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1 Introduction

The results used but not proved in the main paper are given here as:

• Proposition 2 which was used to show that φw(0) ≤ x,
• Proposition 9 for the range of x giving a specific mechanical word,
• Proposition 10 showing the index is continuous for x ∈ R+,

• Proposition 12 showing the properties of M(p) when p is a palindrome.
• and Proposition 13 for weak supermajorisation with β 6= 1.

A clarification of the extreme cases of Theorem 1 of the main paper and an analysis of the compu-
tational cost of approximating the index are presented in the final sections.

2 From x-Threshold Policies to Mechanical Words

Some concepts relating to mechanical words appeared as early as 1771 in Jean Bernoulli’s study of
continued fractions (Berstel et al, 2008). The term “mechanical sequences” appears in the work of
Morse and Hedlund (Am. J. Math., Vol 62, No. 1, 1940, p. 1-42) who had just introduced the term
“symbolic dynamics”. Morse and Hedlund studied the concept from the perspective of sequences
of the form bc + kβc for c, β ∈ R and k ∈ Z. They also studied the concept from the perspective
of differential equations, motivating the term “Sturmian sequences.” Since that time there has been
tremendous progress in the study of such sequences from the perspective of Combinatorics on Words
(Lothaire, 2001). However, the recent (and highly-approachable) paper of Rajpathak, Pillai and
Bandyopadhyay (Chaos, Vol. 22, 2012) on the piecewise-linear map-with-a-gap discovers such
sequences without recognising them as mechanical sequences. Proposition 9 of this section is a
substantial generalisation of that result and we could not find this proposition explicitly stated in the
literature. Our result is not surprising if one has the intuition that there is a topological conjugacy
between the maps of this section and the piecewise linear map-with-a-gap. However, it might be
difficult to explicitly identify the appropriate topological conjugacy and thereby prove our result for
all cases considered here.

2.1 Definitions

Let π denote a word consisting of a string of 0s and 1s in which the kth letter is πk and letters
i, i+ 1, . . . , j are πi:j . Let |π| be the length of π and |π|w for a word w be the number of times that
word w appears in π. Let ε denote the empty word and πω denote the infinite word constructed by
repeatedly concatenating π.

Consider two functions φ0 : I → I and φ1 : I → I where I is an interval of R. We define the
transformation φπ : I → I for any word π by the composition

φπ(x) := φπ|π| ◦ · · · ◦ φπ2
◦ φπ1

(x).
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Let yπ ∈ I be the fixed point of φπ , so φπ(yπ) = yπ , assuming a unique fixed point on I exists.

Given x ∈ I, we call the sequence (xk : k ≥ 1) the x-threshold orbit for φ0, φ1 if

x1 = φ1(x), xk+1 =

{
φ1(xk) if xk ≥ x
φ0(xk) if xk < x

for k ≥ 1.

We call π the x-threshold word for φ0, φ1 if it is the shortest word such that xk+1 = φ(πω)k(xk)
for all k ≥ 1. We shall just write x-threshold orbit and x-threshold word where φ0, φ1 are obvious
from the context.

For p ≥ 1, let Lp, Rp be the morphisms (substitutions)

Lp :

{
0→ 0p+11

1→ 0p1
Rp :

{
0→ 01p

1→ 01p+1 .

We say π is a valid word if π ∈ {0, 1} or π ∈ {Lp(w), Rp(w) : p ≥ 1} for some valid word w.

Remark. The morphisms Lp, Rp generate the Christoffel tree so valid words are mechanical words.
To see this, note that the Christoffel tree is generated by the following morphisms (Berstel et al,
2008, p. 37)

G :

{
0→ 0

1→ 01
D̃ :

{
0→ 01

1→ 1
.

We may translate (from English to French) as Lp = Gp ◦ D̃ and Rp = D̃p ◦G so any composition
of Lp and Rp can be written as a composition of G and D̃. Likewise, any composition of G and D̃
can be written as a composition of Lp and Rp. Specifically if pk, qk, pk+1 ≥ 2 then

· · · ◦Gpk−1 ◦ D̃qk ◦Gpk+1 ◦ D̃ ◦ · · ·
= · · · ◦ (Gpk−1 ◦ D̃) ◦ (D̃qk−1 ◦G) ◦ (Gpk+1−1 ◦ D̃) ◦ · · ·
= · · · ◦ Lpk−1 ◦Rqk−1 ◦ Lpk+1−1 ◦ · · ·

whereas if qk = 1 we have

· · · ◦Gpk−1 ◦ D̃ ◦Gpk+1 ◦ D̃ ◦ · · ·
= · · · ◦ (Gpk−1 ◦ D̃) ◦ (Gpk+1 ◦ D̃) ◦ · · ·
= · · · ◦ Lpk−1 ◦ Lpk+1

◦ · · · .
A symmetric argument holds if pk = 1 or pk+1 = 1.

2.2 Fixed Points

Throughout, we make the following assumption about φ0, φ1. The existence of fixed points y0, y1
is addressed immediately thereafter.

Assumption A2. Functions φ0 : I → I, φ1 : I → I, where I is an interval of R, are increasing
and non-expansive. Equivalently, for all x, y ∈ I : x < y and for k ∈ {0, 1} we have

φk(x) < φk(y)︸ ︷︷ ︸
increasing

and φk(y)− φk(x) < y − x︸ ︷︷ ︸
non-expansive

.

Furthermore, the fixed points y0, y1 of φ0, φ1 satisfy y1 < y0.
Proposition 1. Suppose A2 holds, that x ∈ I and that w is any non-empty word. Then φw(x) is
increasing and non-expansive. Further, the fixed point yw exists and is unique.

Proof. First we show that φw(x) is increasing, by induction. In the base case, |w| = 1 and the
claim follows from A2. For the inductive step assume φu(x) is increasing, where w = au for some
a ∈ {0, 1} and word u. Then for any x, y ∈ I : x < y,

φw(y) = φu(φa(y))

> φu(φa(x)) as φa(y) > φa(x) and φu is increasing
= φw(x).
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Therefore φw is increasing.

Now we show that φw(x) is non-expansive, by induction. If |w| = 1 then this follows from A2.
Else, say φu(x) is non-expansive where w = ua and a ∈ {0, 1}. Then for any x, y ∈ I : x < y,

φw(y)− φw(x) = φa(φu(y))− φa(φu(x))

< φu(y)− φu(x) as φu(y) > φu(x) and φa is non-expansive
< y − x as φu is non-expansive.

Therefore φw is non-expansive.

Let ψ(x) := max{φ0(x), φ1(x)}. As φ1 is non-expansive we have

y1 = φ1(y1) > φ1(y0) + y1 − y0
which rearranges to give φ1(y0) < y0, so that ψ(y0) = y0. Also ψ is increasing as φ0, φ1 are
increasing, so φw(y0) ≤ ψ(|w|)(y0) = y0.

We now prove that yw exists. The argument of the previous paragraph shows that g(x) := x−φw(x)
satisfies g(y0) ≥ 0. A symmetric argument leads to the conclusion that g(y1) ≤ 0. Clearly g(x) is
a continuous function, so by the intermediate value theorem, there is some y ∈ [y0, y1] for which
g(y) = 0. Equivalently y = φw(y). Therefore a fixed point yw exists.

To show that the fixed point is unique, suppose both y and z are fixed points with y > z. As φw is
non-expansive we have φw(y)−φw(z)

y−z < 1. Yet, as φw(y) = y, φw(z) = z we have

φw(y)− φw(z)

y − z
= 1.

This is a contradiction. Therefore the fixed point is unique.

Given a word w, the next proposition shows when the transformation φw increases or decreases its
argument and what might be deduced from such an increase or decrease.

Proposition 2. Suppose A2 holds, x ∈ I and w is any non-empty word. Then

x < φw(x) ⇔ φw(x) < yw ⇔ x < yw and x > φw(x) ⇔ φw(x) > yw ⇔ x > yw.

Proof. We use Proposition 1 throughout the argument without further mention.

Say x < yw. As φw is increasing,

φw(x) < φw(yw) = yw

where the equality is the definition of yw. Also, as φw is non-expansive,

yw = φw(yw) < φw(x) + yw − x

which rearranges to give x < φw(x).

Now say x > yw. As above, we then have φw(x) > φw(yw) = yw and

yw = φw(yw) > φw(x) + yw − x

so that x > φw(x).

The contrapositive of x > yw ⇒ φw(x) > yw is φw(x) ≤ yw ⇒ x ≤ yw. But if φw(x) 6= yw then
x 6= yw as φw is increasing and therefore injective. Thus φw(x) < yw ⇒ x < yw.

The contrapositive of x > yw ⇒ x > φw(x) is x ≤ φw(x) ⇒ x ≤ yw. But if x 6= φw(x) then
x 6= yw as yw is a fixed point. So we can conclude that x < φw(x)⇒ x < yw.

By symmetry, φw(x) > yw ⇒ x > yw and x > φw(x)⇒ x > yw. This completes the proof.

Proposition 3. Suppose A2 holds and π is any word satisfying |π|0 |π|1 > 0. Then y1 < yπ < y0.
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Proof. Say yπ ≤ y1. As |π|0 > 0 we can write π =: s01q for some q ≥ 0. Thus

yπ = φπ(yπ) ≤ φs01q (y1) as φπ is increasing
= φs0(y1) as φε(y1) = φ1(y1) = y1

> φs(y1) by Proposition 2
≥ y1 by repeating the same argument if |s|0 > 0.

But this contradicts yπ ≤ y1. Therefore yπ > y1.

A symmetrical argument leads to the conclusion that yπ < y0.

Proposition 4. If A2 holds and n ≥ 1 then y10n−1 < y010n−1 < y10n and y01n < y101n−1 < y01n−1 .

Proof. As y10n−1 < y0 by Proposition 3 we have φ0(y10n−1) > y10n−1 by Proposition 2 so that

φ010n−1(y10n−1) = φ10n−1(φ0(y10n−1)) > φ10n−1(y10n−1) = y10n−1

so Proposition 2 gives y010n−1 > y10n−1 .

Furthermore y10n = φ0(y010n−1) by definition of yπ and y010n−1 < y0 by Proposition 3 so that
φ0(y010n−1) > y010n−1 by Proposition 2. Thus y10n > y010n−1 .

The proof that y01n < y101n−1 < y01n−1 is symmetrical.

Proposition 5. Suppose A2 holds, M ∈ {Lq, Rq : q ≥ 1} and w̃ is any word. Let ỹv be the fixed
point of φ̃v := φM(v) for any word v and let 0w1 := M(0w̃1). Then

x̃ ∈ [ỹ01w̃, ỹ10w̃] ⇔ x := φ0q (x̃) ∈ [y01w, y10w].

Proof. Say M = Lq . Note that

φ0q (ỹ01w̃) = φ0q (yLq(01w̃)) as ỹv is the fixed point of φ̃v = φLq(v)

= φ0q (y0q01Lq(1w̃)) as Lq(0) = 0q01

= y01Lq(1w̃)0q as φa(yab) = yba for any words a, b

= y01w as 0w1 = Lq(0w̃1) = 0Lq(1w̃)0q1

and

φ0q (ỹ10w̃) = φ0q (yLq(10w̃))

= φ0q (y0q1Lq(0w̃))

= y1Lq(0w̃)0q

= y10w as 0w1 = Lq(0w̃)0q1.

Proposition 1 shows that ỹ01w̃, ỹ10w̃ exist. So the above equalities show that an inverse φ(−1)0q (x)
exists for x ∈ {y01w, y10w}. As φ0q is increasing and continuous, we have

x ∈ [y01w, y10w] ⇔ x̃ ∈ [φ
(−1)
0q (y01w), φ

(−1)
0q ((y10w)] = [ỹ01w̃, ỹ10w̃].

The proof for M = Rq is symmetric.

2.3 x-Threshold Words

Proposition 6. Suppose A2 holds, π is the x-threshold word and n ≥ 1. Then

1. x ≤ y10n−1 ⇒ |πω|0n = 0

2. x ≥ y010n−1 ⇒ |πω|10n−11 = 0
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3. x ≥ y01n−1 ⇒ |πω|1n = 0

4. x ≤ y101n−1 ⇒ |πω|01n−10 = 0

Proof. If x ≤ y1 then it follows from Proposition 2 that the x-threshold word is π = 1. Likewise if
x > y0 then the x-threshold word is π = 0. In these cases Claims 1 and 2 hold, so in the following
we assume that y1 < x ≤ y0.

Claim 1: Let (xk) the x-threshold orbit. If (πω)k:k+n−2 = 0n−1 for some k, then

xk+n−1 = φ0n−1(xk) by definition of (xk)

≥ φ0n−1(φ1(x)) as xk ≥ φ1(x) for all k ≥ 0 and φ0n−1 is increasing
= φ10n−1(x)

≥ x if x ≤ y10n−1 by Proposition 2.

But if xk+n−1 ≥ x then πk+n−1 = 1 by definition π. Therefore |π|0n = 0.

Claim 2: Let (xk) be the x-threshold orbit. If (πω)k:k+n−1 = 10n−1 for some k, then

xk+n = φ10n−1(xk)

< φ10n−1(φ0(x)) as xk < φ0(x) for all k ≥ 0 and φ10n−1 is increasing
= φ010n−1(x)

≤ x if x ≥ y010n−1 by Proposition 2.

But if xk+n < x then (πω)k+n = 0. Therefore |π|10n−11 = 0.

The proof of Claims 3 and 4 is symmetrical.

Proposition 7. Suppose A2 holds and π is a x-threshold word. Then

1. |π|00 > 0⇒ π = Ln(w) for some word w and some n ≥ 1

2. |π|11 > 0⇒ π = Rn(w) for some word w and some n ≥ 1

Proof. First, applying Claims 1 and 3 of Proposition 6 with n = 2 we have |π|00 = 0 for x ≤ y10
and |π|11 = 0 for x ≥ y01. Furthermore y10 = φ0(y01) > y01 by Proposition 2. Thus π cannot
contain both 00 and 11.

So, if |π|00 > 0 then π is of the form 0q110q21 . . . with strings of 0s separated by individual 1s. Let
q := mink qk. By Propositions 4 and 6, Iq := (y10q−1 , y010q ) is the only set of x values for which
πω can contain 10q1. Thus πω can only contain both 10q1 and 10q+11 in the interval

Fq := Iq ∩ Iq+1 = (y10q−1 , y010q ) ∩ (y10q , y010q+1) = (y10q , y010q )

noting Proposition 4 gives y10q−1 < y010q−1 < y10q < y010q .

Finally, we have Fq ∩ Fq′ = ∅ for q 6= q′, which also follows from Proposition 4. Thus if |π|00 > 0
then π is a concatenation of Lq(0) and Lq(1). Equivalently π = Lq(w) for some word w and some
q ≥ 1 as in Claim 1.

The proof of Claim 2 is symmetric.

Proposition 8. Suppose A2 holds and π is a x-threshold word. Then π is a valid word.

Proof. There are three cases to consider: either |π|00 = |π|11 = 0 or |π|00 > 0 or |π|11 > 0.

First case: The only non-empty words not containing 00 or 11 are 0, 1, (01)n, (10)n for some n ≥ 1.
Now x-threshold words start with 0 unless x ≤ y1 (in which case π = 1) so π 6= (10)n. Further, the
x-threshold word was defined to be the shortest word such that such that xk+1 = A(πω)kxk so this
leaves us with the options 0, 1, 01. These are all valid words.

Second case: If π contains 00, we may write π = Lq(w) for some word w, by Proposition 7. Now
from point xk on the x-threshold orbit we have πk:k+q = 0q+1 if and only if φ0q (xk) < x which
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corresponds to xk < φ
(−q)
0 (x) =: x̃. So the word w corresponds to a x̃-threshold orbit (x̃k : k ≥ 1)

for ψ0(x) := φ0q+11(x), ψ1(x) := φ0q1(x). To spell it out, we have

x̃1 = ψ1(x̃), x̃k+1 = ψwk(x̃k), wk =

{
1 if x̃k ≥ x̃
0 if x̃k < x̃

for k ≥ 1

and as for the original system, we define ỹπ as the fixed point ỹπ = ψπ(ỹπ).

Now ψ0, ψ1 are non-negative, as φ0, φ1 are non-negative. Also ψ0, ψ1 are monotonically increasing
and non-expansive by Proposition 1. Further,

φ0q+11(y0q1) = φ0q1(φ0(y0q1)) > φ0q1(y0q1) = y0q1

so that y0q+11 > y0q1 by Proposition 2. But by definition ỹ0 = y0q+11 and ỹ0 = y0q1, so that
ỹ1 < ỹ0. Therefore ψ0, ψ1 satisfy A2.

Third case: We prove that π = Rq(w) for some positive integer q and word w. We also show that
word w is a x̂-threshold word for a pair of functions (say) χ0, χ1 which satisfy A2. The argument is
symmetric to the second case, so it is omitted.

In conclusion, either

1. π ∈ {0, 1, L1(1)} which are valid words

2. π = Lq(w) where w is a x̃-threshold word for ψ0, ψ1 which satisfy Propositions 1-7 and
therefore w satisfies this conclusion

3. or π = Rq(w) where w is a x̂-threshold word for χ0, χ1 which satisfy Propositions 1-7 and
therefore w satisfies this conclusion.

Thus π is a valid word. This completes the proof.

The following proposition shows that all valid words are x-threshold words and tells us explicitly
which values of x produce a given valid word. It is one of the key results of the main paper.
Proposition 9. Suppose A2 is satisfied and 0w1 is any valid word. Then

0w1 is the x-threshold word ⇔ x ∈ [y01w, y10w].

Proof. Let V1 := {Lq(1), Rq(1) : q ≥ 1}, Vn+1 := {Lq(v), Rq(v) : v ∈ Vn, q ≥ 1}. Note that
V1 contains Lq(0) = 0q+11 = Lq+1(1) and Rq(0) = 01q which for q ≥ 2 equals Rq−1(1) and for
q = 1 equals 01 = L1(1). Thus ∪∞n=1Vn is the set of all valid words of form 0w1.

We use induction with hypothesis
Hn : 0w1 ∈ Vn is the x-threshold word ⇔ x ∈ [y01w, y10w]

Base case (H1). Say 0w1 = 0q1 is the x-threshold word. Then
x > φ(10q)n10q−1(x) for all n ≥ 0

= φ(010q−1)n(φ10q−1(x))

⇒ x ≥ lim
n→∞

φ(010q−1)n(φ10q−1(x)) = y010q−1 .

The definition of the x-threshold word also gives x ≤ φ10q (x). Therefore x ≥ y10q by Proposition 2.
Thus if 0q1 is the x-threshold word then x ∈ [y01w, y10w].

Now say x ∈ [y010q−1 , y10q ]. Proposition 3 gives y0 < x < y1 so that the x-threshold orbit (xk) is
contained in (y0, y1). So Proposition 2 shows that φ0(xk) > xk and φ1(xk) < xk for all k ≥ 0.
So to prove that the x-threshold word is 0q1 we need only show that φ(10q)n10q−1(x) < x and
φ(10q)n(x) ≥ x for all n ≥ 0. But if x ≥ y010q−1 then for all n ≥ 0

x ≥ φ(010q−1)n(x) by Proposition 2

> φ(010q−1)n(φ10q−1(x)) as y10q−1 < y010q−1 ≤ x by Claim 3 of Proposition 4

= φ(10q)n10q−1(x).
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Also if x ≤ y10q then φ(10q)n(x) ≥ x for all n ≥ 0 by Proposition 2. Therefore for 0w1 = 0q1, we
have x ∈ [y01w, y10w] implies that 0w1 is the x-threshold word.

For 0w1 = 01q , the proof that π = 01q ⇔ x ∈ [y01w, y10w] is symmetric, so it is omitted.

Inductive Step. Assume 0w̃1 satisfies Hn.

Say 0w1 = Lq(0w̃1). Let ki := |Lq(((0w̃1)ω)1:i−1)| + 1 so (πω)ki is aligned with the start of the
ith letter of (0w̃1)ω . Let xk := φ((10w)ω)1:k(x), x̃i := xki , x = φ0q (x̃) and let ỹv denote the fixed
point of φ̃v := φLq(v) for any word v. Then we have

Lq(0w̃1) is the x-threshold word for φ0, φ1
⇔ ((0w1)ω)ki:ki+q = 0q+1 if and only if φ0q (xki) < x

⇔ ((0w̃1)ω)i = 0 if and only if x̃i < x̃

⇔ 0w̃1 is the x̃-threshold word for φ̃0, φ̃1
⇔ x̃ ∈ [ỹ01w̃, ỹ10w̃] as 0w̃1 satisfies Hn

⇔ x ∈ [y01w, y10w] by Proposition 5

Symmetrically we may conclude that π = 0w1 = Rq(0w̃1) ⇔ x ∈ [y01w, y10w]. Therefore Hn+1

is true.

This completes the proof.

3 Continuity of the Index

We showed that the Whittle index is increasing on the domain of each fixed Christoffel word. How-
ever, we also need to show that the index is continuous as we move between words. So here we
prove the following proposition.
Proposition 10. Suppose λ(·) is as in the main paper. Then λ(x) is a continuous function of x ∈ R+.

We use the following definitions.

Definition. Let w̃ be the reverse of word w, wω be the word constructed by concatenating w in-
finitely many times, |w| be the length of word w and |w|u be the number of times that word u is a
factor of w.

Definition. For a possibly-infinite word w and numbers x ∈ R, β ∈ (0, 1) define

S(w, x) :=

|w|−1∑
n=0

βnφw1:n
(x)

λ(0w1, x) :=
1− β|0w1|

1− β
(S((01w)ω, x)− S((10w)ω, x)) .

Remark. If π is the x-threshold word then λ(x) = λ(π, x) where λ(x) is the Whittle index.

Remark. For a word ab, this definition gives

S(ab, x) = S(a, x) + β|a|S(b, φa(x)) (1)

so for |φaω (x)| <∞ and β ∈ (0, 1) we have

S(aωb, x) = S(aω, x). (2)

Further, if xa = φa(xa) then the formula for the sum of a geometric progression gives

S(aω, xa) =
S(a, xa)

1− β|a|
. (3)

Definition. Let Xπ be the range of x for which the x-threshold word is π.
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The following construction is closely related to the beautiful Christoffel tree (Berstel et al, 2008).

Definition. Consider the mapping C which takes a sequence of words and returns a sequence
containing the original words mingled with the concatenation of neighbouring words as follows:

C((a, b, c, d, . . . , x, y, z)) := (a, ab, b, bc, c, cd, d, . . . , x, xy, y, yz, z).

Now consider the sequences tk := C(k)((0, 1)) for k ≥ 0. The first few such sequences are

t0 = (0, 1)

t1 = (0, 01, 1)

t2 = (0, 001, 01, 011, 1)

t3 = (0, 0001, 001, 00101, 01, 01011, 011, 0111, 1).

Remark. If u ∈ tk then |u| ≥ 1 for any k ≥ 0. Now suppose u, v are adjacent in tk and we
have |uv| ≥ k + 2. Then tk+1 contains u, uv, v from which we can construct uuv and uvv. But
|uuv| = |u| + |uv| ≥ 1 + k + 2 = k + 3 and |uvv| = |uv| + |v| ≥ k + 2 + 1 = k + 3. Thus, by
induction, we have shown that

|uv| ≥ k + 2 for any adjacent pair u, v in tk and any k ≥ 0. (4)

3.1 Long Common Prefixes

We gather the results needed to prove Proposition 10. Most of these results these relate to the notion
that if |x− y| is small and a, b are the x- and y-threshold words, then words a, b usually have a long
common prefix, although this is not always the case.

The following simple result is repeatedly used in the other Lemmas of this subsection.

Lemma 1. Suppose (0a1, 0b1) is a standard pair. Then a10b = b01a.

Proof. As (0a1, 0b1) is a standard pair, 0a10b1 =: 0w1 is a Christoffel word. As 0a1, 0b1, 0w1 are
Christoffel words, a, b, w are palindromes. Thus a10b = w = w̃ = b̃01ã = b01a.

If (0a1, 0b1) is a standard pair, then the interval X0b1 is immediately to the left of X0a1(0b1)ω .
Since the words 0b1 and 0a1(0b1)ω can differ within the first few letters, continuity of λ(x) at
x = supX0b1 is not obvious. Similarly, X(0a1)ω0b1 is immediately to the left of X0a1. However,
the factors 1− β|(0a1)ω0b1| and 1− β|0a1| appearing in the definitions of the corresponding Whittle
indices are different for |a| <∞. Thus continuity of λ(x) at x = supX0a1 is not obvious. The next
two Lemmas address these questions.

Lemma 2. Suppose (0a1, 0b1) is a standard pair and let x = φ10b(x). Then

λ(0b1, x) = λ(0a1(0b1)ω, x).

Proof. The right-hand side λ(0a1(0b1)ω, x) involves the sum

S(10a1(0b1)ω, x) = S(10b01a(10b)ω, x) by Lemma 1

= S(10b, x) + β|10b|S(01a(10b)ω, φ10b(x)) by 1

= S(10b, x) + β|10b|S(01a(10b)ω, x) as x = φ10b(x)

= (1− β|10b|)S((10b)ω, x) + β|10b|S(01a(10b)ω, x) by 3. (5)

Now we note that repeated application of Lemma 1 gives

01a(10b)ω = 01a10b(10b)ω = 01b 01a(10b)ω = (01b)ω01a. (6)
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Thus

λ(0a1(0b1)ω, x) =
1− β|0a1(0b1)ω|

1− β
(S((01a1(0b1)ω)ω, x)− S((10a1(0b1)ω)ω, x))

=
S(01a1(0b1)ω, x)− S(10a1(0b1)ω, x)

1− β
by 2

=
1− β|10b|

1− β
(S(01a(10b)ω, x)− S((10b)ω, x)) by 5

=
1− β|10b|

1− β
(S((01b)ω, x)− S((10b)ω, x)) by 6

= λ(0b1, x).

This completes the proof.

Lemma 3. Suppose (0a1, 0b1) is a standard pair and let x = φ01a(x). Then

λ((0a1)ω0b1, x) = λ(0a1, x).

Proof. The left-hand side λ((0a1)ω0b1, x) involves the sum

S(01(a10)ω0b1, x) = S(01(a10)ω, x) by 2

= S(01a, x) + β|01a|S((10a)ω, φ01a(x)) by 1

= S(01a, x) + β|01a|S((10a)ω, x) as x = φ01a(x)

= (1− β|01a|)S((01a)ω, x) + β|01a|S((10a)ω, x) by 3. (7)

Thus

λ((0a1)ω0b1, x) =
1− β|(0a1)ω0b1|

1− β
(S((01(a10)ω0b1)ω, x)− S((10(a10)ω0b1)ω, x))

=
1

1− β
(S(01(a10)ω0b1, x)− S((10a)ω, x)) by 2

=
1− β|01a|

1− β
(S((01a)ω, x)− S((10a)ω, x)) by 7

= λ(0a1, x).

This completes the proof.

To demonstrate continuity at other points, we will need to rely on the fact that nearby words often
have a long common prefix as shown by the following two Lemmas.
Lemma 4. Suppose (0a1, 0b1) is a subsequence of tk for some k ≥ 1. Then 0b01a is a prefix of
both (0a1)ω and 0b(01b)ω .

Proof. Let a = b · · · indicate that b is a prefix of word a and consider the statements

A(a, b) : (a10)ω = b · · · and B(a, b) : (b01)ω = a · · · .

It suffices to show that A(a, b) and B(a, b) are true for any adjacent words 0a1, 0b1 in tk for k ≥ 0.
This is because

A(a, b)⇒ (0a1)ω = 0a10(a10)ω = 0a10b · · · = 0b01a · · ·

where the last equality follows from Lemma 1 and

B(a, b)⇒ 0b(01b)ω = 0b01(b01)ω = 0b01a · · ·

which are the claims of the Lemma.
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We shall use induction. Take t2 = (0, 001, 01, 011, 01) as the base case. We must show that
A(0, ε), B(0, ε), A(ε, 1), B(ε, 1) are true. However these statements are respectively that (001)ω =
ε · · · , (01)ω = 0 · · · , (10)ω = 1 · · · , (101)ω = ε · · · and are all true.

Otherwise, say A(a, b), B(a, b) are true for any adjacency 0a1, 0b1 in tk. Let 0a10b1 = 0c1 so

c = a10b = b01a

using Lemma 1 again. Then the statements A(a, c), B(a, c), A(c, b), B(c, b) are all true as

(a10)ω = a10(a10)ω = a10b · · · = c · · · by A(a, b) and as c = a10b

(c01)ω = c · · · = a · · · as c = a10b

(c10)ω = c · · · = b · · · as c = b01a

(b01)ω = b01(b01)ω = b01a · · · = c · · · by B(a, b) and as c = b01a.

Thus A(a, b), B(a, b) are true for all adjacencies 0a1, 0b1 in tk+1. This completes the proof.

Lemma 5. Suppose 0a1, 0b1 are adjacent in tk and that 0c1 lies strictly between them in tk′ for
some 0 < k < k′. Then 0c1 = 0b01a · · · .

Proof. The interval of tk′ between 0a1, 0b1 is constructed from 0a1, 0b1 in exactly the same way
as tk′−k was constructed from 0, 1. Thus 0c1 = (0a1)q0b1 · · · for some positive integer q. Now
recall that 0b01a = 0a10b by Lemma 1. Thus 0c1 = (0a1)q−10a10b1 · · · = (0a1)q−10b01a1 · · · =
0b(01a)q1 · · · = 0b01a · · · as claimed.

Although the existence of a long common prefix for nearby words suggests continuity, to prove
anything we must bound the residual after removing the long common prefix. The following Lemma
is one way to achieve this.

Lemma 6. Suppose x ≥ y ≥ 0, let 0w1 be the x-threshold word and let (01w)ω = su, (10w)ω =
s′u′ where |s| = |s′|. Then |S(u, φs(y))− S(u′, φs′(y))| ≤ x+1

1−β .

Proof. The highest point on the orbits (φ((01w)ω)1:k(x) : k ≥ 0) and (φ((10w)ω)1:k(x) : k ≥ 0) is
x+ 1 since 0w1 is the x-threshold word. The terms ak, bk of the discounted sums

S(u, φs(y)) =:

∞∑
k=0

βkak and S(u′, φs′(y)) =:

∞∑
k=0

βkbk

are from the orbits (φ((01w)ω)1:k(y) : k ≥ 0) and (φ((10w)ω)1:k(y) : k ≥ 0) and φu′′(x) ≥
φu′′(y) for any word u′′ as x ≥ y. Therefore terms ak, bk, are also no higher than φ0(x) ≤
x + 1. Furthermore, terms ak, bk are non-negative, so that |ak − bk| ≤ x + 1. Thus
|S(u, φs(y))− S(u′, φs′(y))| ≤

∑∞
k=0 β

k |ak − bk| ≤
∑∞
k=0 β

k(x+ 1) = x+1
1−β .

Although it is clear that λ(π, x) is continuous, a bound on its slope is helpful.

Lemma 7. Suppose x ≥ 0 and that 0w1 is a valid word. Then |λ′(0w1, x)| ≤ 1
(1−β)2 .

Proof. The definition of λ(0w1, x) gives

|λ′(0w1, x)| ≤ 1− β|0w1|

1− β

∞∑
k=0

βk
∣∣∣φ′((01w)ω)1:k

(x)− φ′((10w)ω)1:k
(x)
∣∣∣ ≤ 1

1− β

∞∑
k=0

βk =
1

(1− β)2

where the second inequality follows as 0 ≤ β|0w1| < 1 and 0 ≤ φ′u(x) ≤ 1 for any word u since
0 ≤ φ′1(x) ≤ φ′0(x) ≤ 1.

We use one more result about φ0, φ1 of the main paper.

Lemma 8. Suppose φ0(x) and φ1(x) are as in the main paper and x ∈ R+. Then φ01(x) < φ10(x).
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Proof. The definitions of φ0, φ1 give

φ10(x)− φ01(x) =

(b− a)
(ab+ b+ a)x2 + (2ab+ 3b+ 3a+ 2)x+ ab+ 2b+ 2a+ 3

((ab+ b+ a)x+ ab+ b+ 2a+ 1)((ab+ b+ a)x+ ab+ 2b+ a+ 1)

which is positive as b > a and x ≥ 0.

Our proof of continuity will rely on the standard (ε, δ) definition in which we will put δ = lk where
lk is defined in the following Lemma.
Lemma 9. For any ε > 0 there is a k <∞ such that 0 < lk := inf{|Xπ| : π ∈ tk} < ε.

Proof. Say 0a1, 0b1 are adjacent in tk. Then by construction of tk+i, the gap (z10b, z01a) contains
2i − 1 intervals corresponding to words of tk+i\tk. Each of these intervals is at most z01a−z10b2i−1 in
length. Thus limk→∞ lk = 0. This demonstrates the existence of a k <∞ such that lk < ε.

To show that lk > 0 for finite k, we shall demonstrate that assuming lk = 0 leads to a contradiction.
If lk = 0 then there is some word 0w1 ∈ tk such that z10w = z01w =: x. Therefore φ10w(x) =
φ01w(x). Now in R+, functions φ0(x), φ1(x) have inverses, so φ−1w (x) is well-defined. Therefore

φ10(x) = φ−1w ◦ φ10w(x) = φ−1w ◦ φ01w(x) = φ01(x)

which contradicts Lemma 8 as x ≥ 0.

3.2 Proof of Continuity

Proof. We wish to show that for any ε > 0, there exists a δ > 0 such that for any |x− y| < δ we
have ∆ := |λ(x)− λ(y)| < ε. Without loss of generality we assume that x ≥ y.

Specifically, we shall put δ = lk > 0 where lk is as defined in Lemma 9 and k is any positive integer
such that lk

(1−β)2 <
ε
2 and such that 2 x+1

(1−β)2 β
k+1 < ε

2 . The existence of such a k is guaranteed by
Lemma 9 and because β ∈ (0, 1).

Let 0a1, 0b1 be the x- and y-threshold words. If these words are the same then

∆ = |λ(0a1, x)− λ(0a1, y)| ≤ |y − x| sup
z∈[x,y]

|λ′(0a1, z)| ≤ |y − x|
(1− β)2

≤ lk
(1− β)2

<
ε

2

where the second inequality follows from Lemma 7, the third from |y − x| < δ = lk and the fourth
from the definition of k.

Otherwise 0a1 6= 0b1. In this case, let (0e1, 0b1) be the standard pair for word 0b1, let a = φ10a(a)
and b̄ = φ01b(b̄). Noting that y ≤ b̄ ≤ a ≤ x, our strategy is to write

∆ = |∆1 + ∆2 + ∆3 + ∆4 + ∆5 + ∆6|
∆1 := λ(0b1, y)− λ(0b1, b̄)

∆2 := λ(0b1, b̄)− λ(0e1(0b1)ω, b̄)

∆3 := λ(0e1(0b1)ω, b̄)− λ((0a1)ω, b̄)

∆4 := λ((0a1)ω, b̄)− λ((0a1)ω, a)

∆5 := λ((0a1)ω, a)− λ(0a1, a)

∆6 := λ(0a1, a)− λ(0a1, x).

Lemma 7 and the choice of δ give

|∆1|+ |∆4|+ |∆6| ≤
b̄− y + a− b̄+ x− a

(1− β)2
<

lk
(1− β)2

≤ ε

2
(8)

while Lemmas 2 and 3 give

∆2 = ∆5 = 0. (9)
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It remains to consider ∆3. It follows from the definition of lk, that for some adjacent words 0c1, 0d1
in tk: either 0a1 = 0c1 or 0a1 is a word strictly between 0c1 and 0d1 in the sense of Lemma 5; and
that 0e1(0b1)ω is a word strictly between 0c1 and 0d1. Thus by Lemma 5 we have (0a1)ω = 0pu
and 0e1(0b1)ω = 0pv where p := d01c and u, v are the appropriate suffixes. Therefore the definition
of λ(w, x) gives

|∆3| =
∣∣λ((0a1)ω, b̄)− λ(0d1(0b1)ω, b̄)

∣∣
=

1

1− β

∣∣∣∣ S(01p, b̄) + β|01p|S(u, φ01p(b̄))− S(10p, b̄)− β|10p|S(u, φ10p(b̄))
−S(01p, b̄)− β|01p|S(v, φ01p(b̄)) + S(10p, b̄) + β|01p|S(v, φ10p(b̄))

∣∣∣∣
=
β|01p|

1− β
∣∣S(u, φ01p(b̄))− S(u, φ10p(b̄))− S(v, φ01p(b̄)) + S(v, φ10p(b̄))

∣∣
≤ β|01p|

1− β
(∣∣S(u, φ01p(b̄))− S(u, φ10p(b̄))

∣∣+
∣∣S(v, φ01p(b̄))− S(v, φ10p(b̄))

∣∣)
≤ β|01p|

1− β

(
a+ 1

1− β
+
b̄+ 1

1− β

)
≤ βk+1

(1− β)2
2(x+ 1)

<
ε

2
(10)

where the last four inequalities follow from the triangle inequality, from Lemma 6, from equation 4
coupled with the fact that a ≤ b̄ ≤ x and finally from the definition of k.

Finally, coupling 8, 9 and 10 and using the triangle inequality gives

∆ <
ε

2
+ 0 +

ε

2
= ε.

This completes the proof.

4 Properties of the Linear-System Orbits M(w)

Recall the definitions about words from the main paper, particularly that w̃ is the reverse of w. Also,
recall the definitions of matrices F,G,K,M(w). The first of the following propositions is used to
prove the second. The second appears in the main paper.

Proposition 11. Suppose w,w′ are any words. Then

1. det(M(w)) = 1,

2. M(w̃) = KM(w)−1K,

3. M(w) =

(
e f

eh−1
f h

)
for some e, f, h ∈ R,

4. M(w)−M(w̃) = λK for some λ ∈ R,

5.
[M(w01w′)]22
[M(w01w′)]21

≥ [M(w10w′)]22
[M(w10w′)]21

,

6. [M(w)]22 ≥ [M(w)]21.

Proof. det(M(w)) =
∏|w|
i=1 det(M(wi)) = 1 as det(F ) = det(G) = 1 gives Claim 1.

Claim 2. The definitions of F,G,K give KF = F−1K,KG = G−1K. Thus KM(w) =
M(w|w|)

−1 · · ·M(w1)−1K = M(w̃)−1K. The result follows as K2 = I .

Claim 3. Put M(w) =:

(
e f
g h

)
and solve det(M(w)) = 1 = eg − hf for g.
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Claim 4. Substituting Claim 2 and Claim 3 in Claim 4 givesM(w)−KM(w)−1K = (h−e−g)K.
Claim 5. Put M := M(w), N := M(w′). We calculate

[NGFM ]22[NFGM ]21 − [NGFM ]21[NFGM ]22

= (b− a)(M11M22 −M12M21)((ab+ b+ a)N2
22 + (b+ a+ 2)N21N22 +N2

21) ≥ 0

as b > a ≥ 0, det(M) = 1 and N ≥ 0. The result follows as NFGM ≥ 0 and NGFM ≥ 0.

Claim 6. If w = ε then [M(w)]22 − [M(w)]21 = 1 ≥ 0. Otherwise we use induction on |w| to
show that M(w)v ≥ 0 where v := (−1, 1)T . In the base case w ∈ {0, 1} so

M(w)v =

(
1 1
c 1 + c

)(
−1
1

)
=

(
0
1

)
≥ 0 for some c ∈ {a, b}.

For the inductive step, assume w = {0u, 1u} for some word u satisfying M(u)v ≥ 0. Then

M(w)v =

(
1 1
c 1 + c

)
M(u)v ≥ 0 for some c ∈ {a, b}.

As [M(w)v]2 = [M(w)]22 − [M(w)]21, this completes the proof.

Proposition 12. Suppose w is a word, p is a palindrome and n ≥ Z+. Then

1. M(p) =

(
fh+1
h+f f
h2−1
h+f h

)
for some f, h ∈ R,

2. tr(M(10p)) = tr(M(01p)),

3. If u ∈ {p(10p)n, (10p)n10} then M(u)−M(ũ) = λK for some λ ∈ R−,

4. If w is a prefix of p then [M(p(10p)n10w)]22 ≤ [M(p(01p)n01w)]22,

5. [M((10p)n10w)]21 ≥ [M((01p)n01w)]21,

6. [M((10p)n1)]21 ≥ [M((01p)n0)]21.

Proof. In this proof, we refer to Claim k of Proposition 11 as Pk.

Claim 1. P2 gives M(p) = KM(p)−1K as p = p̃. But in the notation of P3, [M(p)]11 =
[KM(p)−1K]11 says e = h− (eh− 1)/f . Solve this for e and substitute in P3.

Claim 2. Noting that GF − FG = (b− a)K, the notation of Claim 1 gives

tr(M(01p))− tr(M(10p)) = tr(M(p)(GF −GF )) = (b− a)tr

((
fh+1
h+f f
h2−1
h+f h

)
K

)
= 0.

Claim 3. Note we can move from u to ũ just by swapping some 10 for 01. So, repeated application
of P5 gives the inequality [M(u)]22

[M(u)]21
≤ [M(ũ)]22

[M(ũ)]21
. But the denominators of this inequality are equal

(and non-negative) as P4 gives [M(u)]21 − [M(ũ)]21 = λ′K21 = 0 for some λ′ ∈ R. Thus this
inequality reduces to [M(u)]22 ≤ [M(ũ)]22. Yet P4 also gives [M(u) −M(ũ)]22 = λK22 which
combined with the previous sentence says that λK22 ≤ 0. As K22 = 1, this gives λ ∈ R−.

Claim 4. Let s be the corresponding suffix so p = ws and

M(p(10p)n10w)−M(p(01p)n01w) = M(s)−1(M(p(10p)n+1)−M(p(01p)n+1)) =: A.

But Claim 3 with u = p(10p)n+1 gives

[A]22 = λ[M(s)−1K]22︸ ︷︷ ︸
for some λ ≤ 0

= [KM(s̃)]22︸ ︷︷ ︸
by P2

= λ([M(s̃)]22 − [M(s̃)]21) ≤ 0︸︷︷︸by P6.

Claim 5. As M(w) ≥ 0, Claim 3 with u = (10p)n10 gives

[M(w)(M((10p)n10)−M((01p)n01))]21 = λ[M(w)K]21 = λ[−M(w)]21 ≥ 0.
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Claim 6. Let E :=

(
0 0
1 1

)
. Then G− F = (b− a)E ≥ 0, so that

[GM((10p)n)− FM((01p)n)]21 = [(b− a)EM((10p)n) + FM((10p)n)− FM((01p)n)]21

≥ [M((10p)n0)−M((01p)n0)]21 ≥ 0

by Claim 5. This completes the proof.

5 Majorisation

In the main paper, we used one result about majorisation which was similar-but-not-identical to any
results in Marshall, Olson and Arnold (2011). Let us prove that result.
Proposition 13. Suppose x, y ∈ Rm+ and f : R → R is a symmetric function that is convex and
decreasing on R+. Then x ≺w y and β ∈ [0, 1] ⇒

∑m
i=1 β

if(x(i)) ≥
∑m
i=1 β

if(y(i)).

Proof. As the claim relates to x(i) and y(i) we assume that xi and yi are in ascending order.

Marshall et al (3H2B, page 133) says that if g : A → R is a non-decreasing and convex function on
A ⊆ R and (u1, . . . , um) is a non-increasing and non-negative sequence, then for all non-increasing
sequences (p1, . . . , pm) the function φ(a) :=

∑m
i=1 uig(pi) is Schur-convex.

Indeed the function f is increasing and convex for p ∈ R− (such as p = −x and p = −y)
and (β, . . . , βm) is a non-increasing and non-negative sequence for β ∈ [0, 1]. Thus for all non-
increasing sequences (p1, . . . , pm) on Rm− the function ψ(p) :=

∑m
i=1 β

if(pi) is Schur-convex.

Recall (ibid, page 12) that a ∈ Rm is said to be weakly submajorised by b ∈ Rm, written a ≺w b if
k∑
i=1

a[i] ≤
k∑
i=1

b[i], k = 1, . . . ,m where a[i] denotes a in descending order

and that x ≺w y ⇔ −a ≺w −b (ibid, page 13).

However (ibid, 3A8, page 87) if φ(p) is a real function onA ⊂ Rm which is non-decreasing in each
argument pi and Schur-convex on A and p ≺w q on A then φ(p) ≤ φ(q).

Indeed, the function ψ(p) =
∑m
i=1 β

if(pi) is a real function on Rm− which is non-decreasing in each
argument and Schur-convex on Rm− for all non-increasing sequences (p1, . . . , pm). Furthermore,
−y ≺w −x as x ≺w y. Therefore ψ(y) = ψ(−y) ≤ ψ(−x) = ψ(x) as claimed.

6 Clarification of Theorem 1 for 0 ≤ x ≤ y1 or y0 ≤ x <∞

Recall the following definitions and assumption from the main paper

F :=

(
1 1
a 1 + a

)
, G :=

(
1 1
b 1 + b

)
, E :=

(
0 0
1 1

)
, v(x) :=

(
z
1

)
, b > a ≥ 0.

If 0 ≤ x ≤ y1 or y0 ≤ x <∞ then the relevant linear systems, (9) in the main paper, are

(M(1k+1)−M(01k))v(x) = (G− F )Gkv(x) = (b− a)EGkv(x) ≥ 0

(M(10k)−M(0k+1))v(x) = (G− F )F kv(x) = (b− a)EF kv(x) ≥ 0

}
for k ∈ Z+

where both inequalities follow as E,F,G are all ≥ 0, as b > a and as x ≥ min{y0, y1} ≥ 0.
Therefore all cumulative sums of the above expressions are non-negative so the derivative of the
numerator of the Whittle index is non-negative by the same weak-supermajorisation argument as in
the main paper.

Meanwhile, the denominator of the index in these cases is
∞∑
k=0

βk((1ω)k+1 − (01ω)k+1) = β =

∞∑
k=0

βk((10ω)k+1 − (0ω)k+1)
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which is non-negative. Therefore the rest of the proof of Theorem 1 follows as in the main paper.

In fact we could say that the majorisation point, which is φw(0) for words 0w1 in the main paper,
is −1 in both cases. Indeed, Claim 6 of Proposition 4 of the main paper says that Fv(−1) =
Gv(−1) = v(0). Also, Ev(−1) = (0, 0)T . Thus for all k ∈ Z+, EGkv(−1) ≥ EF kv(−1) ≥ 0
whereas Ev(−1− ε) < 0 for any ε > 0.

7 Computational Cost

In this section we consider the complexity of approximating the index for real-number and arbitrary-
precision models of computation.

7.1 Real-Number Model of Computation

In a real-number model of computation, all rational functions with real-valued coefficients of a given
real-valued input can be computed exactly in a time proportional to the number of basic arithmetical
operations (+,−,×, /) and simple functions (such as log(·) and b·c) involved. It is straightforward
to approximate the Whittle index given by Equations (5) and (6) of the main paper to any given
tolerance ε > 0 by truncating the sums in the numerator and denominator to a appropriate number
of terms T . When we say “to a given tolerance” we mean that

∣∣∣λW (x)− λ̂(x)
∣∣∣ ≤ ε where λW (·) is

given by Equation (6) and λ̂(·) is our approximation.

To make such an approximation, we first define a function which gives the optimal state and action
sequence of a given point under mapping (5).

Algorithm: [x0:T , u0:T ]← orbit(x0, u0, φ0, φ1, T )
Input: Initial point x0 ∈ R+ and action u0 ∈ {0, 1}, mappings φ0, φ1 : R+ → R+,

number of terms T ∈ Z+.
Output: State sequence x0:T and action sequence u0:T for Equation (5)
1: for t = 1, . . . , T
2: xt ← φut−1(xt−1)

3: ut ←
{
1xt>x0

if u0 = 0

1xt≥x0 otherwise
4: end

Since the index itself is a ratio of two sums, it is helpful to overestimate the denominator to ensure
a good approximation guarantee. The following algorithm approximates the index, ensuring such
overestimation by including a term βT+1 in the denominator DT in certain cases.

Algorithm: λ̂← ApproximateWhittleIndex(x, β, φ0, φ1, ε)
Input: Initial point x ∈ R+, discount β ∈ (0, 1), mappings φ0, φ1 : R+ → R+,

tolerance ε ∈ R++

Output: Approximation λ̂ to the Whittle index in Equation (6)
assuming weight w = 1 and observation cost h = 0

1: T ← max
{

0,
⌊(

log 2(x+1)
ε(1−β)3

)
/
(

log 1
β

)⌋}
2:

{
[x0∗0:T , u

0∗
0:T ]← orbit(x, 0, T )

[x1∗0:T , u
1∗
0:T ]← orbit(x, 1, T )

3: NT ←
∑T
t=0 β

t(x0∗t − x1∗t )

4: DT ← 1u1∗
T −u0∗

T 6=1β
T+1 +

∑T
t=0 β

t(u1∗t − u0∗t )

5: λ̂← NT /DT

We are now ready to state the corresponding approximation guarantee.
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Proposition 14. ApproximateWhittleIndex approximates the Whittle index for Problem KF1 to
within ε > 0 in O

((
log 2(x+1)

ε(1−β)3

)
/
(

log 1
β

))
operations.

Proof. The computational cost is immediate, since each call to orbit involves O(T ) operations as
does each of the sums giving NT , DT . Thus the total cost is O(T ) where T is given in line 1 of
ApproximateWhittleIndex.

It remains to show that the approximation is to a tolerance of ε. Recall the full numerator and
denominator of λW (·)

N :=

∞∑
t=0

βt(x0∗t − x1∗t ), D :=

∞∑
t=0

βt(u1∗t − u0∗t ).

First, we boundN and the error |N −NT |. Each term x0∗t and x1∗t is in [0, φ0(x)] and φ0(x) ≤ x+1
so

N ≤
∞∑
t=0

βt
∣∣x0∗t − x1∗t ∣∣ ≤ ∞∑

t=0

βt(x+ 1) =
x+ 1

1− β
.

Similarly

|NT −N | ≤
∞∑

t=T+1

βt(x+ 1) = βT+1 x+ 1

1− β
.

Second, we bound D and the error |D −DT |. As u1∗t and u0∗t form the sequences (10w)ω and
(01w)ω respectively for some mechanical word 0w1, the sequence (∆ut := u1∗t − u0∗t : t =
0, 1, . . . ) is (1,−1, 0|w|)ω . Therefore

D =

∞∑
k=0

βk|0w1|(1− β) =
1− β

1− β|0w1| ≥ 1− β.

For the same reason, if ∆uT = 1 then (∆uT+1,∆uT+2, . . . ) = (−1, 0|w|, 1,−1, . . . ), so

DT −D = βT+1 − βT+2
∞∑
t=0

βt∆uT+2+t = βT+1

(
1− βn 1− β

1− β|0w1|

)

for some n ≥ 0. Also, if ∆uT 6= 1 then ApproximateWhittleIndex includes an extra term giving

DT −D = βT+1 − βT+1
∞∑
t=0

βt∆uT+1+t = βT+1

(
1− βn

′ 1− β
1− β|0w1|

)

for some n′ ≥ 0. But for n′′ ∈ {n, n′} we have

0 ≤ βn
′′ 1− β

1− β|0w1| ≤ β
n′′ 1− β

1− β2
=

βn
′′

1 + β
≤ 1

so whatever the value of ∆uT we conclude that

DT −D ∈ [0, βT+1].
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Finally, coupling the above bounds gives∣∣∣∣ND − NT
DT

∣∣∣∣ =

∣∣∣∣N(DT −D)− (NT −N)D

DDT

∣∣∣∣
≤

∣∣∣∣∣∣∣
N

D
(DT −D)− (NT −N)

D

∣∣∣∣∣∣∣ (11)

≤

N

D
|DT −D|+ |NT −N |

D
(12)

≤

x+1
1−β

1− β
βT+1 + βT+1 x+ 1

1− β
1− β

(13)

= βT+1

1
(1−β)2 + 1

1−β

1− β
(x+ 1)

≤ βT+1 × 2(x+ 1)

(1− β)3

≤ exp

{(
− log

1

β

)(
log

2(x+ 1)

ε(1− β)3

)
/

(
log

1

β

)}
× 2(x+ 1)

(1− β)3
(14)

= exp

{
log

ε(1− β)3

2(x+ 1)

}
× 2(x+ 1)

(1− β)3

= ε

where 11 follows fromDT ≥ D ≥ 0, 12 follows from the triangle inequality and the fact thatN ≥ 0
and D ≥ 0, 13 follows from the bounds derived just above and 14 follows from the definition of T
in Algorithm ApproximateWhittleIndex. This completes the proof.

7.2 Arbitrary-Precision Computation

In an arbitrary-precision model of computation, functions of arbitrary-precision numbers may be
computed to tolerance ε in a number of operations proportional to the number of basic arithmetic
operations involved (+,−,×, /) times the work required for one multiplication M(ε) which itself
varies with the tolerance. When approximating the Whittle index in such a model, we must face
the complication that iterates xt (as in the function orbit above) may be so close to the threshold
x that an arbitrarily small tolerance is required to correctly decide whether xt > x. We avoid this
arbitrarily large computational cost by allowing some wrong decisions and compensating for such
wrong decisions via the continuity of the index (Proposition todo:continuity) and a bound on the
gradient of approxmations to the index based on partial sums.

First we define some notation and present a suitable algorithm, APIndex. Then we sketch an anal-
ysis of the quality of approximation and of the computational cost. These sketches simply aim to
demonstrate that there is an efficient algorithm for the problem. We believe that there are more
efficient but more complicated algorithms for this problem.

Notation. We remind the reader that w̃ is the reverse of word w and wω = www · · · is the result of
infinitely concatenating w. Also, recall that yv is the fixed point of word v given by the solution to
φv(y) = y with y ∈ R+.

Let W denote the set of mechanical words and W≤T ⊂ W denote the set of mechanical words of
length at most T ∈ Z++. For given φ0, φ1 and T ∈ Z++ let WT : R+ → W be the function that
maps point x ∈ R+ to the word w1 . . . wT where

x1 := φ1(x), w1 := 1x1≥x, xt := φwt−1
(xt−1), wt := 1xt≥x

for t = 2, 3, . . . , T , which is of course the mapping in the function orbit above.
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Algorithm. There are two keys to our algorithm.

First, we use a function f : R+ ×W × Z+ → R+ defined as

f(x,w, T ) :=
1− β|w|

1− β

T∑
t=0

βt(φ(0w̃ω)1:t(x)− φ(1wω)1:t(x)). (15)

If we recall that the denominator of the index is 1−β
1−β|w| (see the proof of Theorem 1), it is easy to

see that limT→∞ f(x,WT (x), T ) equals the Whittle index λW (x).

Second, we use the following explicit representation of WT (·).

Lemma 10. Suppose w(1), w(2), . . . , w(n) are the words of W≤T in order of decreasing rate
|w|1 / |w| and let x(k) be the upper fixed point of word w(k) for k = 1, 2, . . . , n − 1. Let
p(w) := (wω)1:T be the length-T prefix generated by repeating word w. Then

WT (x) =


p(w(1)) for x ∈ [0, x(1)]

p(w(k)) for x ∈ (x(k−1), x(k)] and k = 2, 3, . . . , n− 1

p(w(n)) for x ∈ (x(n−1),∞).

Example. If T = 4 then the elements of W≤T are

(w(1), w(2), . . . , w(n)) = (1, 0111, 011, 01, 001, 0001, 0)

which generate the following length-T prefixes

(p(w(1)), p(w(2)), . . . , p(w(n))) = (1111, 0111, 0110, 0101, 0010, 0001, 0000)

and Proposition 2 of the main paper shows the upper fixed points are

(x(1), x(2), . . . , x(n−1)) = (y1, y1011, y101, y10, y100, y1000).

Proof. (Sketch.) The result follows from Proposition 2 once we demonstrate that the prefixes gener-
ated by W are the same as those generated by W≤T , so that

{p(w) : w ∈ W } = {p(w) : w ∈ W≤T }.

One way of seeing this is to show that any length-k prefix generated by a word uv corresponding to
a node (u, v) of the Christoffel tree is also generated by an ancestor of that node, provided k < |uv|.
Specifically, proper prefixes from (uv, v) are also generated by (u, v) and proper prefixes of (u, uv)
are also generated by whichever ancestor generated the proper prefixes of (u, v).

In the pseudocode that follows, we first choose a large enough number of terms T for the partial
sum defining f(·, ·, ·). Unfortunately, as remarked above, we may not be able to compute WT (x)
efficiently. Nevertheless it is possible to efficiently compute WT (z) for some z that is close enough
to x that |f(x,WT (z), T )− f(x,WT (x), T )| and hence

∣∣f(x,WT (z), T )− λW (x)
∣∣ are small. So

the second step of the algorithm is to select a maximum error δ such that any word WT (z) with
|x− z| ≤ δ will give a good-enough approximation. Then we loop through the set W≤T to essen-
tially select such a word WT (z) to which we apply function f(·, ·, ·). We say “essentially” because
we actually select a word w in W≤T but it follows from the explicit representation of WT (z) given
above that WT (z) = p(w) and from the definition of f(·, ·, ·) that f(·, p(w), T ) = f(·, w, T ) for
any word w.

18



Algorithm: λ̂← APIndex(x, φ0, φ1, β, ε)
Input: x ∈ R+, mappings φ0, φ1 : R+ → R+, discount β ∈ (0, 1), tolerance ε ∈ R+

Output: λ̂ ∈ R+ with |λ̂− λW (x)| ≤ ε where λW (·) is as in Equation (6)

1: T ← a positive integer with βT × 2(x+ 1)/(1− β)2 ≤ ε/(3T 2)
2: δ ← a positive real number with gδ ≤ ε/6 where g := β/(1− β)2

3: for each word w(k) ∈ W≤T \{0}
4: x(k) ← the upper fixed point of w(k) to tolerance δ/2
5: end
6: w ← the word w(k) in W≤T with largest rate |w|1 / |w|, satisfying x ≤ x(k) to tolerance δ/2
7: λ̂← f(x,w, T ) to tolerance ε/3 where f(·, ·, ·) is given by 15

Quality of Approximation. We show that APIndex approximates the Whittle index to tolerance ε
using the triangle inequality, relying on the following four facts.

Fact 1. For any fixed mechanical word w, the gradient of f(z, w, T ) for any z ∈ is bounded by

∣∣∣∣df(z, w, T )

dz

∣∣∣∣ ≤ ∑T
t=0 β

t
∣∣ d
dzφ(0w̃ω)1:t(z)−

d
dzφ(1wω)1:t(z)

∣∣
1−β

1−β|w|
≤
∑T
t=1 β

t

1− β
≤ β

(1− β)2
=: g.

Fact 2. If T is chosen such that f(x,WT (x), T ) is an ε/(3T 2) approximation to λW (x) then the
value of f(·, ·, ·) at the upper fixed points satisfies

∣∣∣f(x(k−1), w(k−1), T )− f(x(k−1), w(k), T )
∣∣∣ ≤ ∣∣∣f(x(k−1), w(k−1), T )− λW (x(k−1))

∣∣∣
+
∣∣∣λW ((x(k−1))+)− f(x(k−1), w(k), T )

∣∣∣ ≤ 2ε

3T 2

where (x(k−1))+ denotes the point just larger than x(k−1). This follows from the triangle inequality
and because λW (·) is a continuous function.

Fact 3. The number of words in W≤T satisfies

|W≤T | = 1 +

T∑
i=1

ϕ(i) ≤ 1 +

T∑
i=1

(i− 1) ≤ T 2

2
for T ≥ 2

for the following reasons. The equality follows from the fact that the number of mechanical words
of length T is 2 for T = 1 (the words 0,1) and equals Euler’s totient function ϕ(T ) for T > 1. The
latter fact is readily seen from the definition of a Christoffel 0w1 in terms of any pair of relatively
prime integers |0w1|0 and |0w1|1. The inequality follows from the fact that ϕ(i) is largest when i is
prime in which case it equals i− 1.

Fact 4. If T is chosen as in Line 1 of the algorithm, then f(x,WT (x), T ) approximates λW (x) to
tolerance ε/(3T 2). This follows from the same analysis as presented for algorithm Approximate-
WhittleIndex.
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Now for the triangle inequality. Suppose x ∈ (x(j−1), x(j)] but APIndex sets w ← w(i) on Line 6.
Suppose also that x(j) < x(i), but note that a symmetric result holds for x(j) > x(i). Then∣∣∣λW (x)− λ̂

∣∣∣
≤
∣∣∣λW (x)− f(x,w(j), T )

∣∣∣︸ ︷︷ ︸
≤ ε/(3T 2) by Fact 4

+
∣∣∣f(x,w(j), T )− f(x(j), w(j), T )

∣∣∣︸ ︷︷ ︸
≤ g

∣∣∣x(j) − x
∣∣∣ by Fact 1

+
∣∣∣f(x(j), w(j), T )− f(x(j), w(j+1), T )

∣∣∣︸ ︷︷ ︸
≤ 2ε/(3T 2) by Fact 2

+
∣∣∣f(x(j), w(j+1), T )− f(x(j+1), w(j+2), T )

∣∣∣︸ ︷︷ ︸
≤ g

∣∣∣x(j+1) − x(j)
∣∣∣ by Fact 1

+ . . .

+
∣∣∣f(x(i−1), w(i−1), T )− f(x(i−1), w(i), T )

∣∣∣︸ ︷︷ ︸
≤ 2ε/(3T 2) by Fact 2

+
∣∣∣f(x(i−1), w(i), T )− f(x,w(i), T )

∣∣∣︸ ︷︷ ︸
≤ g

∣∣∣x(i−1) − x
∣∣∣ by Fact 1

+
∣∣∣f(x,w(i), T )− λ̂

∣∣∣︸ ︷︷ ︸
≤ ε/3 by Line 7

≤ (1 + 2(j − i))︸ ︷︷ ︸
≤ T 2 by Fact 3

ε/(3T 2) + 2g
∣∣∣x(i−1) − x∣∣∣︸ ︷︷ ︸
≤ δ by Lines 4 and 6

+ε/3

≤ ε

3
+
ε

3
+
ε

3
= ε

where in the last inequality we used the definition of g in Fact 1 and the choice of δ in Line 2.

Computational Cost. Suppose the input satisfies x < 2n and ε > 2−m. For brevity we shall
consider β ∈ (0, 1) to be fixed and ignore factors in β. Further, we suppose that arithmetic operations
on positive numbers less than 2n to tolerance 2−m require M(n+m) operations for an appropriate
function M(·).

The analysis is as follows. On Line 1 setting T = O(log(x/ε)) = O(n+m) suffices and on Line 2
setting δ = Ω(ε) suffices. Now, for Lines 3-5, it follows from Fact 3 that we have to approximate
O(T 2) fixed points. This may be done by traversing the Christoffel tree and exploring O(T 2)
nodes. At each node, we may compute the fixed point of the corresponding word 0w1 by solving
the quadratic equation φ10w(y) = y. To formulate this equation we may start by finding a matrix
corresponding to the Möbius transformation φ10w(·). Indeed such a matrix can be constructed as a
product of O(T ) of the matrices M0,M1 that define φ0(·) and φ1(·). As we require a tolerance of
Ω(δ) = Ω(ε), this product requiresO(TM(n+m)) operations. Thus solving the quadratic equation
requires O(TM(n+m)) operations, since approximating the square root of an n-bit input requres
O(M(n)) operations. In summary Lines 3-5 require O(T 3M(n+m)) operations.

On Line 6 we may need O(T 2) comparisons of numbers smaller than 2n to tolerance δ = Ω(ε)
requiring O(T 2M(n + m)) operations. Finally, Line 7 involves a sum of T terms, each requiring
the application of a Möbius transformation involving numbers less than 2n to tolerance Ω(ε). This
requires O(TM(n+m)) operations.

In conclusion, Lines 3-5 dominate so the total computational cost is

O(T 3M(n+m)) = O((n+m)3M(n+m)).
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