A Proof of Lemma 1

Let A = (a;;) be a random matrix that is GOE distributed; thus a,;; ~ N(0,1) for i # j and a;; ~
N(0,2). We have E(M) = 3"_ E((z} " Az})A). Hence, it suffices to show that E((zT Az)A) =
27z " for any x € R™. The (4, ) entry of (xT Az) A has expected value

E((z" Az)aij) (Z Z mkwlakzazg>
= Z Z l'kl’lE aklaij
k1

0 if (k1) # (3, 5) A (k1) # (5,
:%ZZZH{W (k. 1) # (5:) A (kD) # ()

a?;) otherwise
_ 2miijE(a?j) ifi#£j
| 22E(a?) otherwise

222 otherwise,

where we use that the variance of a;; is 2 and the variance of a;; is 1 for any ¢ # j. In matrix form,
thisis E((z T Az)A) = 22z .

B Ingredients

We first present some technical lemmas that will be needed later. Recall Definition 2 that for any Z,

7 = argminZeS ||Z — Z”F Let H = Z — Z. The sth column of Z, Z, Z*, H are denoted by zs,
Zs, 2%, hs respectively. We shall use the following formulas for the gradient and second order partial
derivatives:

Vi(Z)= % Zm: (w(H"A4H) +2uw(Z" AH)) (AH + AZ),

2 m
nga(ZZT) _ %Z@Aizszz AT + (r(ZT A Z) = b)) A)), Vs €[],

2 (7 1 &

The next ingredient we need is the expectation of the second order partial derivatives with respect to
the random measurement matrices.

Lemma 2. Let A = (a;;) be a GOE distributed random matrix. For any two fixed vectors = and y,
we have E [AzyA] = 2Tyl +yz ',

Proof. The expectation of (i, 5) entry of Azy" A is

[(Axy A) 1] (Z azka]kl’kyz>

If ¢ = j, then we have

E[(Azy" A)u] = (Za k%%) = Ty + Ty,

k
since Var(a?,) = 2 and Var(aZ,) = 1if k # i. On the other hand, if i # j, then

[(Axy A)yj] <Z alkajlxkyl> = E(ammgyz) = ZjY;-
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Therefore, E(Azy T A) = o Tyl +ya ', O
*f(Z)

02502y

] =22 21 + 22,2] forall k € [r] such that k # s, where the expectation is over the

Lemma 3. Forall s € [r], it holds that E [
2f(Z
[ 212)

D250z
random measurement matrices.

} = 2|2 ||° I + 22,2) +2227 — 2X* and

Proof. The case where k # s is a direct result of Lemma 2. For the other case, let A = (a;;) be a
GOE distributed random matrix. It follows from Lemma 1 that

a2f(Z) _ T T *
E {323825} =2E(Azsz, A)+2Z27" —2X™.

By Lemma 2, we have
E(Azez] A) = ||z T + 242, .

Substituting this back into the above equation, we obtain the lemma. O

We next recall a concentration result for the operator (spectral) norm of the random measurement
matrices.

Lemma 4. (Ledoux and Rider [ 14, Theorem 1]) There exists two absolute constants C' and p =
such that with probability at least 1 — Ce™ ™,

[A:]| < 3v/n.

_1
V8C

A tighter upper bound is actually given in the Tracy-Widow law: w.h.p. || A;|| = O(2v/n + n'/9).

Corollary 1. With probability at least 1 — mCe™ ", the average of the squared operator norm of
the random measurement matrices is upper bounded by 9n.

Proof. Applying a union bound we have

1 - 2 .
P <m2||Ai| < 9n> > P (i, |4 < 3vn)

i=1

=Y B (A > 3vR)

1—mCe™"",

Y

Y

where we use Lemma 4 in the last line. O

The following two technical lemmas are important tools for us. Define the set

E(e) = {7 |d(2,27) <}
Lemma 5. Suppose that A1 holds: || £ 5" (u A;u)A; — 2uu’ || < 8, for any w such that ||u|| <
Vo If6 < 1—160T, then forany Z € E (@) it holds that

o[ maT | = s < LS T A < s 2 e
i=1

Proof. Let h, be the sth column of H. Since max,ep) ||hslly < [[H|p < (/1500 < /o1, it
follows from the assumption of the lemma that

m

1
’ — > "(h{ Aiho)A; — 2hsh]
m 1=1

]

< -, s=1,...,m
r
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By the triangle inequality, we have

m T

ZZ (hd Aihs)A —QZh h{

1181 s=1

<9

and consequently

1 m
S|l < hy [ = w(HTAH)A; —2HHT | h] <5 |h|®, s=1,...
| —s(m;r( ) s SOlRl7, s=1,...m,
where we replace Y. h] A;hs by tr(H " A;H) and Y_._, hsh] by HH . Taking the sum of the

s=1
above inequalities, we obtain

1 m
~S|[H|| < — > u(HTAH)? —2u(HTHHH) < §||H]}.

i=1

Note that tr(H T HH " H) = ||HHT||i, Therefore,

2| T}~ S IHIE < — S w(HTAH)? <\ H|% + 2| HET

i=1

O
Lemma 6. Suppose that A2 holds: for any Z suchthat ZZT = X* we have
P2) (D] o
—E < - k=1,...,7. 7
| agfs az];r azs ag];r —_ r ) 57 ) 3 T ( )

Then

) — 1 & _
(ar - 2) |HIGE+ | HTZ||, < = Y (BT AZ)? < (al + ) |EI%+ [HTZ]

i=1

Proof. Our goal is to bound - Z tr(H " A;Z)?. This can be expanded as
i=1

%i (i(hzz‘lizs ) ZZ (hy Ajxy)? ZZ 2(h] Asz,) (b Asa).
i=1 s=1

1151 zls<k

We first bound the sum of the quadratic terms. For any s € [r], we have

PIE) 1N
=— ) 2A;Z,Z; A,
0z,0zf m ; Zs%s
an(Z) — 112 _ _T
E {32382:] =2||zs||° T + 2252,

It follows from assumption (7) that for any s € [r],

5 1 m - - - 5
—lhal® < — > 2(h] Aiz)? = 20|27 1l = 20 2) < 1]

i=1

Taking the sum of above inequalities, we obtain

—*ZIIhH <*ZZhTAzs ZIIZSII s ths < lehll ®)
s=1

=1 s=1
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Similarly, we bound the sum of the cross terms. For any fixed s, k such that s # k, we have

7 Ly szAizsz,I 4,

e[210)

2z 50 + 22
Tget| = Al 2

and consequently

m

—fZHh | ||hk||<—zz 2(h) Aiz)(hy Aiz) — 2> 2l Zkh [ hy — 2> bl z2] by

s<k i=1 s<k s<k s<k
)
1)
<=3 sl Nl
s<k

We combine equations (9) and (8) to get

m

) 1
—or > llhsll 1]l < EZtr (HTA,Z)? Zz Zh) by — ZhTzszhk < — Z A 1]l -
sk =1

(10)
Note that 3", bl zp 2  hy, = w(HTZHZ), 3", 2] Zkhl by, = HZHTHF and

T 2 T
> bl 1l = (Z ||hs||> <y hl* =rlH|F
sk s=1 s=1

ByLemma7,tr(H'ZH'Z)=|H"Z H2F Replacing those terms in equation (10) gives us

6 _ _
S T 2 < S e Az < Sy 7

i=1

Finally, we obtain the claim by noticing that

Vo lHl g <||ZHT|| < Vor | H||g

where /01 = Omax(Z) > -+ > omin(Z) = /o, are the singular values of Z. O

Lemma7. t(H'ZH'Z) = |H Z|%.

Proof. Let U = argmingyr_yry_; |1Z — Z*U||§7 = argmaxyyr_yry_r (U, Z* " Z). Note
that (A, B) < ||A]|, ||B|| for any matrices A, B that are of the same size. The equality holds when
B=U,V, where A = U4V, isthe SVD of A. Hence, U = UV T where USV T is the SVD of
2*1 7.7 = Z*U. Therefore, Z'Z = 2T 2*U = VSV is symmetric and positive semidefinite.
Thus, H'Z = 277 — Z ' Z is also symmetric. This implies that tr(H " ZH " Z) = HHTZHi

C Linear Convergence

Proof of Theorem 3



Let H* = ZF — Z*_ Then we have that

2
|24+ ,ZkHi _ | gk _ /j V(2" - Z*
12715 .
2 2
R e V§(Z") 2 2p (VF(Z), 5
2 1 2
< Hk2+ H Vf(Zk)Z_Qu<1UT Hk2+7 Vf(Zk) )
H HF HZ*H‘; H HF ||Z*||% o H HF 6”2*”?: H HF
2” Or k 2 'U,(IU,—Z//B) A 9
A sy 1L ViZ
( « ZS=105> H ||F+ ||Z*||}17 H f( )HF
_ 2 or k|2
< (1- 2 ) e
= (1 — 2,u> d(Zk,Z*)27
QKT

where we use the definition of RC(e, o, §) in the third line, HZ*H% = || X*|, = X._, o in the
third to last line and 0 < p < min {«/2,2/8} in the second to last line. Therefore,

~112
d(zk+1, Z*) — min HZk+1 _ ZH S \/jd(zk, Z*)
Zes F aRT

D Regularity Condition

As mentioned before, Nesterov [16, Theorem 2.1.11] shows that the gradient scheme converges
linearly under a condition similar to the regularity condition, which is satisfied if the function is
strongly convex and has a Lipschitz continuous gradient (strongly smooth). In order to prove The-
orem 4, we show that with high probability the function f satisfies the local curvature condition,
which is analogous to strong convexity, and the local smoothness condition, which is analogous to
strong smoothness.

C1  Local Curvature Condition

There exists a constant C; such that for any Z satisfying d(Z, Z*) < 4/ 13—60,.,
= =112 = T=2
Vf2),2-Zy>C|Z-Z||,+|(Z-2)"Z]|,.

C2  Local Smoothness Condition

There exist constants Co, C'3 such that for any Z satisfying d(Z, Z*) < ,/ %UT,

VA% < Co||Z - 2|+ G5 ||(2 - 2) 2.
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D.1 Proof of the Local Curvature Condition

p’ g’
(VHZLH) = 2 S Wl AZR + = S T AP+ S (T AZ) w(T A)
i—1 i=1 =1
> PP+ —JZ (HTAiZ) JZ“HTAH)
=1 i=1
p q
2 2 3 2 S
_ L HTA;Z)? (HTA;H
P’ +q ﬂdm; r( $ ;tr )?
_ <_3)2_2
= P 2\/§q 8q
p2 9 5 1,
> (2_8q>_8q
2
_ P 5a 1 Tazp-2L TAHY?
= L ,m;u(H AZ)? = 5> u(HTAH)
> ( > ||H||F+}|HTZHF—ZIIHH?*gHHHTHi
> (o0 G 1m0 = J0) 1l + |2

where we use Cauchy-Schwarz inequality in the 2nd line, the inequality (a — b)? > % — b? in the
HTHF < ||HH§, in the 8th line. Since

||HHF <y/orand 6 < -0, we have

27 _
(VH(2),H) > Zor |1 H|5 + [|HZ|| - an

D.2 Proof of the Local Smoothness Condition

We need to upper bound ||Vf(Z)||§; = max |y, -1 [(Vf(Z), W)[. It suffices to show that for

(Vf(Z),W)|? is upper bounded if Z € E (,/%ar).

Since (a + b+ c + d)? < 4(a® + b% + ¢® + d?), we have

any W € R™* 1 of unit Frobenius norm,

(Vf(Z),W)]? = (; Zm: (te(H"A;H) +2t(H" A, 2)) (w(W T A H) + tr(WTAiZ))> 2
_ (ﬂll i (HT AH) e(WT AH) + 26(H T A7) (W T A H)
+tr(H A H) w(W T AZ) +2t(H" A, Z) tr(WTAiZ)) 2
<

4 (; Zm:tr(H TAH)u(WTAH )) +4 (:1 itr(HTAZ'Z) tr(WTAiH)>

=1 i=1

+4 <§1 zm: tw(H' A;H) tr(WTAiZ)> +4 (Ti itr(HTAiZ) tr(WTAiZ)> :

i=1 i=1
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The first term in the righthand side can be upper bounded as

2
1 & 1 &
4 = H"AH TAH) < 4= H'"A;H)
(mZtr( ) tre(W )) < (mZu(

=1 =1

IN

W2 || AH ||

| Ai H|F>

< a(20HG+51H) (mZnAmHn%)
=1

4
< s6nllH G (21HIG+ 0 1H]G)

(1 Ztr (WTAH) )
m
=1
1
m

I~

>
>

= 4 (20H|F +51HII;

)
4 (201H + 6 |1HI <
)

where we use the Cauchy-Schwarz inequality in the first and second line, Lemma 5 and ||H HT || s
|H||% in the third line and Corollary 1 in the last line.

The other three terms are bounded similarly. For the second term, we have

m 2 m m
4 (jl Ztr(HTAiZ)tr(WTAiH)> 6 <nll Ztr(HTAiZ)2> (ﬂll Ztr(WTAin)

i=1 i=1 i=1

IN

IN

2 2 =12
36n |13 (401 +26) | HI3 + 41723
where we use Lemma 6 and 1. The third term is bounded as

! (Til zm:tr(HTAiH) tr(WTAZ-Z)) = 4 <§1 zm:tr(HTAiH)2> (711 Zm:tf(WTAiZf)

i=1 i=1 i=1
=112 4 2
< 360|215 (20H15 + 5153
and the fourth term is bounded as

4 (ri Em:tr(HTAZ-Z) tr(WTAiZ)>

=1

IN

6 (; itr(HTAZ—ZF) (; i(WTAZ-ZF)

=1 i=1

IA

360 |Z3. (4o +26) | HIG +4 | HTZ])
Putting these inequalities together, we have
IVF)I5 < 36n (|ZI]5 + 1HIG) (21H1G + @oy + 30) 1HIG +4 | HTZ]) -

Hence, )
IVF( 2w
1an (|25 + 1513

1 3 =
< (o1+ 171 + 30) 11 + |2

Since ||H||p < /0, and § < -0, we have

IVf(2)|°
14dn (|1Z|[5. + (3/16

9
- ) §< o1+ 510 >|H||F+||HT2||F

D.3 Proof of the Regularity Condition

Now we combine the curvature and the smoothness conditions. For any v € (O, %), it holds that

2
o IV/ D) <0 (Ul L9 ) L+ JHTZ). a2
Tl 144n (HZHF + (3/16)@) o1 647




Combining equation (11) and (12), we obtain

27 or 9 ar V12
i1z (G- ) ol 402 —— D
64 o1 64 o1 144n()|Z|5 + (3/16)a,)
27 73 o Or IV/(2)I;
> (M—M’Y)UT||H|F+’Y E
o1 144n(||Z|[5 + (3/16)0,)
If we take v = % then
1 o IV/(2)I;
(VH(Z).H) > o |HIG+ - £
o1 3. 14dn (||Z]]}, + (3/16)0, )
1 2 Ur/al 2
> o, |H|E + 272 ,
> ol e IVSD
where we use ||Z||i = ||Z*||§ = || X*||, > o,. Thus we have
(VI2) ) 2 o |HI+ ——— V(D)
S pllz|
F
fora > 24 and 5 > % - 513n.
E Initialization
Proof of Theorem 5
By assumption, we have
1 5
— Z(ngAiz;f)A- —2zrzr <=, selr]
m — T
Hence,
1 m I i 1 m
1M —2X* = || =30 (=T Aie)A —2Zz* S S| Do T A A - 22 | <6
i=1 s=1 s=1 i=1
(13)

Let A} > -+ > X/ be the eigenvalues of M. By Weyl’s theorem, we have
I\, —204] <3, sé€[n].

Since § < o, itiseasytosee \j > --- > A > dand |\, < d,s=r+1,...,n. Hence, \; = X\,
T. .
s €[r],and Z 079" is the best rank r approximation of %M . Therefore,

HZOZOT_Z*Z*TH ZOZOT—EM—FEM—Z*Z*T
F 2 2 F
0,07 1 1 * x|
< 777 _iM + iM—Z Z
F F
1
< 2HMZ*Z*T
2 F
§ Z*TH
< V2.

T .
where we used the fact Z°Z° = arg M x) <

X - Z*Z*THF in the third line, [|A]|, <
\/rank(A) || A|| in the second to last line, and inequality (13) in the last line.
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Let H = Z° — Z°. We want to bound d(Z°, Z*)? = || H||%.. According to the discussion in Lemma
7, HTZ° is symmetric and Z° ' Z° is positive semidefinite.

The following step closely follows [21]. It holds that

2 o 2
Hzozo—r _ Z*Z*TH HZOZOT _ ZOZOTH

F F

HHZ"T +ZOHT + HHTHi

- <Z°HTHZOT +HZ ' HZ + HHTZ0"
+Z°HTZ°HT + HZ° ' Z°H + HHTZ°HT
+Z°H HHT + HZ° ' HHT + HHTHH"

- u ((HTH)2 F2(HTZ%? + 2(HT HY(Z° 29 + 4(HTH)(HTZ0)>

- ( (HTH + \/§HTZO)2 +(4—2V2)(H H)(H"Z°) + 2(HTH)(ZOTZO)>

> ((4 — V) (HTH)HZ°) + 2(HTH)(ZTZ))

= (-2 )2 Z2%) +u (V2 - 9HTH)ZTD)),
where in the fourth line we used the property that the trace is invariant under cyclic permutations
and HTZ0 = Z° " H.

Since 20" Z is positive semidefinite, tr((H T H)(Z°' Z°)) is nonnegative. Hence,
2

|z0207 - Z*Z*THF > (2V2-2)u ((HTH)(ZZ))
= 2
= (va-2) |z}
> (2v2-2)||H|} o
= (2V2—-2)0,d(Z2°, Z*)2.
If6 < ﬁ’ﬁ,then
070 * 7% | 2
e TR

d(Zo’ Z*)Z §

—0,.

<
(2v2—-2)o, ~ (2vV2-2)o, ~ 16
F Sample Complexity

In this section, we verify that our assumptions hold with high probability if m > cnlogn, where ¢
is a constant that depends on d, 7, and . Our proof relies on the following concentration inequality.

Theorem 8. (Matrix Bernstein Inequality [20]) Let S1,...,Sy, be independent random matri-
ces with dimension n x n. Assume that E(S;) = 0 and ||Si| < L, for all i € [m]. Let
v? = max {||>7 E(S:ST|| L |2y E(SSi)||}- Then for all § > 0,

—m?2§?
P >0 <2 —_— .
( - > = “Rexp (1/2+Lm5/3>
We first give a technical lemma that we will use later.

Lemma 8. Let A = (a;;) be a random matrix drawn from GOE. Let S = a11 A — 2€1€1T. There
exist absolute constants C, p such that with probability at least 1 — C'e™P", we have

IS]| < 18n.

m

1
25

i=1
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Proof. Let A=A— ajeie] . S = anﬁ + (a?; — 2)eje; . Note that a;; and A are independent,
hence ||S|| < |aw1|||A]| + |a%; — 2|. Besides, since a1; ~ N(0,2), we can see that a?, /2 is x>
distributed.

First we bound the operator norm of A. We rewrite || A| as

141 = max juT Au| = max lu" Du — du?| < || D|| + d],
ul|=1

where D = A + dele]—, d ~ N(0,2). As D is GOE distributed, by Lemma 4,
P (|D| > 3y/n) < C'e ™, (14)
where C’ and p’ are absolute constants.

Using the Gaussian tail inequality, we have
P (|d| > 2v/n) < 2e7". (15)
Combining inequalities (14) and (15), we have
P <||Z|| > 5\/5) <P (D] > 3vnV|d > 2yn) < C'e~P™ +2e7", (16)
where the last inequality follows from the union bound.

Next we bound the deviation of the x? term. By the corollary of Lemma 1 in Laurent and Massart
[13], we have

P(lat, —2| > 4(Vn +n)) < 27" (17)

Since ap; is identically distributed as d, inequality (15) holds for a;; as well. Namely,
P (Ja11] > 24/n) < 2¢~™. Combining this with inequalities (17), (16), we have

P (|S] < 14n +4v/n) > 1—6e ™" — C'e '™,

Finally, the statement is obtained by choosing proper C, p, and using \/n < n. [

F.1 Proof of Theorem 6
Proof. 1t is equivalent to show that for any unit vector u, with high probability,

m
1

— Z(uTAiu)Ai — 2uu’
Kt

)
< —
ro1

If P is an orthonormal matrix, then

Z ((Pu)TAy(Pu)) A; — 2(Pu)(Pu) "

m
— Z T(PTAP)ud;) — 2PuuTPTH

1

= —E u' (PTA;P)uPTA;P — 2uu’
m

i=1

I~ —+ ~
= —ZUTAZ‘UA,'—QUUT
m <

where in the second line we use unitary invariance of the operator norm, and in the last line we

denote PT A; P by A;. Since the GOE is invariant under orthogonal con]ugatlon A; and A; are
identically distributed. Hence, it suffices to prove the claim when u = ey, i.e.

m

1 .
— Z agll)Ai — 2ere]

S 607

where agil) is the (1, 1) entry of A; and §p = -2-.

TO1



To show this, we apply Theorem 8, where S; = agil) A; —2eye] . This requires that the operator norm
of S; is bounded, for each i. We address this by noticing that with high probability ||S;|| < 18n, Vi.
To be precise, by Lemma 8 there exist constants C', p, such that

P(||S;|| > 18n) < Ce ", i=1,...,m.
Taking the union bound over all the S;s leads to
P (max 1S > 18n) <mCe™"". (18)
Next, we calculate v? = |37 E(S?)|| = m ||[E(S?)||. Let A = (a;;) denote Ay, S denote 5.

We have E(S?) = E(a11242) — 4dejef , and

n

2 42\ _ 4 2 2
(af, A )11 =aq + E a1107s
k=2

n
(aflAz)ii = &%1 a?’i + Zafk ) Vl # 15
k#i

(a11A2 = af Zazk%kv Vi .
k=1
Itis easy to see thatE(anAQ) = diag(2n+10,2n+2,...,2n+2). Consequently, v? = (2n+6)m

By Theorem 8, if m > - nlogn, then

—mé
>6 | <2 S —
= 50) = Snexp (2n(1 + 300) + 6)

—ms2
< 2nexp (m0>

mm(t52 do)

(e

2n(4 + 3d¢) (19)
—mog
<9 -0
= Snexp (14n - max(1, (50)>
2
< ol
Combining inequalities (18) and (19), we conclude that
P lZa(lil)A —2e1e{ || <8 | >1—mCe™ ""—3.
m — n?
O

F.2 Proof of Theorem 7

The formulation of the second order partial derivatives and their expectations is given in Appendix
B.

It is easy to see that for any Z € S, maxe(,) |Z-]| < /o71. Thus it is sufficient to prove that for any
two unitary vector u and y with high probability it holds that

0
< —.

To1

| ZQA uy ' Ay — 20yl — 2yu’

=1

We can decompose y as y = Su + S u, for a certain unit vector u that is orthogonal to u, where

0
2452 =1.Letdy =
ﬂ+6J‘ % 2roq

. It suffices to prove the following two claims.
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(i) For any unitary vector u, with high probability

1 m
— Z2A¢UUTA1‘ —2I —2uu" || < 6.
m

i=1

(i) For any two orthogonal unit vectors » and u , with high probability

1 m
— Z 2AiquAi —2u u'|| < .

i=1

Proof of (i)

If P is an orthonormal matrix, then

1 m
— Y 24;Puu PA; — 21 — 2Puu’ P
=1

i=1

i=1

1 m
— Y 2PTA;Puu PT AP — 21 — 2uu”

1~ ~
- Z 2A;uu’ A; — 21 — 2uu”
m

where ﬁi and A; have the same distribution. Hence we only need to prove the case where u = e;:

L= )
—ZQU(Z)U Yo -2 — 26161 < do,
m &

where v() = A,e; is the first column of A;.

Let S; = 2(v(i)v(i) —I—ejef). To apply Theorem 8, we need to show that with high probability

||5;| is bounded for each i and calculate v* = ||>=7 | E(S?)|| = m ||E(S)].

Let S, v, A denote Sy, v(*), and A() respectively. It is easy to see that
IS < 2loll” +4 = 2(w + afy) + 4,

where w = Y7, a?,. Asajn ~ N(0,2), a1 ~ N(0,1) for k # 1, we can see that a3, /2 and w
are 2 distributed with degrees of freedom 1 and n — 1, respectively. Using the x? tail bound, we

have
P(a},/2>2(v/n+n)+1) <e ™™,
Pw>b5n—-1)<e™, k=2,...,n.
It follows from the union bound that
P(||S|| > 26n +6) < 2e™",
and consequently
P (miax IS |l > 26n + 6) < 2me™".
To calculate v/2, we expand E(5?) as
E(S?) =4E ((vv")?) — 4(I + e1e; )?
=4E (||UH2 va) —4(I +3eye] ).

Some simple calculations show that

n
(lel?oo™) = wrt+ Zk

(H'UH2'UUT> =202 + vt + Z vpv?, =2, ..
Ji

k#1,j

n
(||UH2 mﬁ)jl ka v, j <l

k=1

21

,n7

(20)



As vy ~N(0,2), v; ~ N(0,1) for j # 1,
E(| 12 vo ) = 2n + 10,
E(| 12 vo ) =n+3, j=2,.
(H’UH vv) =0, j<lI.

Hence, E(S?) = diag(8n + 24,4n + 8,...,4n + 8) and thus v? = m(8n + 24).
If m > (128 / min(832, 8o))n log n, then by applying Theorem 8 we can see

1 & T
Pl—=) 2000® —25 —2¢e]
<||m§ vMNv €164

>0p | < 2ne ( —m )
n ex
0) =P\ S+ 20+ (Zn 1 2)d

—mé% 2y
< 2nexp ((128/3)n max(1, 50))

2

Sk

n
Combining inequalities (21) and (20) leads to

ZQv(i)v 0 2l —2eie]

1 m
P ( L
m

=1

We only need to prove the case where © = e; and v = es due to the same reason above. That is,

1 & N
2 Z 20" _ 2ese]
m =1

where v(V) and ¢(*) are the first and second columns of A;.

n2

2
<5O> >1-2me™ " — —.

Proof of (ii)

S 507

As before, let S; = 2(1)(")q(”)T —ege] ) andlet S, v, g, A denote S1, vM), ¢ and AM) respectively.
From the proof of (i), we can see that with probability at least 1 — 4e~" both ||v|| and ||¢|| are no
larger than v/13n + 1. Since ||S|| < 2||v]| |lg]| + 2, we have

P (max IS |l > 26n + 4) <dme™".
Next, we calculate 12 = mmax {|[E(SST)||, [[E(ST9)]}-
E(SST) = 4E(||q||*)E(vv ") + dege .

E(STS) = 4E(||v]|*)E(aq") + dese] .

Some simple calculation shows that E(|[v]|*) = E(|l¢||*) = n+ 1, E(vvT) = I + eje] and
E(qq") = I + ezeq . Hence,

E(SST) =4(n+ 1)I 4+ 4(n + 1)ere] + 4egeq,

E(STS) = 4(n + DI 4 4(n+ 1)egey + 4ere]
and 12 =8(n+1)m.Ifm >

57" log n, then by applying Theorem 8 we have

mm(zS2
—mé?
>0 | <2 0
O) P (8n +8+ (26”;4)50>

—mé? (22)
<92 S
- neXp(%nmaX(L(So))

2

n2’

22



This means,

1 & T
Pll= 20D gD _ 9 T

2
<60> >1—4me™ " — —.

G ADMM for Nuclear Norm Minimization

We reformulate the nuclear norm minimizing problem as

. 1 ,
_ X) — X )
Jain o A = 8l” + XL (23)

where A > 0 is the regularization parameter. A — 0 will enforce the minimizer X,
affine constraint A(X5.) = b.

We apply ADMM to the dual problem of (23):

*
nuc

satisfying the

min Sl —aTb
a€ER™ VERN XN 2

subjectto ||V <1
Al(a) =V,

where we introduce an auxiliary variable V' to make this problem equality constrained.

(24)

The augmented Lagrangian of problem (24) can be written as
A 2 n 2
Ly(e, X) = 3 flall” — a’b+ 1< (V) + (X, AT (@) = V) + 5 AT (@) = V|,
where X is the multiplier, 7 is the penalty parameter, and 1< is the indicator function of the unit
spectral norm ball i.e. 1).;<1 (V') equals 0 if ||V'|| < 1 and +o0 otherwise.

Let vec(-) denote the vectorization of a matrix, whose inverse mapping is denoted by mat(-). We

can rewrite the transformations as A(X) = Avec(X) and AT (a) = mat(A o) = 37 i A;,

where A is am x n? matrix whose ith row is vec(A4;) .

The ADMM starts from initialization (o, V%, X°) and updates the three variables alternately. The
updates can be computed in close forms:

oftt = (AT +nAAT) ! <b + Avec(nV* — Xk)),

Vi = proj(Z o 1A + X’“/n)
i=1
Xk+1 _ Xk: + n(zaf-‘rlAi o ‘/*/7€+1>7
i=1
where proj(+) is the projection onto the unit spectral norm ball. Let X = UXV T be the singular
value decomposition of X,
proj(X) = Umin(3, 1)V ",

In fact, the update of V' can be combined with other steps without being computed explicitly. One
only has to iterate the following two steps:

of = (\[+nAAT)? <b+ Avec(nZafAi + XA~ 2X]‘3)>7

=1

m
Xk = prox,, (77 Z ai-ﬁ'lAi + Xk) )
i=1

where proxn(-) is the singular value soft-thresholding operator defined as

prox, (X) = U max (X — 1, 0V,
The sequence of multipliers {X k} converges to the primal solution of (23). To speed up the update
of «, the Cholesky decomposition of A + 77AA—r is precomputed in our implementation.
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