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Abstract

Spectral inference provides fast algorithms and provable optimality for latent topic
analysis. But for real data these algorithms require additional ad-hoc heuristics,
and even then often produce unusable results. We explain this poor performance
by casting the problem of topic inference in the framework of Joint Stochastic
Matrix Factorization (JSMF) and showing that previous methods violate the theo-
retical conditions necessary for a good solution to exist. We then propose a novel
rectification method that learns high quality topics and their interactions even on
small, noisy data. This method achieves results comparable to probabilistic tech-
niques in several domains while maintaining scalability and provable optimality.

1 Introduction

Summarizing large data sets using pairwise co-occurrence frequencies is a powerful tool for data
mining. Objects can often be better described by their relationships than their inherent char-
acteristics. Communities can be discovered from friendships [1], song genres can be identified
from co-occurrence in playlists [2], and neural word embeddings are factorizations of pairwise co-
occurrence information [3, 4]. Recent Anchor Word algorithms [5, 6] perform spectral inference on
co-occurrence statistics for inferring topic models [7, 8]. Co-occurrence statistics can be calculated
using a single parallel pass through a training corpus. While these algorithms are fast, deterministic,
and provably guaranteed, they are sensitive to observation noise and small samples, often producing
effectively useless results on real documents that present no problems for probabilistic algorithms.
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Figure 1: 2D visualizations show the low-quality convex hull
found by Anchor Words [6] (left) and a better convex hull (middle)
found by discovering anchor words on a rectified space (right).

We cast this general problem
of learning overlapping latent
clusters as Joint-Stochastic Ma-
trix Factorization (JSMF), a
subset of non-negative matrix
factorization that contains topic
modeling as a special case.
We explore the conditions nec-
essary for inference from co-
occurrence statistics and show
that the Anchor Words algo-
rithms necessarily violate such
conditions. Then we propose a rectified algorithm that matches the performance of probabilistic
inference—even on small and noisy datasets—without losing efficiency and provable guarantees.
Validating on both real and synthetic data, we demonstrate that our rectification not only produces
better clusters, but also, unlike previous work, learns meaningful cluster interactions.
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Let the matrix C represent the co-occurrence of pairs drawn from N objects: Cij is the joint prob-
ability p(X1 = i,X2 = j) for a pair of objects i and j. Our goal is to discover K latent clus-
ters by approximately decomposing C ≈ BABT . B is the object-cluster matrix, in which each
column corresponds to a cluster and Bik = p(X = i|Z = k) is the probability of drawing an
object i conditioned on the object belonging to the cluster k; and A is the cluster-cluster matrix,
in which Akl = p(Z1 = k, Z2 = l) represents the joint probability of pairs of clusters. We
call the matrices C and A joint-stochastic (i.e., C ∈ JSN , A ∈ JSK) due to their correspon-
dence to joint distributions; B is column-stochastic. Example applications are shown in Table 1.

Table 1: JSMF applications, with anchor-word equivalents.

Domain Object Cluster Basis
Document Word Topic Anchor Word

Image Pixel Segment Pure Pixel
Network User Community Representative

Legislature Member Party/Group Partisan
Playlist Song Genre Signature Song

Anchor Word algorithms [5,
6] solve JSMF problems us-
ing a separability assumption:
each topic contains at least
one “anchor” word that has
non-negligible probability ex-
clusively in that topic. The al-
gorithm uses the co-occurrence
patterns of the anchor words as a summary basis for the co-occurrence patterns of all other words.
The initial algorithm [5] is theoretically sound but unable to produce column-stochastic word-topic
matrix B due to unstable matrix inversions. A subsequent algorithm [6] fixes negative entries in B,
but still produces large negative entries in the estimated topic-topic matrix A. As shown in Figure 3,
the proposed algorithm infers valid topic-topic interactions.

2 Requirements for Factorization

In this section we review the probabilistic and statistical structures of JSMF and then define geo-
metric structures of co-occurrence matrices required for successful factorization. C ∈ RN×N is a
joint-stochastic matrix constructed from M training examples, each of which contain some subset
of N objects. We wish to find K � N latent clusters by factorizing C into a column-stochastic
matrix B ∈ RN×K and a joint-stochastic matrix A ∈ RK×K , satisfying C ≈ BABT .

A

α

Z1

Z2

X1

X2

Bk

nm(nm − 1)

1 ≤ m ≤M

1 ≤ k ≤ K

1
Figure 2: The JSMF event space differs
from LDA’s. JSMF deals only with pairwise
co-occurrence events and does not generate
observations/documents.

Probabilistic structure. Figure 2 shows the event
space of our model. The distribution A over pairs of clus-
ters is generated first from a stochastic process with a hy-
perparameter α. If the m-th training example contains
a total of nm objects, our model views the example as
consisting of all possible nm(nm − 1) pairs of objects.1
For each of these pairs, cluster assignments are sampled
from the selected distribution ((z1, z2) ∼ A). Then an
actual object pair is drawn with respect to the correspond-
ing cluster assignments (x1 ∼ Bz1 , x2 ∼ Bz2 ). Note that
this process does not explain how each training example
is generated from a model, but shows how our model un-
derstands the objects in the training examples.

Following [5, 6], our model views B as a set of parameters rather than random variables.2 The
primary learning task is to estimate B; we then estimate A to recover the hyperparameter α. Due to
the conditional independence X1 ⊥ X2 | (Z1 or Z2), the factorization C ≈ BABT is equivalent to

p(X1, X2|A;B) =
∑
z1

∑
z2

p(X1|Z1;B)p(Z1, Z2|A)p(X2|Z2;B).

Under the separability assumption, each cluster k has a basis object sk such that p(X = sk|Z =
k) > 0 and p(X = sk|Z 6= k) = 0. In matrix terms, we assume the submatrix of B comprised of

1Due to the bag-of-words assumption, every object can pair with any other object in that example, except
itself. One implication of our work is better understanding the self-co-occurrences, the diagonal entries in the
co-occurrence matrix.

2In LDA, each column of B is generated from a known distribution Bk ∼ Dir(β).
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the rows with indices S = {s1, . . . , sK} is diagonal. As these rows form a non-negative basis for
the row space of B, the assumption implies rank+(B) = K = rank(B).3 Providing identifiability
to the factorization, this assumption becomes crucial for inference of bothB andA. Note that JSMF
factorization is unique up to column permutation, meaning that no specific ordering exists among
the discovered clusters, equivalent to probabilistic topic models (see the Appendix).

Statistical structure. Let f(α) be a (known) distribution of distributions from which a cluster
distribution is sampled for each training example. Saying Wm ∼ f(α), we have M i.i.d samples
{W1, . . . ,WM} which are not directly observable. Defining the posterior cluster-cluster matrix
A∗M = 1

M

∑M
m=1WmW

T
m and the expectation A∗ = E[WmW

T
m], Lemma 2.2 in [5] showed that4

A∗M −→ A∗ as M −→∞. (1)

Denote the posterior co-occurrence for the m-th training example by C∗m and all examples by C∗.
Then C∗m = BWmW

T
mB

T , and C∗ = 1
M

∑M
m=1 C

∗
m. Thus

C∗ = B

(
1

M

M∑
m=1

WmW
T
m

)
BT = BA∗MB

T . (2)

Denote the noisy observation for the m-th training example by Cm, and all examples by C. Let
W = [W1|...|WM ] be a matrix of topics. We will construct Cm so that E[C|W ] is an unbiased
estimator of C∗. Thus as M →∞

C −→ E[C] = C∗ = BA∗MB
T −→ BA∗BT . (3)

Geometric structure. Though the separability assumption allows us to identify B even from the
noisy observation C, we need to throughly investigate the structure of cluster interactions. This is
because it will eventually be related to how much useful information the co-occurrence between
corresponding anchor bases contains, enabling us to best use our training data. Say DNNn is the
set of n×n doubly non-negative matrices: entrywise non-negative and positive semidefinite (PSD).

Claim A∗M , A
∗ ∈ DNNK and C∗ ∈ DNNN

Proof Take any vector y ∈ RK . As A∗M is defined as a sum of outer-products,

yTA∗My =
1

M

M∑
m=1

yTWmW
T
my =

1

M

∑
(WT

my)T (WT
my) =

∑
(non-negative) ≥ 0. (4)

Thus A∗M ∈ PSDK . In addition, (A∗M )kl = p(Z1 = k, Z2 = l) ≥ 0 for all k, l. Proving
A∗ ∈ DNNK is analogous by the linearity of expectation. Relying on double non-negativity of
A∗M , Equation (3) implies not only the low-rank structure of C∗, but also double non-negativity of
C∗ by a similar proof (see the Appendix).

The Anchor Word algorithms in [5, 6] consider neither double non-negativity of cluster interactions
nor its implication on co-occurrence statistics. Indeed, the empirical co-occurrence matrices col-
lected from limited data are generally indefinite and full-rank, whereas the posterior co-occurrences
must be positive semidefinite and low-rank. Our new approach will efficiently enforce double non-
negativity and low-rankness of the co-occurrence matrix C based on the geometric property of its
posterior behavior. We will later clarify how this process substantially improves the quality of the
clusters and their interactions by eliminating noises and restoring missing information.

3 Rectified Anchor Words Algorithm

In this section, we describe how to estimate the co-occurrence matrix C from the training data, and
how to rectify C so that it is low-rank and doubly non-negative. We then decompose the rectified
C ′ in a way that preserves the doubly non-negative structure in the cluster interaction matrix.

3rank+(B) means the non-negative rank of the matrix B, whereas rank(B) means the usual rank.
4This convergence is not trivial while 1

M

∑M
m=1Wm → E[Wm] asM →∞ by the Central Limit Theorem.
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Generating co-occurrence C. Let Hm be the vector of object counts for the m-th training exam-
ple, and let pm = BWm whereWm is the document’s latent topic distribution. ThenHm is assumed
to be a sample from a multinomial distributionHm ∼ Multi(nm, pm) where nm =

∑N
i=1H

(i)
m , and

recall E[Hm] = nmpm = nmBWm and Cov(Hm) = nm
(
diag(pm)− pmpTm

)
. As in [6], we

generate the co-occurrence for the m-th example by

Cm =
HmH

T
m − diag(Hm)

nm(nm − 1)
. (5)

The diagonal penalty in Eq. 5 cancels out the diagonal matrix term in the variance-covariance matrix,
making the estimator unbiased. Putting dm = nm(nm − 1), that is E[Cm|Wm] = 1

dm
E[HmH

T
m]−

1
dm

diag(E[Hm]) = 1
dm

(E[Hm]E[Hm]T + Cov(Hm) − diag(E[Hm])) = B(WmW
T
m)BT ≡ C∗m.

Thus E[C|W ] = C∗ by the linearity of expectation.

Rectifying co-occurrence C. While C is an unbiased estimator for C∗ in our model, in reality the
two matrices often differ due to a mismatch between our model assumptions and the data5 or due
to error in estimation from limited data. The computed C is generally full-rank with many negative
eigenvalues, causing a large approximation error. As the posterior co-occurrence C∗ must be low-
rank, doubly non-negative, and joint-stochastic, we propose two rectification methods: Diagonal
Completion (DC) and Alternating Projection (AP). DC modifies only diagonal entries so that C
becomes low-rank, non-negative, and joint-stochastic; while AP enforces modifies every entry and
enforces the same properties as well as positive semi-definiteness. As our empirical results strongly
favor alternating projection, we defer the details of diagonal completion to the Appendix.

Based on the desired property of the posterior co-occurrence C∗, we seek to project our estimator
C onto the set of joint-stochastic, doubly non-negative, low rank matrices. Alternating projection
methods like Dykstra’s algorithm [9] allow us to project onto an intersection of finitely many convex
sets using projections onto each individual set in turn. In our setting, we consider the intersection
of three sets of symmetric N × N matrices: the elementwise non-negative matrices NNN , the
normalized matricesNORN whose entry sum is equal to 1, and the positive semi-definite matrices
with rank K, PSDNK . We project onto these three sets as follows:

ΠPSDNK
(C) = UΛ+

KU
T , ΠNORN

(C) = C +
1−∑i,j Cij

N2
11T , ΠNNN

(C) = max{C, 0}.

where C = UΛUT is an eigendecomposition and Λ+
K is the matrix Λ modified so that all negative

eigenvalues and any but the K largest positive eigenvalues are set to zero. Truncated eigendecom-
positions can be computed efficiently, and the other projections are likewise efficient. While NNN

and NORN are convex, PSDNK is not. However, [10] show that alternating projection with a
non-convex set still works under certain conditions, guaranteeing a local convergence. Thus iterat-
ing three projections in turn until the convergence rectifies C to be in the desired space. We will
show how to satisfy such conditions and the convergence behavior in Section 5.

Selecting basis S. The first step of the factorization is to select the subset S of objects that satisfy
the separability assumption. We want the K best rows of the row-normalized co-occurrence matrix
C so that all other rows lie nearly in the convex hull of the selected rows. [6] use the Gram-
Schmidt process to select anchors, which computes pivoted QR decomposition, but did not utilize the
sparsity of C. To scale beyond small vocabularies, they use random projections that approximately
preserve `2 distances between rows of C. For all experiments we use a new pivoted QR algorithm
(see the Appendix) that exploits sparsity instead of using random projections, and thus preserves
deterministic inference.6

Recovering object-cluster B. After finding the set of basis objects S, we can infer each entry of
B by Bayes’ rule as in [6]. Let {p(Z1 = k|X1 = i)}Kk=1 be the coefficients that reconstruct the
i-th row of C in terms of the basis rows corresponding to S. Since Bik = p(X1 = i|Z1 = k),

5There is no reason to expect real data to be generated from topics, much less exactly K latent topics.
6To effectively use random projections, it is necessary to either find proper dimensions based on multiple

trials or perform low-dimensional random projection multiple times [25] and merge the resulting anchors.
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we can use the corpus frequencies p(X1 = i) =
∑
j Cij to estimate Bik ∝ p(Z1 = k|X1 =

i)p(X1 = i). Thus the main task for this step is to solve simplex-constrained QPs to infer a
set of such coefficients for each object. We use an exponentiated gradient algorithm to solve the
problem similar to [6]. Note that this step can be efficiently done in parallel for each object.
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Figure 3: The algorithm of [6] (first panel) produces negative cluster
co-occurrence probabilities. A probabilistic reconstruction alone (this
paper & [5], second panel) removes negative entries but has no off-
diagonals and does not sum to one. Trying after rectification (this
paper, third panel) produces a valid joint stochastic matrix.

Recovering cluster-cluster A.
[6] recovered A by minimizing
‖C − BABT ‖F ; but the inferred
A generally has many negative
entries, failing to model the
probabilistic interaction between
topics. While we can further
project A onto the joint-stochastic
matrices, this produces a large
approximation error.

We consider an alternate recovery
method that again leverages the
separability assumption. Let CSS be the submatrix whose rows and columns correspond to the
selected objects S, and let D be the diagonal submatrix BS∗ of rows of B corresponding to S. Then

CSS = DADT = DAD =⇒ A = D−1CSSD
−1. (6)

This approach efficiently recovers a cluster-cluster matrix A mostly based on the co-occrrurence
information between corresponding anchor basis, and produces no negative entries due to the sta-
bility of diagonal matrix inversion. Note that the principle submatrices of a PSD matrix are also
PSD; hence, if C ∈ PSDN then CSS , A ∈ PSDK . Thus, not only is the recovered A an unbiased
estimator for A∗M , but also it is now doubly non-negative as A∗M ∈ DNNK after the rectification.7

4 Experimental Results

Our Rectified Anchor Words algorithm with alternating projection fixes many problems in the base-
line Anchor Words algorithm [6] while matching the performance of Gibbs sampling [11] and main-
taining spectral inference’s determinism and independence from corpus size. We evaluate direct
measurement of matrix quality as well as indicators of topic utility. We use two text datasets:
NIPS full papers and New York Times news articles.8 We eliminate a minimal list of 347 En-
glish stop words and prune rare words based on tf-idf scores and remove documents with fewer
than five tokens after vocabulary curation. We also prepare two non-textual item-selection datasets:
users’ movie reviews from the Movielens 10M Dataset,9 and music playlists from the complete
Yes.com dataset.10 We perform similar vocabulary curation and document tailoring, with the ex-
ception of frequent stop-object elimination. Playlists often contain the same songs multiple times,
but users are unlikely to review the same movies more than once, so we augment the movie dataset
so that each review contains 2 × (stars) number of movies based on the half-scaled rating in-
formation that varies from 0.5 stars to 5 stars. Statistics of our datasets are shown in Table 2.

Table 2: Statistics of four datasets.
Dataset M N Avg. Len
NIPS 1,348 5k 380.5

NYTimes 269,325 15k 204.9
Movies 63,041 10k 142.8
Songs 14,653 10k 119.2

We run DC 30 times for each experiment, randomly
permuting the order of objects and using the median
results to minimize the effect of different orderings.
We also run 150 iterations of AP alternating PSDNK ,
NORN , and NNN in turn. For probabilistic Gibbs
sampling, we use the Mallet with the standard option
doing 1,000 iterations. All metrics are evaluated against

the original C, not against the rectified C ′, whereas we use B and A inferred from the rectified C ′.
7We later realized that essentially same approach was previously tried in [5], but it was not able to generate

a valid topic-topic matrix as shown in the middle panel of Figure 3.
8https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
9http://grouplens.org/datasets/movielens

10http://www.cs.cornell.edu/˜shuochen/lme
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Qualitative results. Although [6] report comparable results to probabilistic algorithms for LDA,
the algorithm fails under many circumstances. The algorithm prefers rare and unusual anchor words
that form a poor basis, so topic clusters consist of the same high-frequency terms repeatedly, as
shown in the upper third of Table 3. In contrast, our algorithm with AP rectification success-
fully learns themes similar to the probabilistic algorithm. One can also verify that cluster inter-
actions given in the third panel of Figure 3 explain how the five topics correlate with each other.

Table 3: Each line is a topic from NIPS (K = 5). Previous work
simply repeats the most frequent words in the corpus five times.

Arora et al. 2013 (Baseline)
neuron layer hidden recognition signal cell noise
neuron layer hidden cell signal representation noise
neuron layer cell hidden signal noise dynamic
neuron layer cell hidden control signal noise
neuron layer hidden cell signal recognition noise
This paper (AP)
neuron circuit cell synaptic signal layer activity
control action dynamic optimal policy controller reinforcement
recognition layer hidden word speech image net
cell field visual direction image motion object orientation
gaussian noise hidden approximation matrix bound examples
Probabilistic LDA (Gibbs)
neuron cell visual signal response field activity
control action policy optimal reinforcement dynamic robot
recognition image object feature word speech features
hidden net layer dynamic neuron recurrent noise
gaussian approximation matrix bound component variables

Similar to [12], we visualize the
five anchor words in the co-
occurrence space after 2D PCA
of C. Each panel in Figure 1
shows a 2D embedding of the
NIPS vocabulary as blue dots and
five selected anchor words in red.
The first plot shows standard an-
chor words and the original co-
occurrence space. The second plot
shows anchor words selected from
the rectified space overlaid on the
original co-occurrence space. The
third plot shows the same anchor
words as the second plot overlaid
on the AP-rectified space. The rec-
tified anchor words provide better
coverage on both spaces, explain-
ing why we are able to achieve rea-
sonable topics even with K = 5.

Rectification also produces better clusters in the non-textual movie dataset. Each cluster is notably
more genre-coherent and year-coherent than the clusters from the original algorithm. WhenK = 15,
for example, we verify a cluster of Walt Disney 2D Animations mostly from the 1990s and a cluster
of Fantasy movies represented by Lord of the Rings films, similar to clusters found by probabilistic
Gibbs sampling. The Baseline algorithm [6] repeats Pulp Fiction and Silence of the Lambs 15 times.

Quantitative results. We measure the intrinsic quality of inference and summarization with re-
spect to the JSMF objectives as well as the extrinsic quality of resulting topics. Lines correspond to
four methods: ◦ Baseline for the algorithm in the previous work [6] without any rectification,4 DC
for Diagonal Completion, � AP for Alternating Projection, and � Gibbs for Gibbs sampling.

Anchor objects should form a good basis for the remaining objects. We measure Recovery error(
1
N

∑N
i ‖Ci −

∑K
k p(Z1 = k|X1 = i)CSk

‖2
)

with respect to the original C matrix, not the
rectified matrix. AP reduces error in almost all cases and is more effective than DC. Although
we expect error to decrease as we increase the number of clusters K, reducing recovery error for
a fixed K by choosing better anchors is extremely difficult: no other subset selection algorithm
[13] decreased error by more than 0.001. A good matrix factorization should have small element-
wise Approximation error

(
‖C − BABT ‖F

)
. DC and AP preserve more of the information in

the original matrix C than the Baseline method, especially when K is small.11 We expect non-
trivial interactions between clusters, even when we do not explicitly model them as in [14]. Greater
diagonal Dominancy

(
1
K

∑K
k p(Z2 = k|Z1 = k)

)
indicates lower correlation between clusters.12

AP and Gibbs results are similar. We do not report held-out probability because we find that relative
results are determined by user-defined smoothing parameters [12, 24].

Specificity
(

1
K

∑K
k KL (p(X|Z = k)‖p(X))

)
measures how much each cluster is distinct from

the corpus distribution. When anchors produce a poor basis, the conditional distribution of clus-

11In the NYTimes corpus, 10−2 is a large error: each element is around 10−9 due to the number of normal-
ized entries.

12Dominancy in Songs corpus lacks any Baseline results at K > 10 because dominancy is undefined if an
algorithm picks a song that occurs at most once in each playlist as a basis object. In this case, the original
construction of CSS , and hence of A, has a zero diagonal element, making dominancy NaN.
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Figure 4: Experimental results on real dataset. The x-axis indicates logK where K varies by 5 up to 25 topics
and by 25 up to 100 or 150 topics. Whereas the Baseline algorithm largely fails with smallK and does not infer
quality B and A even with large K, Alternating Projection (AP) not only finds better basis vectors (Recovery),
but also shows stable and comparable behaviors to probabilistic inference (Gibbs) in every metric.

ters given objects becomes uniform, making p(X|Z) similar to p(X). Inter-topic Dissimilarity
counts the average number of objects in each cluster that do not occur in any other cluster’s top
20 objects. Our experiments validate that AP and Gibbs yield comparably specific and distinct
topics, while Baseline and DC simply repeat the corpus distribution as in Table 3. Coherence(

1
K

∑K
k

∑∈Topk
x1 6=x2

log D2(x1,x2)+ε
D1(x2)

)
penalizes topics that assign high probability (rank > 20) to

words that do not occur together frequently. AP produces results close to Gibbs sampling, and
far from the Baseline and DC. While this metric correlates with human evaluation of clusters [15]
“worse” coherence can actually be better because the metric does not penalize repetition [12].

In semi-synthetic experiments [6] AP matches Gibbs sampling and outperforms the Baseline, but
the discrepancies in topic quality metrics are smaller than in the real experiments (see Appendix).
We speculate that semi-synthetic data is more “well-behaved” than real data, explaining why issues
were not recognized previously.

5 Analysis of Algorithm

Why does AP work? Before rectification, diagonals of the empirical C matrix may be far from
correct. Bursty objects yield diagonal entries that are too large; extremely rare objects that occur
at most once per document yield zero diagonals. Rare objects are problematic in general: the cor-
responding rows in the C matrix are sparse and noisy, and these rows are likely to be selected by
the pivoted QR. Because rare objects are likely to be anchors, the matrix CSS is likely to be highly
diagonally dominant, and provides an uninformative picture of topic correlations. These problems
are exacerbated when K is small relative to the effective rank of C, so that an early choice of a poor
anchor precludes a better choice later on; and when the number of documents M is small, in which
case the empirical C is relatively sparse and is strongly affected by noise. To mitigate this issue,
[24] run exhaustive grid search to find document frequency cutoffs to get informative anchors. As
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model performance is inconsistent for different cutoffs and search requires cross-validation for each
case, it is nearly impossible to find good heuristics for each dataset and number of topics.

Fortunately, a low-rank PSD matrix cannot have too many diagonally-dominant rows, since this vi-
olates the low rank property. Nor can it have diagonal entries that are small relative to off-diagonals,
since this violates positive semi-definiteness. Because the anchor word assumption implies that
non-negative rank and ordinary rank are the same, the AP algorithm ideally does not remove the
information we wish to learn; rather, 1) the low-rank projection in AP suppresses the influence of
small numbers of noisy rows associated with rare words which may not be well correlated with the
others, and 2) the PSD projection in AP recovers missing information in diagonals. (As illustrated
in the Dominancy panel of the Songs corpus in Figure 4, AP shows valid dominancies even after
K > 10 in contrast to the Baseline algorithm.)

Why does AP converge? AP enjoys local linear convergence [10] if 1) the initial C is near the
convergence point C ′, 2) PSDNK is super-regular at C ′, and 3) strong regularity holds at C ′. For
the first condition, recall that we rectifiedC ′ by pushingC towardC∗, which is the ideal convergence
point inside the intersection. Since C → C∗ as shown in (5), C is close to C ′ as desired.The prox-
regular sets13 are subsets of super-regular sets, so prox-regularity of PSDNK at C ′ is sufficient for
the second condition. For permutation invariantM ⊂ RN , the spectral set of symmetric matrices
is defined as λ−1(M) = {X ∈ SN : (λ1(X), . . . , λN (X)) ∈ M}, and λ−1(M) is prox-regular
if and only ifM is prox-regular [16, Th. 2.4]. LetM be {x ∈ R+

n : |supp(x)| = K}. Since each
element inM has exactly K positive components and all others are zero, λ−1(M) = PSDNK . By
the definition ofM and K < N , PM is locally unique almost everywhere, satisfying the second
condition almost surely. (As the intersection of the convex set PSDN and the smooth manifold of
rank K matrices, PSDNK is a smooth manifold almost everywhere.)

Checking the third condition a priori is challenging, but we expect noise in the empirical C to
prevent an irregular solution, following the argument of Numerical Example 9 in [10]. We expect
AP to converge locally linearly and we can verify local convergence of AP in practice. Empirically,
the ratio of average distances between two iterations are always ≤ 0.9794 on the NYTimes dataset
(see the Appendix), and other datasets were similar. Note again that our rectified C ′ is a result of
pushing the empirical C toward the ideal C∗. Because approximation factors of [6] are all computed
based on how far C and its co-occurrence shape could be distant from C∗’s, all provable guarantees
of [6] hold better with our rectified C ′.

6 Related and Future Work

JSMF is a specific structure-preserving Non-negative Matrix Factorization (NMF) performing spec-
tral inference. [17, 18] exploit a similar separable structure for NMF problmes. To tackle hyperspec-
tral unmixing problems, [19, 20] assume pure pixels, a separability-equivalent in computer vision.
In more general NMF without such structures, RESCAL [21] studies tensorial extension of similar
factorization and SymNMF [22] infers BBT rather than BABT . For topic modeling, [23] performs
spectral inference on third moment tensor assuming topics are uncorrelated.

As the core of our algorithm is to rectify the input co-occurrence matrix, it can be combined with
several recent developments. [24] proposes two regularization methods for recovering better B.
[12] nonlinearly projects co-occurrence to low-dimensional space via t-SNE and achieves better
anchors by finding the exact anchors in that space. [25] performs multiple random projections to
low-dimensional spaces and recovers approximate anchors efficiently by divide-and-conquer strat-
egy. In addition, our work also opens several promising research directions. How exactly do anchors
found in the rectified C ′ form better bases than ones found in the original space C? Since now the
topic-topic matrix A is again doubly non-negative and joint-stochastic, can we learn super-topics in
a multi-layered hierarchical model by recursively applying JSMF to topic-topic co-occurrence A?
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