Supplementary Material

A Proofs of Structural Results on Gaussian Complexities

Our discussion on complexity bound is based on the following comparison result of Gaussian pro-
cesses due to [1]].

Lemma A.1 (E.g., Theorem 1 in [2]). Let {Xy : § € ©} and {Yo : 0 € O} be two mean-zero
separable Gaussian processes indexed by the same set © and suppose that
E[(Xo — X5)°] <E[(Do —Vp)’], V6,0 € 0. (A1)

Then,

E[sup Xq] < E[sup Q).
0c6 6o

Proof of Lemmald] Define two mean-zero separable Gaussian processes indexed by the finite di-
mensional Euclidean space {(h(z1),...,h(zy)) : h = (h1,...,h.) € H} (for simplicity, we use
here the index h to denote (h(x1),...,h(z,)))

Xp = Zgi max{hy(z;), ha(x;), ..., he(z;)},

Dn =Y > gi-vnihj(x:),  VheH.
i=1 j=1

For any h = (hq,...,h.),h = (hy,...,h.) € H, the independence of the g; and the equalities
Eg? = 1 imply that

n

E[(X, — X3)%] = Z [ max{hy(z;),. .., he(z;)} — max{hy(z;),. .., ﬁc(xi)}]Q

i=1

(A.2)
E[(Dn ~ V3)%] ZZm 2i) = hy(a)[.
i=1 j=1
Forany a = (ay,...,a.),b = (b1,...,b.) € RE, it can be directly checked that
| max{a,...,a.} — max{by,...,b.}| < max{|a; — bi|,...,|ac — bc|} < Z la; — bi|. (A.3)

=1

Applying the above inequality with @ = (hy(z;),. .., he(z5)),b = (hi(x;),... he(xi)),i =
1,...,n, yields directly the following bounds relating the increments of the two Gaussian processes

Xn, Dn:

E[(%, — %3)%] B Y [max{hu (@), ..., he(@i)} — max{fi (@), ..., he(x)}]?
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That is, the condition (A.T) holds and therefore Lemma [A.T| can be applied here to yield the stated
result. -



The following structural lemma regarding the Gaussian complexity of simplistic multi-class hypoth-
esis spaces (not involving any argmax operator) will be used further below in the proof of Theorem

Lemma A.2. Let H be a class of functions defined on X x Y with Y = {1,...,c}. Let
S ={(z1,y1),-- -, (Tn,Yn)} be a sequence of examples. Let g1, ..., gnc be independent N(0,1)
distributed random variables. Then the empirical Gaussian complexity of H can be controlled by:

65(H)S%Eg ZZQ] 1n+z )

h=(hy,..., h)€H71]1

Proof. Define two Gaussian processes indexed by [ :

X, = Zgzhyz(xz)> Q.)h = ZZQ(J 1) ”+Z z) Vh € H.
=1

=1 j=1

For any h, h € H, it is obvious that
n

E[(Xn — X3)%] = Y[y, (2:) = hy, (@)

%

IN

1
[(ha(zi) = ha(z0))® + - + (he(as) — he(@:))?]
1
=E[(Dn — D5)*].
Now the stated inequality follows directly from Lemma[A.T] O

=
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B Proof of Generalization Bounds for Multi-class Classification

B.1 Proof of Generalization Bound for General Multi-Class Classification (Theorem [3)

One of the main results of this paper is proved in this section. We first give a concentration inequality
attributed to [3]].

Lemma B.1 McDiarmid inequality [3]). Let Z1, ..., Z, be independent random variables taking
values in a set Z, and assume that f : Z"™ — R satisfies

_ sup |f(z1, yzn) = f(21, s 2h—1, Zhy Zht1s 0 5 20)| S (B.1)
sez
for 1 < k < mn. Then, for any 0 < 0 < 1, with probability at least 1 — 6 we have
c2log(1/é
f(Z1,.... 2,) <Ef(Z1,.... 20 \/Zk 16 10g(1/9),

Proof of Theorem[8l For any # > 0, introduce the following function bounding pp,(z,y) from
below:

po.n(x,y) = h(z,y) —max[h(z,y') — 01,—,] = min[h(z,y) — h(z,y’) + 01,—,].
y' ey y' ey

It can be checked that pg p,(z,y) = min(pn(x,y),d). Introduce two function classes derived from
PO,h: . .
Hp={pon(z,y) :he€ H},  LoHy={l(pon(z,y)):heH}
According to the definition of L-regular loss function and the relationship pg 5, < pp,, we have
R(h) =E[l,,(x,y) < 0] <E[l,, ,(x,v) < 0] <E[l(psn(X,Y))],
which, together with McDiarmid inequality [3]] and the symmetrization technique (e.g., Theorem
4.4 in [4]), yields the following inequality

1< N log 2
R(R) < =3 Upo.u(ws, i) +2Rs (£ Ho) + 3B, an(;’ VheH (B.2)

i=1




with probability at least 1 — 4.

For the fixed parameter 0 = ¢,, we observe that pg ,(z,y) = min(ps(z,y), ce). If pp(z,y) > co,
the definition of L-regular loss implies that

Upo.n(x,y)) = l(ce) = 0= Lpn(2,y)).
Otherwise, we have pg (x,y) = pn(z,y). Therefore, for any (x,y) we have {(pgn(z,y)) =
2(pn(z,y)), which, coupled with the Lipschitz property of ¢ and Eq. (B.2), yields the following
inequality with probability at least 1 — §:
R(h)<lzn:€( (zi,9:)) + 2LRs(Hy) + 3B 25 hen (B.3)
= Pr\Ti,Yi S (4 0 m . .

i=1

The Rademacher complexity of Efg satisfies the following inequality:

%S(ﬁ;) = 7E [ sSup Z Uz xu yz gleaj})((h(xiv y) - ely:yz))]

heH %
< 7E 5 + ]E |: h iY) — 91 =Yi
<- sggzaz i, i) ,éggZoz max(h(i, y) = 01y=y.)
1
< \/7055( )—l—fHEEq[ su Zglmax ha(z;) — 01y,=1, ..., he(zs) — 01y,=c) |,
nV 2 “l_n,.., h VeH i ' '

B4
where the last step follows from the relationship between Gaussian and Rademacher processes ex-
pressed in Eq. (2)). Furthermore, according to Lemmaf] the last term of the above inequality can be
addressed by

Egl sup Zgl max{hi(x;) — 01ly,=1,..., he(z;) — 01y,=c}]
h:(hlp. )EH’L 1
Lemma [
Eq ZZQ(J Dnti(hy(2:) = 01y, =)
h= )EH 1] f
= IEg sup ZZQ] 1)n+z gzzgj 1)n+191y,—]
h:(hl, h)EH’L 1j=1 =1 j5=1

=0

=Eg sup Z Zg G—1yntili (i)

h=(h1,...,hc)€H ; i=1j=1
With this inequality and using Lemma to tackle g(H ), we immediately derive the following
bound on Rs(Hp):

—~ V2T
mS(HG) < 7]Eg sup ZZQ(J 1)n+z )

n h=(h1,....he)E€H ;27 529

Plugging this Rademacher complexity bound back into Eq. (B.3), we obtain the stated result. [

B.2 Proof of Generalization Bound for Kernel-Based Multi-Class Classification and
MC-SVMs (Theorem 7))

To apply Theorem 5| we need to control the term sup,e g > ;g D51 9(j—1)ntilj(2i), which we
tackle by the following lemma due to [3].

Lemma B.2 (Corollary 4 in [3])). If f is 5-strongly convex w.r.t. || - || and f*(0) = O, then, for any

sequence v1, . . . , Uy and for any p we have
n

Z<7}i,ﬂ> SZ vf Ulz 1 Uz 262”“%”

i=1
where v1.; denotes the sum Zj:l vj



Proof of Theorem[7l For the hypothesis space H and any A > 0, applying Lemma [B.2] with y =
(W1,...,we) and v; = AN(gid(24), Gn+id(Xi), - - - Gle—1)ntiP(xi)), We have

A sup ZZQ(] 1)n+1 xz = Sup ZZQ(] 1)n+i ij)\qb(xz»

hveH =5 5 hWGHZ =t

n

= s D (Wi We)y (AGi(20)s A i (), - Aoy i ()
=1

< sup f(wi, ..o, Wo) + Y (T (0ro1),vi) + 2% D 1Gid @), gntid (@), - - Gem1ynsi(@:)) |2
i=1 i=1

hwecH

Taking expectation on both sides w.r.t. the Gaussian variables ¢1,...,0gne, the term
S (Vf*(v1:-1), v;) vanishes, and therefore we obtain

(& A )\ n
Eg sup ZZQ; Dntihy (@) < X""ﬁZE9||(gi¢('ri)agn+i¢(xi)v---vg(cfl)n+i¢($i))”z'
=1

LweHl 1j5=1

: _ 2BA . .
Choosing A = \/E?:1 o [ (7 oy N 7y N TS )1 the above inequality translates to

20
g sup Z Zg (G— 1)n+z ’L) < ? ZEQ||(91¢(mz)ugn+z¢(xz)7 R 7g(c—1)n+i¢(xi))”z-
i=1

hweH (=5 i

Putting the above complexity bound into Theorem[5] we obtain the stated result. O

B.3 Proof of Generalization Bound for /,-norm Multi-class SVMs (Corollary

The following simple lemma controls the p-th moment of a N (0, 1) distributed random variable. We
give the proof here for completeness.

Lemma B.3. Let g be N(0,1) distributed. For any p > 0, the p-th moment of g can be bounded by
[Elgl]> < (2p)3*

Proof. Let¥n € Ny : I'(n) = (n — 1)! be the Gamma function. The p-th moment of a N (0, 1)
distributed random variable can be exactly expressed via Gamma function [6]:

25 p+1 25 p+1
E|g|P = =T < r([—
g" = 2T (7)< AP
25 p—1 2% p—1_rp-17,1
=—= N < =Vor[———]"7 1"z
N VT 2
< (2p)%*

where in the above deduction we have used Stirling’s approximation [[7]:
n! < v otz e nt1/(12n)

O

Proof of Corollary[8] Let g1,...,gn. be independent N (0, 1) distributed random variables. De-

note by 7, = [E|g1|*]* the sth moment of a N(0,1) distributed random variable. Let ¢ be any

number satisfying p < ¢ < 2. Introduce the function folw) = %||w||§q Any bV € H, 5 satisfies
the inequality

1, 1,

falw) = lIwl3, < 3A%

Since f,(w) is 1/¢*-strongly convex w.r.t. the norm || - ||2,4, and the dual norm of || - ||2 4 is || - ||2.
(Cf. section 4.2 in [§]]), the summation of the squared dual norm in Theorem can be rewritten as




follows:
n n c v 2
> Egll(gid (@), - - gle—1ynrib@)3 - = Z (D 19G-1msid(@)I5 ]
i=1 =1

Z Z\9<j71>n+i\q*]%k(xi,xi)

n
2

1t aF
s}'mme ry IE Z ‘g]‘q Z (.’L'“.'L'l)

j=1 i=1
Jensen 2 5
< et g k(i x;).
=1

From which Theorem [7]immediately implies the following bounds, with probability at least 1 — ¢
and for any h™ € Hg 4:

4LAc 17 | mg* log 2
§ : w — =D ., xi) + 3B 2.
pnw (zis i) 9 £ k(xi, ;) + 3By on

From the trivial inequality ||w||2
for any A% € Hj, p, we have

2p > ||W]|2,4, we immediately conclude Hy, o C H, o. Therefore,

1

- ALACY T 7. log 2
72 ph“’ xuyz + inf e e g(s-

2n

Tq* -
7 Z k?(l‘l,l‘l) + 3By

i=1

3

p<g<2 n

It can be directly checked that the function t — /¢c'/? is decreasing along the interval (0,21logc)
and increasing along the interval (2log ¢, c0). Therefore, the above generalization bound satisfies
the inequality

n

RO™) < 3"t (i, 0)) + 380

i=1

log %

+

2n

V2elogcmaiog e, ifp* > 2loge,

1 .
CP¥ TpxA/P*, otherwise.

Applying Lemma [B.3|to bound the moments of Gaussian variables, the stated result follows imme-
diately. O

C Proofs on the Dual Problems

C.1 Equivalent Representation of /,-norm Multi-class Classification

The equivalence between Problem (P) and Eq. (8 follows directly from the following lemma due to
[91].
Lemma C.1 ([9])). Leta; > 0,7 € Nyand 1 < r < oo. Then

1+2
. a; —
min E == E a/ ™
: i :

mni20,3" e, 1 <1 ey

and the minimum is attained at

ni =

3=

(ZkENd T+1 )



Proof of Proposition[I6] Fixing w, the sub-optimization of Eq. (8) w.r.t. B is

[[w; 113
m n
Z 25,
s.t. ||5H;5 <Lp=p2-p) "5 >0
The stated result now follows directly by applying Lemma C.1|with r = p and o; = ||w;||3. O
C.2 Derivation of the Completely Dualized Problem (Problem [11)
Derivation of Problem[I1l Problem (P) translates to the following equivalent problem
) 1 c % n
min o[ Y wll5] " + €t
j=1 i=1
s.it.t; < <Wy77¢(xl)> - <wya ¢(x1)>7 Yy 7£ yivi = ]-7 ey n

The Lagrangian of the above convex optimization problem is

_ % [0 Iwslg] ™+ 0Dttt + 303 it + (s 6(1)) — {wy, 6(2))),
j=1 i=1

=1 j#y;

with Lagrangian variables 0 < & € R™*(¢~1)_ For the last term of the Lagrangian, we have the
following identity:

ZZa” — Wy, () ZZQM (W, d(x;)) ZZa (Wy,, o(z:))

(C.1)

i=1 j#y; i=1 jF#y; i= 1]7$y1
(&
LTI SR AESIES D Dl SLMIITEN Wrers
Jj=1 iy #J J=1luyi=j j#5
(&
=2 (Wi D Gudlw) = 3, D age(n)
Jj=1 LY #J LYi=] j#£j

With this identity, the Lagrangian translates to

[anjnp] +ij,za”¢xz S S dso()

iy £ VYi=] j#£j

n 1 .
C’Z[f(ti) +5 Z a;5ti]. (C3)
=1 J#Yi
According to the definition of Fenchel conjugate function, it holds that

2

e[S S X o - 5 g

J=1 Jj=1 By £] BYi=] j#£j
_ C;sgp[—ﬂ(ti) — j;yi é&iﬂ'ti]
- S e X Sage) L)
Ly FJ GYi=] j£j
S TR Yy
_Cizzlé ( C#yi%])
=51 ( X awotwn - X Fagewa) [ . —cze* =3 aw),
iy #£j LYi=] j#5 J#yi

(C4)



where in the last step of the above deduction we have used the identity: (1| -[[>)" = 1||-|| and the
fact that the dual norm of | - ||2,, is || - [|2,_2_. Consequently, the dual problem becomes
b 2(p—1) n 1
sup —‘*[E:H > ayole) — Y Sage@)|iT] D IACED I}
GeRnx (=D PR iyi=] joAj i=1 i

s.t.a > 0.

Introducing av € R™*€ via the substitution:

Qi = i - 1 ‘7 7y (C.5)
Vi G5 1T =i

we have
S aio(@) = Y Y agda) =— Y aie(z) - Y ),  (C6)
iy #J iyi=J j+£j iy #j iy =j
from which the stated dual problem follows directly. O

C.3 Proof of the Representer Theorem (Theorem [12)

Let Hy,..., H.be cHilbert spaces and p > 1. Define the function g, (v1,...,v.) : Hi x---xH, —
R by

1
gp(V1,. .., 0c) = 5”(111, ... ,vc)||§7p, p>1.
Lemma C.2. The gradient of gy, is

dg (vl —2
p’—’ le?fll sl

Proof. By the chain rule, we have
9gp(v1, - .-, ve 7—13 vj,v]>§
S T Z oy 157~ St

Vi,V p_
Zn #ﬁm,w !
J

2_1 _92
[ZHv;Hg]p [0 115 0.
j=1

O

Proof of Representer Theorem (Theorem[12). In our derivation of the dual problem (see Eq.
(C4)), the variable w should meet the optimality in the sense that

1 C 2 c n
w = argmgx—i[zl ;1817 + Zl<vj,§;aij¢<x
J= J= =

Since (7 f)~! = 7 f* for any convex function f, and the Fenchel-conjugate of g,, is g,+, we obtain
the following representation of w:

w =Yg, (Zaﬂ(ﬁ Zi), Zaw¢ x;) )
= Vgp (Zall¢ xl . Zazc¢ 1'7. )
Z | Zazj¢ Li ”2 (H Z ai19( Iz ’p 72 Zaz1¢ 7- .. || Zazcﬁﬁ(x?)HZ*iQ[Z azc¢(xz)]>
= i=1 i=1



That is,

= [Z I Z aijé(l’i)ng*] O | Z aio(x;) ||§*_2 [ Z ()]

C.4 Derivation of Partially Dualized Problem (Problem [14)

Derivation of Problem[Id The Lagrangian of the problem (8) w.r.t. w is
[w H - - -
Z ﬂ 2RO M)+ Y Y iyt (wy b)) — (W, b)),
i=1 i=1 j#y:
with Lagranglan variables 0 < & € Rnx(e=1),

According to the identity (C.2)), the Lagrangian translates to
[[w; H -
Z 25, 2w D aud(a) = 3 ) age(e)
i=1

Y #J GYi=] j#j5
CZ )+ = Z agti]. (C.7)
J#yL

According to the definition of Fenchel conjugate function, it holds that
c

};{{EZ—Z [Bljbvlvl})[ ||Wj||§—<Wjaﬁj( D aydlw) — Y > e(x)) }

Y #J Lyi=j ];ﬁ]
- OZSHP[—K(%) - Z édijti]
=1 b i
rilrl 3
:—Z[g[gnﬂj( Do ayd(r) = > Y age() } } CZE* Z is)
j=1 " Gy A Gyi=j j£j J#yi
c 2 n

:%25]" S Giota) — > Y aselw) 2702£*(7é2dij),

Ly #] BYi=] j#j5 i=1 J#Yi

where in the last step of the above deduction we have used the identity: (1| -[|?)" = 1||-|| and the
fact that the dual norm of || - ||2 2 is itself. Consequently, the dual problem becomes

1 « 2 - 1
sup —2215j" Z ad(xi) Z Za” o(z4) 2—CZg*<_5Zdij),
iz

A~ nx(c—1) . . .
GeR Gy A iyi=j jo£j i=1 J#yi

s.t. a > 0.
Introducing o € R™*¢ as in Eq. (C.3) and noticing the identity (C.0), the above dual problem

becomes
sup — Z,B]HZO(”QZ)JC@ ||2 OZE* Ozzy,

a€gRnxe

(C.8)
s.t.Zaij =0, Vi=1,2...,n,

a;; <0, jFy,Vi=1,....,n
Note that in the above derivation of the dual problem, the variable w should meet the optimality in

the sense that
= argmax—f Z |vJH2 + Zﬁ] 'U],ZOéUd) xz

The representer theorem stated in Problem.follows dlrectly from this optimization condition. [



D Note on Used Features for Caltech256 and UCSD birds

For the purpose of having features, we took the features from a fc6 layer of the BVLC reference
caffenet [10] computed for all images from the UCSD birds dataset [11] and Caltech256 [12]. Note
that we neither used fc7 or fc8 layers, nor did we perform finetuning. Images were warped [13] so
that they fitted into the quadratic reception field. As the goal was not on maximizing performance
but comparing learning machines we resorted to computing one feature per image at training and test
time without using the large number of region proposals which yield state of the art in fine-grained
classification tasks [[14], or mirroring and detection-like approaches like the 500 windows per image
as in [[15]).

E Execution Time Experiments

This section report the training time of the classical CS [[16] and the proposed ¢,-norm MC-SVM
on the benchmark datasets. We repeat the experiments 10 times and report the average as well as
standard deviation (in seconds) in Table [E.T} For our method, the result is for the single p selected
via cross-validation.

Method / Dataset Sector News 20 Birds 15 Birds 50
£p-norm MC-SVM [4914 4 64.7|3894 £+ 71.1{912.6 £ 22.1{518.4 + 34.8
Crammer & Singer|3442 + 91.8(2227 +43.7|701.7 £ 50.6|314.1 £ 17.1

Table E.1: Training time for the classical CS and the proposed £,-norm MC-SVM on the benchmark
datasets.

From Table [E.I] we see that our method needs longer training time than CS, but the increase is not
that large and 1s well compensated by its improvement on accuracies.
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