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In this document, we include details of the EP algorithm discussed in the main text.

Recall that f = [f1, ..., fo] " and f, = [f; f*], where f* = f(x*) and =* is the global maximizer
of f. By being a Gaussian process predictive distribution, we know that p(f+ |D, S, az*) follows a
multivariate Gaussian distribution of the form N'(f ,;m, K ).

We impose two conditions, (i) that f(a*) is larger than f(z) for each « in the query set S; and
(ii) that f(x*) is larger than previous observations, accounting for Gaussian noise. We denote the
conditions €. Our goal is to make a Gaussian approximation to
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An elegant approach to making such a Gaussian approximation, is by using expectation propagation.
We approximate the term involving ®(.) and each I(.) with a univariate scaled Gaussian p.d.f. such
that our unnormalized approximation to p(f . |D, S, €) is
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where each Zq and 7, is positive, ji; € R and for ¢ < @, ¢, is a vector of length @ + 1 with
¢'" entry —1, Q + 1% entry 1, and remaining entries 0, whilst cgy1 = [0,...,0,1]T. We have
approximated each indicator function and Gaussian c.d.f. with a scaled Gaussian p.d.f. The site
parameters, {Zq7 /Lq,Tq}q 11, are to be optimized such that the Kullback-Leibler divergence of

w(fy)/ [w(f)df, fromp(f,|D,S;, €) is minimized.

Since products of Gaussian p.d.f.s lead to Gaussian p.d.f.s, w(f,) = ZN(f; p,, 34 ), where
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We now describe the steps required to update the site parameters. We closely follow the derivations
in [[1]. We first compute the cavity distributions,
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and compute their Gaussian parameters. Since we are dividing a Gaussian p.d.f. by another Gaussian
p.d.f. we have simple parameter updates given by
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The next step of EP is the projection step and requires moment matching
ZoN(e] i3 lig: 7w\ (f) with to(f,)w\U(f, ), where to(f,) is the true ¢'* factor be-
ing approximated. We use derivatives of the logarithm of the zeroth moment [2] to compute the
parameters
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where 3, = M1 for ¢ < @ and Bo+1 = @(M> To complete the projection step, we
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update the site parameters to achieve the moments computed above by setting
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Finally we update the parameters p¢, and 3 as in equations (3) and , and repeat the proces until
convergence.
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