
A Generalization Error Analysis

To present our results, we first introduce some notation: for any embedding matrix A and dataset D,
let

L̂(A;D) :=
1

n(n− 1)

n∑
i=1

∑
j 6=i

`(A; (xi,yi), (xj ,yj))

L̃(A;D) :=
1

n

n∑
i=1

E
(x,y)∼P

`(A; (x,y), (xi,yi))

L(A) := E
(x,y),(x̃,ỹ)∼P

`(A; (x,y), (x̃, ỹ))

We assume, without loss of generality that the data points are confined to a unit ball i.e. ‖x‖2 ≤ 1

for all x ∈ X . Also let Q = C ·
(
L̄(r + L̄)

)
where L̄ is the average number of labels active in a data

point, r = L̄
λ , λ and µ are the regularization constants used in (3), and C is a universal constant.

Theorem 1. Assume that all data points are confined to a ball of radius R i.e ‖x‖2 ≤ R for all
x ∈ X . Then with probability at least 1 − δ over the sampling of the data set D, the solution Â to
the optimization problem (3) satisfies,

L(Â) ≤ inf
A∗∈A

8

{
L(A∗) + C

(
L̄2 +

(
r2 + ‖A∗‖2F

)
R4
)√ 1

n
log

1

δ

}
,

where r = L̄
λ , and C and C ′ are universal constants.

Proof. Our proof will proceed in the following steps. Let A∗ be the population minimizer of the
objective in the statement of the theorem.

1. Step 1 (Capacity bound): we will show that for some r, we have ‖Â‖F ≤ r

2. Step 2 (Uniform convergence): we will show that w.h.p., sup A∈A
‖A‖≤r

{
L(A)− L̂(A;D)

}
≤

O
(√

1
n log 1

δ

)
3. Step 3 (Point convergence): we will show that w.h.p., L̂(A∗;D)− L(A∗) ≤
O
(√

1
n log 1

δ

)
Having these results will allow us to prove the theorem in the following manner

L(Â) ≤ L̂(Â,D) + sup
A∈A
‖A‖≤r

{
L̂(A;D)− L(A)

}
≤ L̂(A∗,D) +O

(√
1

n
log

1

δ

)
≤ L(A∗) +O

(√
1

n
log

1

δ

)
,

where the second step follows from the fact that Â is the empirical risk minimizer.

We will now prove these individual steps as separate lemmata, where we will also reveal the exact
constants in these results.

Lemma 2 (Capacity bound). For the regularization parameters chosen for the loss function `(·),
the following holds for the minimizer Â of (3)

‖Â‖F ≤ Tr(A) ≤ 1

λ
L̄.

Proof. Since, Â minimizes (3), we have:

‖A‖F ≤ Tr(A) ≤ 1

λ

1

n(n− 1)

∑
ij

(〈yi,yj〉2 ≤
1

λ
max
ij
〈yi,yj〉 .
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The above result shows that we can, for future analysis, restrict our hypothesis space to

Ã(r) :=
{
A ∈ A : ‖A‖2F ≤ r

2
}
,

where we set r = L̄
λ . This will be used to prove the following result.

Lemma 3 (Uniform convergence). With probability at least 1− δ over the choice of the data set D,
we have

L̂(Â;D)− L(Â) ≤ 6
(
rR2 + L̄

)2√ 1

2n
log

1

δ

Proof. For notional simplicity, we will denote a labeled sample as z = (x,y). Given any two points
z, z′ ∈ Z = X × Y and any A ∈ Ã(r), we will then write

`(A; z, z′) = g(〈y,y′〉)
(
〈y,y′〉 − xTAx′

)2
+ λTr(A),

so that, for the training set D = {z1, . . . , zn}, we have

L̂(A;D) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

`(A; zi, zj)

as well as

L(A) = E
z,z′∼P

`(A; z, z′).

Note that we ignore the ‖V x‖1 term in (3) completely because it is a regularization term and it won’t
increase the excess risk.

Suppose we draw a fresh data set D̃ = {z̃1, . . . , z̃n} ∼ P , then we have, by linearity of expectation,

E
D̃∼P
L̂(Â; D̃) =

1

n(n− 1)

n∑
i=1

∑
j 6=i

E
D̃∼P

`(A; z̃i, z̃j) = L(Â).

Now notice that for any A ∈ Ã, suppose we perturb the data set D at the ith location to get a
perturbed data set Di, then the following holds∣∣∣L̂(A;D)− L̂(A;Di)

∣∣∣ ≤ 4(L̄2 + r2R4)

n
.

which allows us to bound the excess risk as follows

L(Â)− L̂(Â;D) = E
D̃∼P
L̂(Â; D̃)− L̂(Â;D) ≤ sup

A∈Ã(r)

{
E
D̃∼P
L̂(A; D̃)− L̂(A;D)

}

≤ E
D∼P

supA∈Ã(r)

{
E
D̃∼P
L̂(A; D̃)− L̂(A;D)

}
+ 4(L̄2 + r2R4)

√
1

2n
log

1

δ

≤ E
D,D̃∼P

supA∈Ã(r)

{
L̂(A; D̃)− L̂(A;D)

}
︸ ︷︷ ︸

Qn(Ã(r))

+4(L̄2 + r2R4)

√
1

2n
log

1

δ
,

where the third step follows from an application of McDiarmid’s inequality and the last step fol-
lows from Jensen’s inequality. We now bound the quantity Qn(Ã(r)) below. Let ¯̀(A, z, z′) :=
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`(A, z, z′)− λ · Tr(A). Then we have

Qn(Ã(r)) = E
D,D̃∼P

supA∈Ã(r)

{
L̂(A; D̃)− L̂(A;D)

}
=

1

n(n− 1)
E

zi,z̃i∼P

u

v sup
A∈Ã(r)


n∑
i=1

∑
j 6=i

`(A; z̃i, z̃j)− `(A; zi, zj)


}

~

=
1

n(n− 1)
E

zi,z̃i∼P

u

v sup
A∈Ã(r)


n∑
i=1

∑
j 6=i

¯̀(A; z̃i, z̃j)− ¯̀(A; zi, zj)


}

~

≤ 2

n
E

zi,z̃i

u

v sup
A∈Ã(r)


n/2∑
i=1

¯̀(A; z̃i, z̃n/2+i)− ¯̀(A; zi, zn/2+i)


}

~

≤ 2 · 2

n
E
zi,εi

u

v sup
A∈Ã(r)


n/2∑
i=1

εi ¯̀(A; zi, zn/2+i)


}

~

︸ ︷︷ ︸
Rn(`◦Ã(r))

= 2 · Rn/2(` ◦ Ã(r))

where the last step uses a standard symmetrization argument with the introduction of the
Rademacher variables εi ∼ −1,+1. The second step presents a stumbling block in the analysis
since the interaction between the pairs of the points means that traditional symmetrization can no
longer done. Previous works analyzing such “pairwise” loss functions face similar problems [22].
Consequently, this step uses a powerful alternate representation for U-statistics to simplify the ex-
pression. This technique is attributed to Serfling. This, along with the Hoeffding decomposition,
are two of the most powerful techniques to deal with “coupled” random variables as we have in this
situation.

Theorem 4. For any set of real valued functions qτ : X ×X → R indexed by τ ∈ T , if X1, . . . , Xn

are i.i.d. random variables then we have

E

u

vsup
τ∈T

2

n(n− 1)

∑
1≤i<j≤n

qτ (Xi, Xj)

}

~ ≤ E

u

vsup
τ∈T

2

n

n/2∑
i=1

qτ (Xi, Xn/2+i)

}

~

Applying this decoupling result to the random variables Xi = (z̃i, zi), the index set Ã(r) and
functions qA(Xi, Xj) = `(A; z̃i, z̃j)− `(A; zi, zj) = ¯̀(A; z̃i, z̃j)− ¯̀(A; zi, zj) gives us the second
step. We now concentrate on bounding the resulting Rademacher average term Rn(` ◦ Ã(r)). We
have

Rn/2(` ◦ Ã(r)) =
2

n
E
zi,εi

u

v sup
A∈Ã(r)


n/2∑
i=1

εi ¯̀(A; zi, zn/2+i)


}

~

=
2

n
E
zi,εi

u

v sup
A∈Ã(r)


n/2∑
i=1

εig(
〈
yi,yn/2+i

〉
)
(〈
yi,yn/2+i

〉
− xTi Axn/2+i

)2
}

~ .
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That is,

Rn/2(` ◦ Ã(r)) ≤ 2

n
E
zi,εi

u

v
n/2∑
i=1

εig(
〈
yi,yn/2+i

〉
)
〈
yi,yn/2+i

〉2}~
︸ ︷︷ ︸

(A)

+
2

n
E
zi,εi

u

v sup
A∈Ã(r)


n/2∑
i=1

εig(
〈
yi,yn/2+i

〉
)
(
xTi Axn/2+i

)2
}

~

︸ ︷︷ ︸
Bn(`◦Ã(r))

+
4

n
E
zi,εi

u

v sup
A∈Ã(r)


n/2∑
i=1

εig(
〈
yi,yn/2+i

〉
)
〈
yi,yn/2+i

〉 (
xTi Axn/2+i

)
}

~

︸ ︷︷ ︸
Cn(`◦Ã(r))

Now since the random variables εi are zero mean and independent of zi, we have E
εi|zi,zn/2+i

εi = 0

which we can use to show that E
εi|zi,zn/2+i

r
εig(

〈
yi,yn/2+i

〉
)
〈
yi,yn/2+i

〉2z
= 0 which gives us,

by linearity of expectation, (A) = 0. To bound the next two terms we use the following standard
contraction inequality:

Theorem 5. Let H be a set of bounded real valued functions from some domain X and let
x1, . . . ,xn be arbitrary elements from X . Furthermore, let φi : R → R, i = 1, . . . , n be L-
Lipschitz functions such that φi(0) = 0 for all i. Then we have

E

t

sup
h∈H

1

n

n∑
i=1

εiφi(h(xi))

|

≤ LE

t

sup
h∈H

1

n

n∑
i=1

εih(xi)

|

.

Now define
φi(w) = g(

〈
yi,yn/2+i

〉
)w2

Clearly φi(0) = 0 and 0 ≤ g(
〈
yi,yn/2+i

〉
) ≤ 1. Moreover, in our case w = xTAx′ for some

A ∈ Ã(r) and ‖x‖ , ‖x′‖ ≤ R. Thus, the function φi(·) is rR2-Lipschitz. Note that here we exploit
the fact that the contraction inequality is actually proven for the empirical Rademacher averages due
to which we can take g(

〈
yi,yn/2+i

〉
) to be a constant dependent only on i. This allows us to bound

the term Bn(` ◦ Ã(r)) as follows

Bn(` ◦ Ã(r)) =
2

n
E
zi,εi

u

v sup
A∈Ã(r)


n/2∑
i=1

εig(
〈
yi,yn/2+i

〉
)
(
xTi Axn/2+i

)2
}

~

≤ rR2 · 2

n
E
zi,εi

u

v sup
A∈Ã(r)


n/2∑
i=1

εi
(
xTi Axn/2+i

)
}

~

︸ ︷︷ ︸
Rn/2(Ã(r))

≤ rR2 · Rn/2(Ã(r)).

Similarly, we can show that

Cn(` ◦ Ã(r)) =
4

n
E
zi,εi

u

v sup
A∈Ã(r)


n/2∑
i=1

εig(
〈
yi,yn/2+i

〉
)
〈
yi,yn/2+i

〉 (
xTi Axn/2+i

)
}

~

≤ 4L̄

n
E
zi,εi

u

v sup
A∈Ã(r)


n/2∑
i=1

εi
(
xTi Axn/2+i

)
}

~

≤ 2L̄ · Rn/2(Ã(r)).
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Thus, we have
Rn/2(` ◦ Ã(r)) ≤

(
rR2 + 2L̄

)
· Rn/2(Ã(r))

Now all that remains to be done is bound Rn(` ◦ Ã(r)). This can be done by invoking standard
bounds on Rademacher averages for regularized function classes. In particular, using the two stage
proof technique outlined in [22], we can show that

Rn/2(Ã(r)) ≤ rR2

√
2

n

Putting it all together gives us the following bound: with probability at least 1− δ, we have

L(Â)− L̂(Â;D) ≤ 2(rR2 + 2L̄)rR2

√
2

n
+ 4(L̄2 + r2R4)

√
1

2n
log

1

δ

as claimed

The final part shows pointwise convergence for the population risk minimizer.

Lemma 6 (Point convergence). With probability at least 1− δ over the choice of the data set D, we
have

L̂(A∗;D)− L(A∗) ≤ 4(L̄2 + ‖A∗‖2FR4)

√
1

2n
log

1

δ
,

where A∗ is the population minimizer of the objective in the theorem statement.

Proof. We note that, as before
E
D∼P
L̂(A∗,D) = L(A∗)

Let D be a realization of the sample and Di be a perturbed data set where the ith data point is
arbitrarily perturbed. Then we have∣∣∣L̂(A∗;D)− L̂(A∗;Di)

∣∣∣ ≤ 4
(
L̄2 + ‖A∗‖2FR4

)
n

.

Thus, an application of McDiarmid’s inequality shows us that with probability at least 1 − δ, we
have

L̂(A∗;D)− L(A∗) = L̂(A∗;D)− E
D∼P
L̂(A∗;D) ≤ 4

(
L̄2 + ‖A∗‖2FR4

)√ 1

2n
log

1

δ
,

which proves the claim.

Putting the three lemmata together as shown above concludes the proof of the theorem.

Although the above result ensures that the embedding provided by Â would preserve neighbors over
the population, in practice, we are more interested in preserving the neighbors of test points among
the training points, as they are used to predict the label vector. The following extension of our result
shows that Â indeed accomplishes this as well.
Theorem 7. Assume that all data points are confined to a ball of radius R i.e ‖x‖2 ≤ R for all
x ∈ X . Then with probability at least 1 − δ over the sampling of the data set D, the solution Â to
the optimization problem (3) ensures that,

L̃(Â;D) ≤ inf
A∗∈A

{
L̃(A∗;D) + C

(
L̄2 +

(
r2 + ‖A∗‖2F

)
R4
)√ 1

n
log

1

δ

}
,

where r = L̄
λ , and C is a universal constant.

Note that the loss function L̃(A;D) exactly captures the notion of how well an embedding matrix A
can preserve the neighbors of an unseen point among the training points.
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Proof. We first recall and rewrite the form of the loss function considered here. For any data set
D = {z1, . . . , zn}. For any A ∈ A and z ∈ Z, let ℘(A; z) := E

z′∼P
`(A; z, z′). This allows us to

write

L̃(A;D) :=
1

n

n∑
i=1

E
z∼P

`(A; z, zi) =
1

n

n∑
i=1

℘(A; zi)

Also note that for any fixed A, we have

E
D∼P
L̃(A;D) = L(A).

Now, given a perturbed data set Di, we have∣∣∣L̃(A;D)− L̃(A;Di)
∣∣∣ ≤ 4(L̄2 + r2R4)

n
,

as before. Since this problem does not have to take care of pairwise interactions between the data
points (since the “other” data point is being taken expectations over), using standard Rademacher
style analysis gives us, with probability at least 1− δ,

L̃(Â;D)− L(Â) ≤ 2
(
rR2 + 2L̄

)
rR2

√
2

n
+ 4(L̄2 + r2R4)

√
1

2n
log

1

δ

A similar analysis also gives us with the same confidence

L(A∗)− L̂(A∗;D) ≤ 4(L̄2 + ‖A∗‖2FR4)

√
1

2n
log

1

δ

However, an argument similar to that used in the proof of Theorem 1 shows us that

L(Â) ≤ L(A∗) + C
(
L̄2 +

(
r2 + ‖A∗‖2F

)
R4
)√ 1

n
log

1

δ

Combining the above inequalities yields the desired result.
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B Experiments

In this section we present detailed experimental results, as well as descriptions of evaluation metrics
that could not be included in the main text due to lack of space.

B.1 Evaluation Metrics

We used two metrics to evaluate algorithms in our experiments. Both have been widely adopted in
several XML and ranking tasks.

Precision @ k: this metric has been widely adopted as the metric of choice for evaluating XML
algorithms and is motivated by real world application scenarios such as tagging and recommendation
where only accuracy at the top of the ranked/recommendation list matters. Formally, the precision
at k for a predicted score vector ŷ ∈ RL is the fraction of correct positive predictions in the top k
scores of ŷ. We sort the labels according to the scores assigned to them by ŷ and then count the
number of positive predictions in the top k positions in this ranked list.

nDCG Evaluation Metric: Let Sn denote the symmetric group of the set of all permutations of
{1, 2, . . . , L}. Given a ground truth label vector y ∈ {0, 1}L, we can definte, for any permutation
σ ∈ SL, the Discounted Cumulative Gain (DCG) at k of σ as

DCG@k(σ,y) :=

k∑
l=1

yσ(l)

log(l + 1)

The normalized version of this metric simply divides this by the largest possible DCG@k value over
all permutations.

nDCG@k(σ,y) := Ik(y) ·
k∑
l=1

yσ(l)

log(l + 1)
,

where

Ik(y) :=

min(k,‖y‖0)∑
l=1

1

1 + l

−1

,

where ‖y‖0 simply counts the number of active labels in the ground truth vector y. Given this,
we can now define the nDCG@k loss for score vectors over labels as well. For any score vector
ŷ ∈ RL, let σŷ ∈ SL denote the corresponding permutation induced on the labels by sorting them
in descending order of the scores. Then we define

nDCG@k(ŷ,y) := nDCG@k(σŷ,y).

B.2 Supplementary Results

Table 2: Data set Statistics: n and m are the number of training and test points respectively, d and L
are the number of features and labels, respectively, and d̄ and L̄ are the average number of nonzero
features and positive labels in an instance, respectively.

Data set d L n m d̄ L̄

MediaMill 120 101 30993 12914 120.00 4.38
BibTeX 1836 159 4880 2515 68.74 2.40
Delicious 500 983 12920 3185 18.17 19.03
EURLex 5000 3993 15539 3809 236.69 5.31
Wiki10 101938 30938 14146 6616 673.45 18.64
DeliciousLarge 782585 205443 196606 100095 301.17 75.54
WikiLSHTC 1617899 325056 1778351 587084 42.15 3.19
Amazon 135909 670091 490449 153025 75.68 5.45
Ads1M 164592 1082898 3917928 1563137 9.01 1.96
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Table 3: Results on Small Scale data sets : Comparison of precision accuracies of SLEEC with competing
baseline methods on small scale data sets. The results reported are average precision values along with standard
deviations over 10 random train-test split for each Data set. SLEEC outperforms all baseline methods on all
data sets (except Delicious, where it is ranked 2nd after FastXML)

Data set Proposed Embedding Tree Based Other

SLEEC LEML WSABIE CPLST CS ML-CSSP FastXML-1 FastXML LPSR OneVsAll KNN

Bibtex
P@1 65.57 ±0.65 62.53±0.69 54.77±0.68 62.38 ±0.42 58.87 ±0.64 44.98 ±0.08 37.62 ±0.91 63.73±0.67 62.09±0.73 61.83 ±0.77 57.00 ±0.85
P@3 40.02 ±0.39 38.40 ±0.47 32.38 ±0.26 37.83 ±0.52 33.53 ±0.44 30.42 ±2.37 24.62 ±0.68 39.00 ±0.57 36.69 ±0.49 36.44 ±0.38 36.32 ±0.47
P@5 29.30 ±0.32 28.21 ±0.29 23.98 ±0.18 27.62 ±0.28 23.72 ±0.28 23.53 ±1.21 21.92 ±0.65 28.54 ±0.38 26.58 ±0.38 26.46 ±0.26 28.12 ±0.39

Delicious
P@1 68.42 ±0.53 65.66 ±0.97 64.12 ±0.77 65.31 ±0.79 61.35 ±0.77 63.03 ±1.10 55.34 ±0.92 69.44 ±0.58 65.00±0.77 65.01 ±0.73 64.95 ±0.68
P@3 61.83 ±0.59 60.54 ±0.44 58.13 ±0.58 59.84 ±0.5 56.45 ±0.62 56.26 ±1.18 50.69 ±0.58 63.62 ±0.75 58.97 ±0.65 58.90 ±0.60 58.90 ±0.70
P@5 56.80 ±0.54 56.08 ±0.56 53.64 ±0.55 55.31 ±0.52 52.06 ±0.58 50.15 ±1.57 45.99 ±0.37 59.10 ±0.65 53.46 ±0.46 53.26 ±0.57 54.12 ±0.57

MediaMill
P@1 87.09 ±0.33 84.00±0.30 81.29 ±1.70 83.34 ±0.45 83.82 ±0.36 78.94 ±10.1 61.14±0.49 84.24 ±0.27 83.57 ±0.26 83.57 ±0.25 83.46 ±0.19
P@3 72.44 ±0.30 67.19 ±0.29 64.74 ±0.67 66.17 ±0.39 67.31 ±0.17 60.93 ±8.5 53.37 ±0.30 67.39 ±0.20 65.78 ±0.22 65.50 ±0.23 67.91 ±0.23
P@5 58.45 ±0.34 52.80 ±0.17 49.82 ±0.71 51.45 ±0.37 52.80 ±0.18 44.27 ±4.8 48.39 ±0.19 53.14 ±0.18 49.97 ±0.48 48.57 ±0.56 54.24 ±0.21

EurLEX
P@1 80.17 ±0.86 61.28±1.33 70.87 ±1.11 69.93±0.90 60.18 ±1.70 56.84±1.5 49.18 ±0.55 68.69 ±1.63 73.01 ±1.4 74.96 ±1.04 77.2 ±0.79
P@3 65.39 ±0.88 48.66 ±0.74 56.62 ±0.67 56.18 ±0.66 48.01 ±1.90 45.4 ±0.94 42.72 ±0.51 57.73 ±1.58 60.36 ±0.56 62.92 ±0.53 61.46 ±0.96
P@5 53.75 ±0.80 39.91 ±0.68 46.20 ±0.55 45.74 ±0.42 38.46 ±1.48 35.84 ±0.74 37.35 ±0.42 48.00 ±1.40 50.46 ±0.50 53.42 ±0.37 50.45 ±0.64

Table 4: Stability of SLEEC learners. We show mean precision values over 10 runs of SLEEC on WikiLSHTC
with varying number of learners. Each individual learner as well as ensemble of SLEEC learners was found to
be extremely stable with with standard deviation ranging from 0.16% on P1 to 0.11% on P5.

# Learners 1 2 3 4 5 6 7 8 9 10

P@1 46.04 ±0.1659 50.04 ±0.0662 51.65 ±0.074 52.62 ±0.0878 53.28 ±0.0379 53.63 ±0.083 54.03 ±0.0757 54.28 ±0.0699 54.44 ±0.048 54.69 ±0.035
P@3 26.15 ±0.1359 29.32 ±0.0638 30.70 ±0.052 31.55 ±0.067 32.14 ±0.0351 32.48 ±0.0728 32.82 ±0.0694 33.07 ±0.0503 33.24 ±0.023 33.45 ±0.0127
P@5 18.14 ±0.1045 20.58 ±0.0517 21.68 ±0.0398 22.36 ±0.0501 22.85 ±0.0179 23.12 ±0.0525 23.4 ±0.0531 23.60 ±0.0369 23.74 ±0.0172 23.92 ±0.0115

Table 5: nDCG Large-scale data sets : Our proposed method SLEEC is as much as 35% more accurate in terms
of nDCG@1 and 33% in terms of nDCG@5 than LEML, a leading embedding method. Other embedding
based methods do not scale to the large-scale data sets; SLEEC is also 5% more accurate (w.r.t. nDCG@1
and nDCG@5) than FastXML, a state-of-the-art tree method. ‘-’ indicates LEML could not be run with the
standard resources.

Data set SLEEC LEML FastXML LPSR-NB

Wiki10
nDCG@1 86.14 73.47 81.71 72.72
nDCG@3 76.11 64.92 69.12 61.71
nDCG@5 68.15 58.69 61.46 54.63

Delicious-Large
nDCG1 47.53 40.73 43.34 18.59
nDCG3 43.33 38.44 39.78 16.17
nDCG5 41.19 37.01 37.80 15.13

WikiLSHTC
nDCG@1 54.81 19.82 49.37 27.43
nDCG@3 47.23 14.52 44.89 23.04
nDCG@5 46.14 13.73 44.43 22.54

Amazon
nDCG@1 34.77 8.13 34.24 28.65
nDCG@3 32.74 7.30 32.09 26.40
nDCG@5 31.53 6.85 30.48 25.03

Ads-1m
nDCG@1 21.75 - 23.31 17.95
nDCG@3 23.67 - 24.06 19.50
nDCG@5 25.06 - 24.71 20.65
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Figure 3: Variation of precision accuracy with model size on Ads-1m Data set
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Table 6: nDCG Results on Small Scale data sets : Comparison of normalized Discounted Cumulative Gain
(nDCG) performance of SLEEC with competing baseline methods on small scale data sets. SLEEC outper-
forms all baseline methods on all data sets (except Delicious, where it is ranked 2nd after FastXML)

Data set Proposed Embedding Tree Based Other

SLEEC LEML WSABIE CPLST CS ML-CSSP FastXML-1 FastXML LPSR OneVsAll KNN

Bibtex
nDCG@1 64.49 63.10 55.03 61.99 59.60 56.86 46.04 63.78 62.98 62.62 57.81
nDCG@3 59.90 58.84 50.26 57.66 53.08 52.54 40.55 59.73 57.11 59.44 52.36
nDCG@5 62.29 61.06 52.33 59.71 53.74 54.81 40.73 61.72 58.76 61.73 54.57

Delicious
nDCG@1 67.41 64.96 63.67 65.65 61.26 63.96 57.30 69.92 64.46 64.9 64.8
nDCG@3 62.46 61.80 59.47 61.52 57.85 59.07 52.97 65.91 60.47 60.94 60.71
nDCG@5 59.02 58.42 56.37 58.00 54.44 54.86 49.89 62.20 56.19 56.54 57.02

MediaMill
nDCG@1 86.61 83.99 79.86 83.79 83.97 83.21 82.11 83.73 83.65 83.67 82.59
nDCG@3 80.04 75.23 72.51 74.44 75.29 72.67 73.21 74.84 74.12 73.90 75.62
nDCG@5 77.71 71.96 69.34 70.49 71.99 65.05 69.94 71.66 69.12 67.75 72.76

EurLEX
nDCG@1 79.86 61.64 68.54 70.17 58.51 69.04 47.18 70.75 74.29 75.97 77.00
nDCG@3 67.96 52.70 58.43 59.64 48.66 55.95 40.77 61.41 64.93 67.28 65.61
nDCG@5 61.59 47.75 53.02 53.79 40.79 48.17 36.09 56.05 59.43 62.54 59.39
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Figure 4: Variation of precision accuracy with model size on Amazon Data set
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Figure 5: Variation of precision accuracy with model size on Delicious-Large Data set
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Figure 6: Variation of precision accuracy with model size on Wiki10 Data set

0 5 10
30

40

50

60

Model Size (GB)

P
re

ci
si

on
@

1

WikiLSHTC [L= 325K, d = 1.61M,  n = 1.77M]

 

 

SLEEC
FastXML
LocalLEML−Ens

0 5 10
10

20

30

40

Model Size (GB)

P
re

ci
si

on
@

3

WikiLSHTC [L= 325K, d = 1.61M,  n = 1.77M]

 

 

SLEEC
FastXML
LocalLEML−Ens

0 5 10
10

15

20

25

Model Size (GB)

P
re

ci
si

on
@

5

WikiLSHTC [L= 325K, d = 1.61M,  n = 1.77M]

 

 

SLEEC
FastXML
LocalLEML−Ens

(a) (b) (c)

Figure 7: Variation of precision accuracy with model size on WikiLSHTC Data set
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