validation
error lower bound as described before. A lower bound of the entire k-fold CV error can be obtained
by simply summing them up.

14

	Introduction
	Problem Setup
	Validation error lower bounds as a function of regularization parameter
	Score bounds
	Validation Error Bounds

	Algorithm
	Problem setup 1: Computing the approximation level from a given set of solutions
	Problem setup 2: Finding an -approximate regularization parameter

	Experiments
	Conclusions and future works
	Proof of Lemma 1
	Details of the speed-up tricks for finding an -approximate regularization parameter
	Adaptation to cross-validation setup

