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1 Proof of Example 1

There are two approaches to prove the asymptotic expression for algorithmic stability. The first
approach is to look into the impact of knowingH on the distribution of training examples Ztrn. The
second (equivalent) approach is to look into the impact of a single training example Ztrn on the final
distribution of the inferred hypothesis H . Here, we use the first approach because it is simpler.

First, the probability we obtain a hypothesis H = k
m , where k ∈ {0, 1, . . . ,m}, given that we have

m Bernoulli trials has a binomial distribution:

P(H =
k

m
) =

(
m

k

)
φk (1− φ)m−k

We use the identity:

1− S(H;Ztrn) =
∣∣∣∣P(H) · P(Ztrn), P(H, Ztrn)

∣∣∣∣
T

=

m∑
k=0

P(H =
k

m
)
∣∣∣∣P(Ztrn), P(Ztrn |H)

∣∣∣∣
T ,

where, again, ||P, Q||T is the total variation distance between the two probability distributions P
and Q.

However, P(Ztrn) is Bernoulli with probability of success φ while P(Ztrn |H = k
m ) is Bernoulli

with probability of success H . The total variation distance between the two Bernoulli distributions
is given by |φ−H|. So, we obtain:

1− S(H; Ztrn) =

m∑
k=0

(
m

k

)
φk (1− φ)m−k

∣∣∣φ− k

m

∣∣∣ (1)

This is the mean deviation. Assuming φm is an integer, then the mean deviation of the binomial
random variable is given by de Moivre’s formula [22]:

MD = 2 (1− φ)(1−φ)m φ1+mφ (1 +mφ)

(
m

mφ+ 1

)
(2)

The mean deviation is maximized when φ = 1
2 . This gives us:

S(L) = 1− 1

2m

(
m

m/2 + 1

)
∼ 1− 1√

2πm
,

where in the last step we expanded the binomial coefficient and used Stirling’s approximation [17].
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2 Proof of Lemma 1

The proof consists of two steps. First, we show that S(A; (B,C)) = S(A;B). To prove this, we
note that:

S(A; (B,C))

=
∑
A,B,C

min
{
P(A)P(B,C), P(A,B,C)

}
=
∑
A,B,C

min
{
P(A)P(B)P(C|B), P(A,B)P(C|A,B)

}
=
∑
A,B,C

P(C|B) min
{
P(A)P(B), P(A,B)

}
=
∑
A,B

min
{
P(A)P(B), P(A,B)

}
= S(A;B)

In the third line, we used the Markov property P(C|B,A) = P(C|B).

Second, we show that S(A; (B,C)) ≤ S(A;C) for any random variables A,B and C. This is the
analog to the information-cannot-hurt inequality in information theory. We have by definition:

S(A; (B,C)) =
∑
A,B,C

min
{
P(A)P(B,C), P(A,B,C)

}
=
∑
A

P(A)
∑
B,C

min
{
P(B,C), P(B,C|A)

}

However, the minimum of the sums is always larger than the sum of minimums. That is:

min
{∑

i

αi,
∑
i

βi
}
≥
∑
i

min{αi, βi}

Using marginalization P(X) =
∑
Y P(X, Y ) and the above inequality, we obtain:

S(A; (B,C)) =
∑
A

P(A)
∑
B,C

min
{
P(B,C),P(B,C|A)

}
≤
∑
A

P(A)
∑
C

min{
∑
B

P(B,C),
∑
B

P(B,C|A)}

=
∑
A,C

min{P(A)P(C),P(A,C)} = S(A;C)

Combining both results yields S(A;B) = S(A; (B,C)) ≤ S(A;C), which is the desired inequality.

3 Proof of Theorem 1

Let L : ∪∞m=1Zm → H be a learning algorithm that receives a finite set of training examples
Sm = {Zi}i=1,..,m ∈ Zm drawn i.i.d. from a fixed unknown distribution P(z). LetH ∼ PL(h|Sm)
be a random variable that stands for the hypothesis inferred by L, and let Ztrn ∼ Sm be a single
random training example. To simplify notation, we will write F = L(·;H) : Z → [0, 1] to denote
the loss function whose dependence on H is implicit. Note that F is itself a random variable that
satisfies the Markov chain Sm → H → F . The claim is that L generalizes uniformly across all
parametric loss functions F if and only if L is algorithmically stable.
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By the Markov property, we have P(F |H,Sm) = P(F |H). By definition, the true and empirical
risks are given by:

R̂true = ESm
EH|Sm

EF |HEZ∼P(z) F (Z)
= EF EZ∼P(z) F (Z) (3)

R̂emp = ESm
EH|Sm

EF |H EZ∼Sm
F (Z)

= ESm EF |Sm
EZ∼Sm F (Z)

= EF ESm|F EZ∼Sm
F (Z) (4)

Because Ztrn ∼ Sm is a random variable whose value is chosen uniformly at random with re-
placement from the training set Sm, its original distribution prior to observing F is the original
distribution of observations P(z). Its posterior distribution after observation F is altered, however,
because both F and Ztrn depend on the choice of the training set Sm. However, they are both
conditionally independent of each other given Sm. By marginalization, we have:

P(Ztrn|F ) = ESm|F P(Ztrn|Sm, F ) = ESm|F P(Ztrn|Sm)

Combining this with Eq. (3) and Eq. (4) yields:

R̂true = EF EZtrn
F (Ztrn)

R̂emp = EF EZtrn|F F (Ztrn),

where in the first line Ztrn is distributed according to its original distribution P(z). Both equations
imply that:

R̂true − R̂emp = EF
[
EZtrn

F (Ztrn)− EZtrn|F F (Ztrn)
]

Now, we would like to sandwich the right-hand side between upper and lower bounds. To do this, we
note that if P1(z) and P2(z) are two distributions defined on the same alphabetZ and F : Z → [0, 1]
is a fixed bounded loss function, then:∣∣∣EZ∼P1(z) F (Z)− EZ∼P2(z) F (Z)

∣∣∣ ≤ ||P1(z) , P2(z)||T ,

where ||P , Q||T is the total variation distance. The proof to this result can be immediately deduced
by considering the two regions {z ∈ Z : P1(z) > P2(z)} and {z ∈ Z : P1(z) < P2(z)}
separately. In addition, it is tight because the inequality holds with equality for the loss function
F (z) = I{P1(z) ≥ P2(z)}.
Using the last result, we deduce the inequality:∣∣R̂true − R̂emp∣∣ ≤ 1− S(F ;Ztrn)

Finally, from the data processing inequality, we have S(H;Ztrn) ≤ S(F ;Ztrn). Plugging this into
the earlier inequality yields the bound:∣∣R̂true − R̂emp∣∣ ≤ 1− S(H;Ztrn)

≤ 1− S(L)

This proves that if L is algorithmically stable, i.e. S(L) → 1 as m → ∞, then
∣∣R̂true − R̂emp∣∣

converge to zero uniformly across all parametric loss functions. Therefore, algorithmic stability is
sufficient for uniform generalization.

To prove that algorithmic stability is also necessary for uniform generalization, let δ > 0 be some
fixed positive constant and let Pδ(z) be a distribution of observations that achieves S(H; Ztrn) <
S(L) + δ, where S(L) is the algorithmic stability defined in the paper. Of course, such a probability
distribution Pδ(z) always exists by definition of the infimum in Definition 5. Next, let Lδ(·; H) :
Z → [0, 1] be a parametric loss that is given by:

Lδ(z; H) = I
{
Pδ(Ztrn = z) ≥ Pδ(Ztrn = z |H)

}
= I
{
Pδ(Ztrn = z) ≥ ESm |H PZtrn∼Sm

(Ztrn = z)
}
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The loss Lδ(·;H) is independent of the training set given H because Pδ(Ztrn = z |H) is eval-
uated by taking expectation over all possible training sets given H . In addition, the loss func-
tion is parametric; it has a bounded range Lδ(·;H) : Z → [0, 1] and satisfies the Markov chain
Sm → H → Lδ(·;H). However, given this choice of parametric loss, we have:

|Rtrue(L)−Remp(L)|
= EH

[
EZtrn

I{Pδ(Ztrn) > Pδ(Ztrn |H)} − EZtrn |H I{Pδ(Ztrn) > Pδ(Ztrn |H)}
]

= EH
∑
Ztrn

[
P(Ztrn)− P(Ztrn | H)

]
· I{P(Ztrn) > P(Ztrn |H)}

= EH
∣∣∣∣P(Ztrn)− P(Ztrn |H)

∣∣∣∣
T = 1− S(Ztrn, H)

≥ 1− S(L)− δ

In the last line, we used the fact that S(Ztrn; H) ≤ S(L) − δ when observations are distributed
according to Pδ(z). Hence, for any δ > 0, there exists a distribution and a parametric loss function
such that:

1− S(L)− δ ≤ |Rtrue(L)−Remp(L)| ≤ 1− S(L)

Therefore, algorithmic stability is also necessary for uniform generalization.

4 Proof of Theorem 2

Because Z is countable, we will assume without loss of generality that Z = {1, 2, 3, . . . , . . .},
and we will write pz = P(Ztrn = z) to denote the prior (original) distribution of observations.
Since all lazy learners are equivalent, we will look into the lazy learner whose hypothesis H is
itself the entire training set Sm up to a permutation. Let mz denote the number of times z ∈ Z
was observed in the training set. Note that P(Ztrn = z|H) = PSm

(z), and so S(H;Ztrn) =
1− ESm

||P(z), PSm
(z)||T .

We have:

P(H) = P(Sm) =

(
m

m1, m2, . . .

)
pm1
1 pm2

2 · · ·

Here,
(·
·
)

is the multinomial coefficient. Using the relation 〈P(X), P(Y )〉 = 1− 1
2 ||P(X)−P(Y )||1,

we obtain:

S(H;Ztrn) = 1− 1

2
EH ||P(Ztrn)− P(Ztrn|H)||1

= 1− 1

2
×

∑
k=1,2,3,...

∑
m1+m2+..=m

(
m

m1,m2, . . .

)
× pm1

1 pm2
2 · · ·

∣∣∣mk

m
− pk

∣∣∣
For the inner summation, we write:∑
m1+m2+...=m

(
m

m1, m2, . . .

)
pm1
1 pm2

2 · · ·
∣∣∣mk

m
− pk

∣∣∣
=

m∑
s=0

(
m

s

)
psk

∣∣∣mk

m
− pk

∣∣∣×
∑

m1+...+mk−1+mk+1+...=m−s

(
m− s

m1, . . . ,mk−1, mk+1, . . .

)
× pm1

1 · · · p
mk−1

k−1 p
mk+1

k+1 · · ·

Using the multinomial series, we simplify the right-hand side into:

m∑
s=0

(
m

s

)
psk (1− pk)m−s

∣∣∣ s
m
− pk

∣∣∣
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Now, we use De Moivre’s formula for the mean deviation of the binomial random variable (see the
proof of Example 1). This gives us:∑

m1+m2+...=m

(
m

m1, m2, . . .

)
pm1
1 pm2

2 · · ·
∣∣∣ s
m
− pk

∣∣∣
=

m∑
s=0

(
m

s

)
psk (1− pk)m−s

∣∣∣ s
m
− pk

∣∣∣
=

2

m
(1− pk)(1−pk)mp1+mpkk

m!

(pkm)! ((1− pk)m− 1)!

Using Stirling’s approximation to the factorial [17], we obtain the simple asymptotic expression:∑
m1+m2+...=m

(
m

m1, m2, . . .

)
pm1
1 pm2

2 · · ·
∣∣∣mk

m
− pk

∣∣∣ ∼ √
2pk(1− pk)

πm

Plugging this into the earlier expression for S(H;Ztrn) yields:

S(H;Ztrn) ∼ 1− 1

2

∑
k=1,2,3,...

√
2pk(1− pk)

πm

= 1−
√

Ess [Z; P(z)]− 1

2πm
Due to the tightness of the Stirling approximation, the asymptotic expression for mutual stability is
tight. Because S(H;Ztrn) = 1− ESm

||P(z), PSm
(z)||T , we deduce that:

ESm
||P(z), PSm

(z)||T ∼
√

Ess [Z; P(z)]− 1

2πm
,

which provides the asymptotic rate of convergence of an empirical probability mass function to the
true distribution.

5 Proof of Theorem 4

Let cH(z) = I{P(Ztrn = z|H) ≥ P(Ztrn = z)}. We have:

S(L) = inf
P(z)

S(H;Ztrn) = inf
P(z)

{
EH

∑
z∈Z

min{P(Ztrn = z),P(Ztrn = z|H)}
}

(5)

= inf
P(z)

{
1− EH

∑
z∈Z

(
P(Ztrn = z|H)− P(Ztrn = z)

)
· cH(z)

}
(6)

= 1− sup
P(z)

{
EH

∑
z∈Z

(
P(Ztrn = z|H)− P(Ztrn = z)

)
· cH(z)

}
(7)

= 1− sup
P(z)

{
ESm EH|Sm

[
EZ∼P(z) cH(Z) − EZ∼Sm cH(Z)

]}
(8)

≥ 1− sup
P(z)

{
ESm EH|Sm

∣∣EZ∼P(z) cH(Z) − EZ∼Sm cH(Z)
∣∣} (9)

≥ 1− sup
P(z)

{
ESm sup

h∈H

∣∣EZ∼P(z) ch(Z) − EZ∼Sm ch(Z)
∣∣} (10)

Next, we note that the quantity inside the expectation in (10) can be bounded using uniform con-
vergence. In particular, we use the following bound, which holds for any distribution P(z) if
m > dV C(C) + 11:

ESm sup
h∈H

∣∣EZ∼P(z) ch(Z) − EZ∼Sm ch(Z)
∣∣ ≤ 4 +

√
dV C(C) (1 + log(2m))√

2m

1A proof of this bound is in Eq. 6.4 and Lemma 6.10 in the textbook “Understanding Machine Learning:
From Theory to Algorithms” by Shai Shalev-Shwartz and Shai Ben-David, 2014.
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