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1 Proofs for Section 3

In this section, we prove the two theorems in Section 3.

Proof of Theorem 1. If Φ is restricted diagonally dominant with sparsity s and C0 ≥ ρ, we have
for any I ⊆ Q and |I| ≤ s− 1,

Φii > ρmax

{∑
j∈I
|Φij + Φkj |,

∑
j∈I
|Φij − Φkj |

}
+ |Φik| ∀k 6= i ∈ Q \ I.

Recall β̂ = Φβ. Suppose S is the index set of non-zero predictors. For any i ∈ S, k 6∈ S, of we fix
I = S \ {i}, we have

|β̂i| = |Φiiβi +
∑
j∈I

Φijβj | ≥ |βi|(Φii +
∑
j∈I

βj
βi

Φij)

= |βi|(Φii +
∑
j∈I

βj
βi

(Φij + Φkj) + Φki −
∑
j∈I

βj
βi

Φkj − Φki)

> −|βi|(
∑
j∈I

βj
βi

Φkj + Φki) = −|βi|
βi

(
∑
j∈I

βjΦkj + βiΦki)

= −sign(βi) · β̂k.
Similarly we have

|β̂i| = |Φiiβi +
∑
j∈I

Φijβj | ≥ |βi|(Φii +
∑
j∈I

βj
βi

Φij)

= |βi|(Φii +
∑
j∈I

βj
βi

(Φij − Φkj)− Φki +
∑
j∈I

βj
βi

Φkj + Φki)

> |βi|(
∑
j∈I

βj
βi

Φkj + Φki) = sign(βi) · β̂k.

Therefore, whatever value sign(βi) is, it always holds that |β̂i| > |β̂k|. Since this result is true for
any i ∈ S, k 6∈ S, we have

min
i∈S
|β̂i| > max

k 6∈S
|β̂k|.

To prove the sign consistency for non-zero coefficients, notice that for i ∈ S,

Φii > ρ(
∑
j∈I
|Φij + Φkj |+

∑
j∈I
|Φij − Φkj |)/2 ≥ ρ

∑
j∈I
|Φij |.
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Thus,

β̂iβi = Φiiβ
2
i +

∑
j∈I

Φijβjβi = β2
i (Φii +

∑
j∈I

βj
βi

Φij) > 0.

On the other hand, if β̂ is screening consistent, i.e., |β̂i| ≥ |β̂k| and β̂iβi ≥ 0, we can construct
S = I ∪{i} for any fixed i, k, I . Without loss of generality, we assume Φik ≥ 0. If we select β such
that βi > 0, then the strong screening consistency implies β̂i > β̂k and β̂i > −β̂k. From β̂i > β̂k
we have

Φiiβi +
∑
j∈I

Φijβj >
∑
j∈I

Φkjβj + Φkiβi.

By rearranging terms and selecting β ∈ B(s, ρ) as βi = 1, βj = −ρ · sign(Φij − Φkj), j ∈ S we
have

Φii > −
∑
j∈I

(Φij − Φkj)βj + Φki = ρ
∑
j∈I
|Φij − Φkj |+ |Φki|.

Following the same argument on β̂i ≥ −β̂k with a choice of βi = 1, βj = −ρ ·sign(Φij+Φkj), j ∈
S we have

Φii > ρ
∑
j∈I
|Φij + Φkj |+ |Φki|.

This concludes the proof.

Proof of Theorem 2. Proof of Lemma 3 follows almost the same as the sufficiency part of Theorem
1. Notice that now the definition of β̂ becomes

β̂ = XT (XXT )−1Xβ +XT (XXT )−1ε.

If the condition holds, i.e., for any i ∈ S, I = S \ {i} and k 6∈ S, we have

Φii > ρmax

{∑
j∈I
|Φij + Φkj |,

∑
j∈I
|Φij − Φkj |

}
+ |Φik|+ 2τ−1‖XT (XXT )−1ε‖∞.

Defining η = XT (XXT )−1ε, we have for any i ∈ S,

|β̂i| = |Φiiβi +
∑
j∈I

Φijβj + ηi| ≥ |βi|(Φii +
∑
j∈I

βj
βi

Φij + β−1i ηi)

= |βi|(Φii +
∑
j∈I

βj
βi

(Φij + Φkj) + Φki + β−1i (ηi + ηk)−
∑
j∈I

βj
βi

Φkj − Φki − β−1i ηk)

> −|βi|(
∑
j∈I

βj
βi

Φkj + Φki + β−1i ηk) = −|βi|
βi

(
∑
j∈I

βjΦkj + βiΦki + ηk)

= −sign(βi) · β̂k,

Similarly, we can prove |β̂i| > sign(βi) · β̂k, and thus |β̂i| > |β̂k|, which implies that

min
i∈S
|β̂i| > max

k 6∈S
|β̂k|.

The weak sign consistency is established since

β̂iβi = Φiiβ
2
i +

∑
j∈I

Φijβjβi + ηiβi = β2
i (Φii +

∑
j∈I

βj
βi

Φij + β−1i ηi) > 0,

for any βi 6= 0.

The tightness of this theorem is given by the case when ε = 0, for which the condition has already
been shown to be necessary and sufficient in Theorem 1.
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2 Proofs for Section 4

In this section, we prove results from Section 4 that are not covered in the main article.

Proof of Corollary 1. Letting I ⊆ Q, |I| ≤ s− 1, we have for any i 6= k ∈ Q \ I ,

Φii−
1

c
max

{∑
j∈I
|Φij + Φkj |,

∑
j∈I
|Φij − Φkj |

}
+ |Φik| ≥ 1− 1

c

(
2(s− 1)

c

2s
+

c

2s

)
=

1

2s
> 0.

This completes the proof for the first case.

Now for the second case, notice that the sum of an entire row (except the diagonal term) can be
bounded by

∑
j 6=i |Φij | < 2

∑∞
k=1 r

k < 2r
1−r . Therefore, we have

Φii−
(1− r)2

4r
max

{∑
j∈I
|Φij + Φkj |,

∑
j∈I
|Φij − Φkj |

}
− |Φik| > 1− (1− r)2

2r

∑
j 6=i

|Φij | − r = 0.

Proof of Theorem 3. First, from RDD to IC: Without loss of generality, we assume S = {1, 2}.
For any k ∈ Q \ S, we have∣∣∣∣[Φk1 Φk2]Φ−1S, Ssign(βS)

∣∣∣∣ =

∣∣∣∣sign(β1)(Φk1 − Φ12Φk2) + sign(β2)(−Φ12Φk1 + Φk2)

1− Φ2
12

∣∣∣∣.
The r.h.s. becomes |Φk1 + Φk2|(1 − Φ12)/(1 − Φ2

12) when sign(β1) = sign(β2) and |Φk1 −
Φk2|(1 + Φ12)/(1− Φ2

12) when sign(β1) = −sign(β2). In either case we have

∣∣∣∣[Φk1 Φk2]Φ−1S, Ssign(βS)

∣∣∣∣ ≤ max

{
|Φ1k + Φ2k|, |Φ1k − Φ2k|

}
1− r

<
ρ−1

1− r
.

Second, from IC to RDD: Let I ⊆ Q, |I| = 1 and i 6= k ∈ Q \ I . Without loss of generality, we
assume i = 1, k = 2, and we construct S = {1, 2}. Now for any j ∈ I , using the same formula as
shown above, we have

1− θ ≥
∣∣∣∣[Φj1 Φj2]Φ−1S, Ssign(βS)

∣∣∣∣ =

∣∣∣∣sign(β1)(Φj1 − Φ12Φj2) + sign(β2)(−Φ12Φj1 + Φj2)

1− Φ2
12

∣∣∣∣.
Using the same result on the r.h.s., i.e., it becomes |Φk1+Φk2|(1−Φ12)/(1−Φ2

12) when sign(β1) =
sign(β2) and |Φk1−Φk2|(1+Φ12)/(1−Φ2

12) when sign(β1) = −sign(β2), we have for any j ∈ I
that

max

{
|Φ1j + Φ2j |, |Φ1j − Φ2j |

}
≤ (1− θ)(1 + r).

As a result, we have∑
j∈I

max

{
|Φ1j + Φ2j |, |Φ1j − Φ2j |

}
< (1− θ)(1 + r) < (1− θ)1 + r

1− r

(
Φ11 − |Φ12|

)
,

which implies

Φ11 >
1

1− θ
1− r
1 + r

∑
j∈I

max

{
|Φ1j + Φ2j |, |Φ1j − Φ2j |

}
+ |Φ12|.

Proof of Theorem 4. We just need to check (4). We prove the absolute value of the first coordinate
of CSc, SC

−1
S, S · sign(βS) is less than one, and the rest just follow the same argument. From the
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condition we know C = XTX/n is restricted diagonally dominant. Then equation (3) implies that
for any I ⊆ Q with |I| = s, we have for any k 6∈ I ,

ρ
∑
i∈I
|Cki| < 1.

Now for any S ⊆ Q with |S| = s, we choose I = S and let αT be the first row of CSc, S =
XT
ScXS/n, we have

|αT (XT
SXS/n)−1sign(βS)| ≤ ‖α‖2‖sign(βS)‖2µ−1.

Because ρ
∑s
i=1 |αi| < 1, we have

ρ2
s∑
i=1

α2
i < ρ2(

s∑
i=1

|αi|)2 < 1,

which implies that

|αT (XT
SXS/n)−1sign(βS)| ≤ ρ−1

√
sµ−1 =

√
s

ρµ
< 1.

3 Proofs for Section 6 (SIS)

Proofs in Section 6 are divided into two parts. In this section, we provide the proofs related to SIS,
and leave those pertaining to HOLP to the next section. The proof requires the following proposition,
Proposition 1. Assume Xi ∼ X 2(1), i = 1, 2, · · · , n, where X 2(1) is the chi-square distribution
with one degree of freedom. Then for any t > 0, we have

P (|
∑n
i=1Xi

n
− 1| ≥ t) ≤ 2 exp

{
−min

(
t2n

8e2K
,
tn

2eK

)}
,

where K = ‖X 2(1)− 1‖ψ1 . Alternatively, for any C > 0, there exists some 0 < c3 < 1 < c4 such
that,

P (

∑n
i=1Xi

n
≤ c3) ≤ e−Cn, (1)

and

P (

∑n
i=1Xi

n
≥ c4) ≤ e−Cn.

Proof. It is a direct application of Proposition 5.16 in [1]. Notice that in the proof of Proposition
5.16 we have C = 2e2 and c = e/2 for X 2(1)− 1.

Proof of Lemma 1. For diagonal term we have for any i ∈ {1, 2, · · · , p}

Φii − Σii =

∑n
k=1 x

2
ik

n
− 1,

where xik, k = 1, 2, · · · , n’s are n iid standard normal random variables. Using Proposition 1, we
have for any t > 0,

P

(
|Φii − Σii| ≥ t

)
≤ 2 exp

{
−min

(
t2n

8e2K
,
tn

2eK

)}
. (2)

For the off-diagonal term, we have for any i 6= j,

Φij − Σij =

∑n
k=1 xikxjk

n
− Σij

=

∑n
k=1(xik + xjk)2

2n
−
∑n
k=1 x

2
ik

2n
−
∑n
k=1 x

2
jk

2n
− Σij

=
1

2

(∑n
k=1(xik + xjk)2

n
− (2 + 2Σij)

)
− 1

2

(∑n
k=1 x

2
ik

n
− 1

)
− 1

2

(∑n
k=1 x

2
jk

n
− 1

)
.
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Notice that xik+xjk ∼ N(0, 2+2Σij). Hence the three terms in the above equation can be bounded
using the same inequality before, i.e., for any t > 0,

P

(
|Φij − Σij | ≥ (2 + Σij)t

)
≤ 6 exp

{
−min

(
t2n

8e2
,
tn

2e

)}
.

Clearly, we have Σij ≤
√

Σii
√

Σjj ≤ 1. Therefore, we have

P

(
|Φij − Σij | ≥ t

)
≤ 6 exp

{
−min

(
t2n

72e2K
,
tn

6eK

)}
.

Proof of Lemma 2. The proof is essentially the same for proving the off diagonal terms of Φ as in
Lemma 1. The only difference is that E(Φij) = Σij while E(Xε) = 0. Note

ηi/σ =

∑n
k=1 xikεk/σ

n
=

∑n
k=1(xik + εk/σ)2

2n
−
∑n
k=1 x

2
ik

2n
−
∑n
k=1 ε

2
k/σ

2

2n
.

Using Proposition 1, we have

P

(
|ηi/σ| ≥ t

)
≤ 6 exp

{
−min

(
t2n

72e2K
,
tn

6eK

)}
.

Now we turn to the proof of Theorem 5.

Proof of Theorem 5. Taking union bound on the results from Lemma 1 and 2, we have for any
t > 0,

P

(
min
i∈Q

Φii ≤ 1− t
)
≤ 2p exp

{
−min

(
t2n

8e2K
,
tn

2eK

)}
,

P

(
max
i6=j
|Φij | ≥ r + t

)
≤ 6(p2 − p) exp

{
−min

(
t2n

72e2K
,
tn

6eK

)}
,

and

P

(
max
i∈Q
|ηi| ≥ σt

)
≤ 6p exp

{
−min

(
t2n

72e2K
,
tn

6eK

)}
.

Thus, when p > 2 we have

P

(
min
i∈Q

Φii ≤ 1− t or max
i6=j
|Φij | ≥ r + t or max

i∈Q
|ηi| ≥ σt

)
≤ 7p2 exp

{
−min

(
t2n

72e2K
,
tn

6eK

)}
.

In other words, for any δ > 0, when n ≥ K log(7p2/δ), with probability at least 1− δ, we have

min
i∈Q

Φii ≥ 1− 6
√

2e

√
K log(7p2/δ)

n
, max

i6=j
|Φij | ≤ r + 6

√
2e

√
K log(7p2/δ)

n
,

and

max
i∈Q
|ηi| ≤ 6

√
2eσ

√
K log(7p2/δ)

n
.

A sufficient condition for Φ to be restricted diagonally dominant is that

min
i

Φii > 2ρsmax
i6=j
|Φij |+ 2τ−1 max

i
|ηi|.

Plugging in the values and solving the inequality, we have (notice that 7p2/δ < 9p2/δ2) Φ is RDD
as long as

n > 144K

(
1 + 2ρs+ 2σ/τ

1− 2ρsr

)2

log(3p/δ).

This completes the proof.
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4 Proofs for Section 6 (HOLP)

In this section we prove Lemma 3, 4 and Theorem 5. Several propositions and lemmas are needed
for establishing the whole theory. We list all prerequisite results without proofs but provide readers
references for complete proofs.

Let P ∈ O(p) be a p × p orthogonal matrix from the orthogonal group O(p). Let H denote the
first n columns of P . Then H is in the Stiefel manifold [2]. In general, the Stiefel manifold Vn,p
is the space whose points are n-frames in Rp represented as the set of p × n matrices X such that
XTX = In. Mathematically, we can write

Vn,p = {X ∈ Rp×n : XTX = In}.

There is a natural measure (dX) called Haar measure on the Stiefel manifold, invariant under both
right orthogonal and left orthogonal transformations. We standardize it to obtain a probability mea-
sure as [dX] = (dX)/V (n, p), where V (n, p) = 2nπnp/2/Γn(1/2p).

Lemma 1. [2, Page 41-44] Supposed that a p× n random matrix Z has the density function of the
form

fZ(Z) = |Σ|−n/2g(ZTΣ−1Z),

which is invariant under the right-orthogonal transformation of Z, where Σ is a p × p positive
definite matrix. Then its orientation Hz = Z(ZTZ)−1/2 has the matrix angular central Gaussian
distribution (MACG) with a probability density function

MACG(Σ) = |Σ|−n/2|HT
z Σ−1Hz|−p/2.

In particular, if Z is a p × n matrix whose distribution is invariant under both the left- and right-
orthogonal transformations, then HY , with Y = BZ for BBT = Σ, has the MACG(Σ) distribu-
tion.

When n = 1, the MACG distribution becomes the angular central Gaussian distribution, a descrip-
tion of the multivariate Gaussian distribution on the unit sphere [3].

Lemma 2. [2, Page 70, Decomposition of the Stiefel manifold] Let H be a p × n random matrix
on Vn,p, and write

H = (H1 H2),

with H1 being a p× q matrix where 0 < q < n. Then we can write

H2 = G(H1)U1,

where G(H1) is any matrix chosen so that (H1 G(H1)) ∈ O(p); as H2 runs over Vn−q,p, U1 runs
over Vn−q,p−q and the relationship is one to one. The differential form [dH] for the normalized
invariant measure on Vn,p is decomposed as the product

[dH] = [dH1][dU1]

of those [dH1] and [dU1] on Vq,p and Vn−q,p−q , respectively.

Lemma 3. [Lemma 4 in [4]]Let U be uniformly distributed on the Stiefel manifold Vn,p. Then for
any C > 0, there exist c′1, c

′
2 with 0 < c′1 < 1 < c′2, such that

P

(
eT1 UU

T e1 < c′1
n

p

)
≤ 2e−Cn,

and

P

(
eT1 UU

T e1 > c′2
n

p

)
≤ 4e−Cn.

Some of our proof requires concentration properties of a random Gaussian matrix and X 2
1 random

variables. For a Wigner matrix, we have the following result.
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Lemma 4. Assume Z is a n × p matrix with p > c0n for some c0 > 1. Each entry of Z follows a
Gaussian distribution with mean zero and variance one and are independent. Then for any t > 0,
with probability at least 1− 2 exp(−t2/2), we have

(1− c−10 − t/p)2 ≤ λmin(ZZT /p) < λmax(ZZT /p) ≤ (1 + c−10 + t/p)2.

For any C > 0, taking t =
√

2Cn, we have with probability 1− 2 exp(−Cn/2),

(1− c−10 −
√

2C

c0
√
n

)2 ≤ λmin(ZZT /p) ≤ (1 + c−10 +

√
2C

c0
√
n

)2.

Proof. This is essentially Corollary 5.35 in [1].

The conditional number of Σ is controled by κ, which simulaneously controls the largest and the
smallest eigenvalues.
Proposition 2. Assume the conditional number of Σ is κ and Σii = 1 for i = 1, 2, · · · , p, then we
have

λmin(Σ) ≥ κ−1 and λmax(Σ) ≤ κ.

Proof. Notice that p = tr(Σ) =
∑p
i=1 λi. Therefore, we have

p/λmax ≥ pκ−1 and p/λmin(Σ) ≤ pκ,
which completes the proof.

Now we prove the main results for HOLP.

Proof of Lemma 3. Consider a transformed n× p random matrix Z = XΣ−1/2, which, by defini-
tion, follows standard multivariate Gaussian. Consider its SVD decomposition,

Z = V DUT ,

where V ∈ O(n), D is a diagonal matrix and U is a p × n random matrix belonging to the Stiefel
manifold Vn,p. With such notion, we can rewrite the projection matrix as

XT (XXT )−1X = Σ1/2U(UTΣU)−1UTΣ1/2 = HHT ,

where H = Σ1/2U(UTΣU)−1/2 and H ∈ Vn,p−1. Therefore, the two quantities that we are
interested in are Φii = eTi HH

T ei (diagonal term) and Φij = eTi HH
T ej (off-diagonal term),

where eTi is the p−dimensional unit vector with the ith coordinate being one. The proof is divided
into two parts, where in the first part we consider diagonal terms and the second part takes care of
off-diagonal terms.

Part I: First, we consider the diagonal term eTi HH
T ei. Recall the definition of H and

eTi HH
T ei = eTi Σ

1
2U(UTΣU)−1UTΣ

1
2 ei.

There always exists some orthogonal matrix Q that rotates the vector Σ
1
2 ei to the direction of e1,

i.e,
Σ

1
2 v = ‖Σ 1

2 v‖Qe1.
Then we have

eTi HH
T ei = ‖Σ 1

2 ei‖2eT1QTU(UTΣU)−1UTQe1 = ‖Σ 1
2 v‖2eT1 Ũ(UTΣU)−1Ũe1,

where Ũ = QTU is uniformly distributed on Vn,p, because U is uniformly distributed on Vn,p (see
discussion in the beginning). Now the magnitude of eTi HH

T eI can be evaluated in two parts. For
the norm of the vector Σ

1
2 v, we have

λmin(Σ) ≤ eTi Σei = ‖Σ 1
2 e)i‖2 ≤ λmax(Σ), (3)
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and for the remaining part,

eT1 Ũ(UTΣU)−1Ũe1 ≤ λmax((UTΣU)−1)‖Ũe1‖2 ≤ λmin(Σ)−1‖Ũe1‖2,
and

eT1 Ũ(UTΣU)−1Ũe1 ≥ λmin((UTΣU)−1)‖Ũe1‖2 ≥ λmax(Σ)−1‖Ũe1‖2.
Consequently, we have

eTi HH
T ei ≤

λmax(Σ)

λmin(Σ)
eT1 UU

T e1, eTi HH
T ei ≥

λmin(Σ)

λmax(Σ)
eT1 UU

T e1. (4)

Therefore, following Proposition 3, for any C > 0 we have

P

(
eTi HH

T ei < c′1c4κ
−1n

p

)
≤ 2e−Cn,

and

P

(
eTi HH

T ei > c′2c
−1
4 κ

n1

p

)
≤ 2e−Cn.

Denoting c′1c4 by c1 and c′2c
−1
4 by c2, we obtain the equation in Lemma 3.

Part II: Second, for off-diagonal terms, although the proof is almost identical to the proof of Lemma
5 in [5], we still provide a complete version here due to the importance of this result.

The proof depends on the decomposition of Stiefel manifold. Without loss of generality, we prove
the bound only for eT2HH

T e1, then the other off-diagonal terms should follow exactly the same
argument. According to Lemma 2, we can decompose H = (T1, H2) with T1 = G(H2)H1, where
H2 is a p × (n − 1) matrix, H1 is a (p − n + 1) × 1 vector and G(H2) is a matrix such that
(G(H2), H2) ∈ O(p). The invariant measure on the Stiefel manifold can be decomposed as

[H] = [H1][H2]

where [H1] and [H2] are Haar measures on V1,n−p+1, Vn−1,p (Notice that q = n− 1 in this decom-
position) respectively. As pointed out before, H has the MACG(Σ) distribution, which possesses
a density as

p(H) ∝ |HTΣ−1H|−p/2[dH].

Using the identity for matrix determinant∣∣∣∣A B
C D

∣∣∣∣ = |A||D − CA−1B| = |D||A−BD−1C|,

we have

P (H1, H2) ∝ |HT
2 Σ−1H2|−p/2(TT1 Σ−1T1 − TT1 Σ−1H2(HT

2 Σ−1H2)−1HT
2 Σ−1T1)−p/2

= |HT
2 Σ−1H2|−p/2(HT

1 G(H2)T (Σ−1 − Σ−1H2(HT
2 Σ−1H2)−1HT

2 Σ−1)G(H2)H1)−p/2

= |HT
2 Σ−1H2|−p/2(HT

1 G(H2)TΣ−1/2(I − T2)Σ−1/2G(H2)H1)−p/2,

where T2 = Σ−1/2H2(HT
2 Σ−1H2)−1HT

2 Σ−1/2 is an orthogonal projection onto the linear space
spanned by the columns of Σ−1/2H2. It is easy to verify the following result by using the definition
of G(H2),

[Σ1/2G(H2)(G(H2)TΣG(H2))−1/2, Σ−1/2H2(HT
2 Σ−1H2)−1/2] ∈ O(p),

and therefore we have

I − T2 = Σ1/2G(H2)(G(H2)TΣG(H2))−1G(H2)TΣ1/2,

which simplifies the density function as

P (H1, H2) ∝ |HT
2 Σ−1H2|−p/2(HT

1 (G(H2)TΣG(H2))−1H1)−p/2.

Now it becomes clear that H1|H2 follows the Angular Central Gaussian distribution ACG(Σ′),
where

Σ′ = G(H2)TΣG(H2).
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Next, we relate the target quantity eT1HH
T e2 to the distribution of H1. Notice that for any orthog-

onal matrix Q ∈ O(n), we have

eT1HH
T e2 = eT1HQQ

THT e2 = eT1H
′H
′T e2.

Write H ′ = HQ = (T ′1, H
′
2), where T ′1 = [T

′(1)
1 , T

′(2)
1 , · · · , T

′(p)
1 ], H ′2 = [H

′(i,j)
2 ]. If we choose

Q such that the first row of H ′2 are all zero (this is possible as we can choose the first column of Q
being the first row of H upon normalizing), i.e.,

eT1H
′ = [T

′(1)
1 , 0, · · · , 0] eT2H

′ = [T
′(2)
1 , H

′(2,1)
2 , · · · , H

′(2,n−1)
2 ],

then immediately we have eT1HH
T e2 = eT1H

′H
′T e2 = T

′(1)
1 T

′(2)
1 . This indicates that

eT1HH
T e2

(d)
= T

(1)
1 T

(2)
1

∣∣∣∣ eT1H2 = 0.

As shown at the beginning, H1 follows ACG(Σ′) conditional on H2. Let H1 = (h1, h2, · · · , hp)T
and let xT = (x1, x2, · · · , xp−n+1) ∼ N(0,Σ′), then we have

hi
(d)
=

xi√
x21 + · · ·+ x2p−n+1

.

Notice that T1 = G(H2)H1, a linear transformation on H1. Defining y = G(H2)x, we have

T
(i)
1

(d)
=

yi√
y21 + · · ·+ y2p

, (5)

where y ∼ N(0, G(H)Σ′G(H)T ) is a degenerate Gaussian distribution. This degenerate dis-
tribution contains an interesting form. Letting z ∼ N(0,Σ), we know y can be expressed as
y = G(H)G(H)T z. Write G(H2)T as [g1, g2] where g1 is a (p − n + 1) × 1 vector and g2 is
a (p− n+ 1)× (p− 1) matrix, then we have

G(H2)G(H2)T =

(
gT1 g1 gT1 g2
gT2 g1 gT2 g2

)
.

We can also write HT
2 = [0n−1,1, h2] where h2 is a (n − 1) × (p − 1) matrix, and using the

orthogonality, i.e., [H2 G(H2)][H2 G(H2)]T = Ip, we have

gT1 g1 = 1, gT1 g2 = 01,p−1 and gT2 g2 = Ip−1 − h2hT2 .

Because h2 is a set of orthogonal basis in the p − 1 dimensional space, gT2 g2 is therefore an or-
thogonal projection onto the space {h2}⊥ and gT2 g2 = AAT where A = gT2 (g2g

T
2 )−1/2 is a

(p− 1)× (p− n) orientation matrix on {h2}⊥. Together, we have

y =

(
1 0
0 AAT

)
z.

This relationship allows us to marginalize y1 out with y following a degenerate Gaussian distribu-
tion.

We now turn to transform the condition eT1H2 = 0 onto constraints on the distribution of T (i)
1 .

Letting t21 = eT1HH
T e1, then eT1H2 = 0 is equivalent to T (1)2

1 = eT1HH
T e1 = t21, which implies

that

eT1HH
T e2

(d)
= T

(1)
1 T

(2)
1

∣∣∣∣ T (1)2
1 = eT1HH

T e1.

Because the magnitude of eT1HH
T e1 has been obtained in Part I, we can now condition on the value

of eT1HH
T e1 to obtain the bound on T (2)

1 . From T
(1)2
1 = t21, we obtain that,

(1− t21)y21 = t21(y22 + y23 + · · ·+ y2p). (6)
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Notice this constraint is imposed on the norm of ỹ = (y2, y3, · · · , yp) and is thus independent of
(y2/‖ỹ‖, · · · , yp/‖ỹ‖). Equation (6) also implies that

(1− t21)(y21 + y22 + · · ·+ y2p) = y22 + y23 + · · ·+ y2p. (7)

Therefore, combining (5) with (6), (7) and integrating y1 out, we have

T
(i)
1 | T (1)

1 = t1
(d)
=

√
1− t21yi√

y22 + · · ·+ y2p

, i = 2, 3, · · · , p,

where (y2, y3, · · · , yp) ∼ N(0, AATΣ22AA
T ) with Σ22 being the covariance matrix of z2, · · · , zp.

To bound the numerator, we use the classical tail bound on the normal distribution as for any t > 0,
(σi =

√
var(yi) ≤

√
λmax(AATΣ22AAT ) ≤ λmax(Σ)1/2),

P (|yi| > tσi) = P (|yi| > tλ
1
2
max(Σ)) ≤ 2e−t

2/2. (8)

For the denominator, letting z̃ ∼ N(0, Ip−1), we have

ỹ = AATΣ
1/2
22 z̃ and ỹT ỹ = z̃TΣ

1/2
22 AA

TΣ
1/2
22 z̃

(d)
=

p−n∑
i=1

λiX 2
i (1),

where X 2
i (1) are iid chi-square random variables and λi are non-zero eigenvalues of matrix

Σ
1/2
22 AA

TΣ
1/2
22 . Here λi’s are naturally upper bounded by λmax(Σ). To give a lower bound, notice

that Σ
1/2
22 AA

TΣ
1/2
22 and AΣ22A

T possess the same set of non-zero eigenvalues, thus

min
i
λi ≥ λmin(AΣ22A

T ) ≥ λmin(Σ).

Therefore,

λmin(Σ)

∑p−n
i=1 X 2

i (1)

p− n
≤ ỹT ỹ

p− n
≤ λmax(Σ)

∑p−n
i=1 X 2

i (1)

p− n
.

The quantity
∑p−n

i=1 X
2
i (1)

p−n can be bounded by Proposition 1. Combining with Proposition 2, we have
for any C > 0, there exists some c3 > 0 such that

P

(
ỹT ỹ/(p− n) < c3λ

1
2 (Σ)

)
≤ e−C(p−n).

Therefore, noticing that λ1/2max(Σ)/λ
1/2
min(Σ) = κ1/2, T (2)

1 can be bounded as

P

(
|T (2)

1 | >
√

1− t21κ
1
2 t

√
c3
√
p− n

∣∣T (1)
1 = t1

)
≤ e−C(p−n) + 2e−t

2/2.

Using the results from the diagonal term, we have

P

(
t21 > c2κ

n

p

)
≤ 2e−Cn. and P

(
t21 < c1κ

−1n

p

)
≤ 2e−Cn.

Consequently, we have

P

(
|eT1HHT e2| > c4κt

√
n

p

)
= P

(
|T (1)

1 T
(2)
1 | > c4κt

√
n

p

∣∣T (1)
1 = t1

)
≤ P

(
T

(1)2
1 > c2κ

n

p
|T (1)

1 = t1

)
+ P

(
|T (2)

1 | >
κ

1
2 t
√

1− c1n/p√
c3
√
p− n

∣∣T (1)
1 = t1

)
≤ 5e−Cn + 2e−t

2/2,

where c4 =

√
c2(c0−1)√
c3(c0−1)

.
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Proof of Lemma 4. Notice that conditioning onX , for any fixed index i, eTi X
T (XXT )−1ε follows

a normal distribution with mean zero and variance σ2‖eTi XT (XXT )−1‖22. We can first bound the
variance and then apply the normal tail bound (8) again to obtain an upper bound for the error term.

The variance term follows

σ2eTi X
T (XXT )−2Xei ≤ σ2λmax

(
(XXT )−1

)
eTi HH

T ei.

The eTi HH
T ei part can be bounded according to Lemma 3, while the first part follows

λmax
(
(XXT )−1

)
= λmax

(
(ZΣZT )−1

)
≤ λ−1min(ZZT )λ−1min(Σ) =

κ

p
λ−1min(p−1ZZT ).

Thus, using Lemma 4 and 3, we have

σ2‖eTi XT (XXT )−1‖22 ≤
4σ2c2

(1− c−10 )2
nκ2

p2
, (9)

with probability at least 1− 4 exp(−Cn) if n > 8C/(c0− 1)2. Now combining (9) and (8) we have
for any t > 0,

P

(
|eTi XT (XXT )−1ε| ≥

2σ
√
c2κt

1− c−10

√
n

p

)
< 4e−Cn + 2e−t

2/2.

Proof of Theorem 6. The proof depends on Lemma 3 and 4, and a careful choice of the value of t
in these two lemmas. We first take union bounds of the two lemmas to obtain

P (min
i∈Q
|Φii| < c1κ

−1n

p
) ≤ 2pe−Cn,

P (max
i 6=j
|Φij | > c4κt

√
n

p
) ≤ 5(p2 − p)e−Cn + 2(p2 − p)e−t

2/2,

and

P

(
‖XT (XXT )−1ε‖∞ ≥

2σ
√
c2κt

1− c−10

√
n

p

)
< 4pe−Cn + 2pe−t

2/2.

Notice that once we have

min
i
|Φii| > 2sρmax

ij
|Φij |+ 2τ−1‖XT (XXT )−1ε‖∞, (10)

then the proof is complete because Φ − 2τ−1‖XT (XXT )−1ε‖∞ is already a restricted diagonally
dominant matrix. Let t =

√
Cn/ν. The above equation then requires

c1κ
−1n

p
− 2c4

√
Cκsρ

ν

n

p
− 2σ

√
c2Cκt

(1− c−10 )τν

n

p

= (c1κ
−1 − 2c4

√
Cκsρ

ν
− 2σ

√
c2Cκ

(1− c−10 )τν
)
n

p
> 0,

which implies that

ν >
2c4
√
Cκ2ρs

c1
+

2σ
√
c2Cκ

2

c1(1− c−10 )τ
= C1κ

2ρs+ C2κ
2τ−1σ > 1, (11)

where C1 = 2c4
√
C

c1
, C2 = 2

√
c2C

c1(1−c−1
0 )

. Therefore, the probability that (10) does not hold is

P

({
(10) does not hold

})
< (p+ 5p2)e−Cn + 2p2e−Cn/ν < (7 +

1

n
)p2e−Cn/ν

2

,
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where the second inequality is due to the fact that p > n and ν > 1. Now for any δ > 0, (10) holds
with probability at least 1− δ requires that

n ≥ ν2

C

(
log(7 + 1/n) + 2 log p− log δ

)
,

which is certainly satisfied if (notice that
√

8 < 3),

n ≥ 2ν2

C
log

3p

δ
.

Now pushing ν to the limit as shown in (11) gives the precise condition we need, i.e.

n > 2C ′κ4(ρs+ τ−1σ)2 log
3p

δ
,

where C ′ = max{ 4c
2
4

c21
, 4c2
c21(1−c

−1
0 )2
}.
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