
Supplementary Material: Lifted Inference Rules with
Constraints

Happy Mittal, Anuj Mahajan
Dept. of Comp. Sci. & Engg.

I.I.T. Delhi, Hauz Khas
New Delhi, 110016, India

happy.mittal@cse.iitd.ac.in,
anujmahajan.iitd@gmail.com

Vibhav Gogate
Dept. of Comp. Sci.

Univ. of Texas Dallas
Richardson, TX 75080, USA

vgogate@hlt.utdallas.edu

Parag Singla
Dept. of Comp. Sci. & Engg.

I.I.T. Delhi, Hauz Khas
New Delhi, 110016, India

parags@cse.iitd.ac.in

3 Constraint Language
Any constraint tuple Tx can converted into its canonical form. Following lemmas describe how a
constraint tuple can be converted into canonical form with respect to each type of constraint.
Lemma.1 Given a constraint tuple Tx, it can be equivalently written in canonical form with respect
to subset constraints over any given variable x ∈ x.

Proof. To convert Tx into the canonical form with respect to variable x, we need to find an atomic
constraint Ax which can equivalently represent all the subset constraints over x in Tx. Such an Ax

can be obtained by enforcing that x belongs to the set difference of a) intersection of the subsets
Ci’s such that there is a constraint of the form x ∈ Ci in Tx And b) union of the subsets Cj’s
such that there is a constraint of the form x /∈ Cj in Tx. In other words, Ax can be written as
x ∈ (∩iCi) \ (∪jCj) where (x ∈ Ci) ∈ Tx ∀i and (x /∈ Cj) ∈ Tx ∀j.

3.1 Splitting Operation

We define the operation split(Ax1 , Ax2) which inputs the subset constraints Ax1 and Ax2 and splits
the input constraints into sets of constraints Ax1 .split = {Ax1

I , Ax1

D } and Ax2 .split = {Ax2

I , Ax2

D },
which are all value identical or value disjoint with each other. If V1 and V2 are the supports for
Ax1 and Ax2 , respectively, and if, V1I , V1D are the supports for Ax1

I and Ax1

D , respectively, then
V1I = V1∩V2 and V1D = V1 \V2 It is easy to see that V1 = V1I ∪V1D. In other words, the union of
the constraints in the split is equivalent to the original constraint. Similarly, for the split {Ax2

I , Ax2

D },
and the corresponding supports, V2D,V2D, respectively. split operation shown in Algorithm 1 can
be implemented by considering the four cases described in Table 1, one for each combination of
the forms Ax1 and Ax2 can take. The table lists only the splits for Ax1 . The splits for Ax2 can be
obtained from the same table by realizing that split operation is symmetric.

Algorithm 1 Split Constraints
split(Ax1 ,Ax2)
Ax1 .split = {Ax1

I , Ax2
D } (using Table 1)

Ax2 .split = {Ax2
I , Ax2

D } (using symmetric analogue for x2)
return(Ax1 .split,Ax2 .split)

Lemma. 2 Let Tx be a constraint tuple over x. Let x1 and x2 be two variables in x involved in the
constraint x1 = x2. Then, Tx can be equivalently written in its canonical form with respect to the
equality constraint over x1 and x2.

Proof. Let Tx be in its canonical form with respect to its subset constraints. Let Ax1 and Ax2 be the
subset constraints over variables x1 and x2 respectively in Tx. Since we have a constraint x1 = x2,
the values of variables x1 and x2 must be equal in any solution of the constraint and hence, we can
equivalently restrict the supports of x1 and x2 (i.e. those allowed by subset constraints) to be the

1

Ax1 Ax2 Ax1

I (Split I) Ax1

D (Split D)
1 x1 ∈ C1 x2 ∈ C2 x1 ∈ C1 ∩ C2 x1 ∈ C1 \ C2

2 x1 ∈ C1 x2 /∈ C2 x1 ∈ C1 \ C2 x1 ∈ C1 ∩ C2

3 x1 /∈ C1 x2 ∈ C2 x1 ∈ C2 \ C1 x1 /∈ C1 ∪ C2

4 x1 /∈ C1 x2 /∈ C2 x1 /∈ C1 ∪ C2 x1 ∈ C2 \ C1

Table 1: Split of subset constraint over x1

set V1 ∩ V2 where V1, V2 are the supports of x1 and x2 in the original tuple. Consider the result of
split(Ax1 , Ax2) over constraints Ax1 and Ax2 , and let Ax1

I and Ax2

I be the splits for Ax1 and Ax2 ,
respectively, returned by the operation corresponding to the intersection V1 ∩ V2. Then, the desired
tuple Tx

I in the canonical form can be obtained by having all the constraints in Tx
I as in Tx but

replacing Ax1 and Ax2 by Ax1

I and Ax2

I , respectively.

Lemma. 3 Let Tx be a constraint tuple over x. Let x1 6= x2 be an inequality constraint in Tx.
Then, Tx can be broken into an equivalent constraint set Sx =

∧k
i=1 T

x
i such that a) Tx

1 retains the
inequality constraint and it is canonical form with respect to the inequality constraint x1 6= x2 b)
Tx
i ,∀i > 1 does not contain the inequality constraint.

Proof. As earlier, let Tx be already converted into its canonical form with respect to its subset
constraints on x1 and x2 using lemma 3. Let the Ax1 and Ax2 be the subset constraints for x1

and x2, respectively, and let V1 and V2 be the respective supports. Then, we apply the operation
split(Ax1 , Ax2) over Ax1 and Ax2 , and let {Ax1

I , Ax2

D } and {Ax2

I , Ax2

D } be the resulting splits.
Then, we construct the constraint set Sx containing 4 constraint tuple {Tx}4i=1 as follows. Tx

i ’s
inherit all the constraints in Tx except Ax1 and Ax2 . The inequality constraint x1 6= x2 is present
only in the tuple T x

1 (and absent in others). In T x
1 , we replace the constraints Ax1 and Ax2 by

Ax1

I and Ax2

I , respectively. The supports for both x1 and x2 in T x1

I are given by the intersection
V1 ∩ V2. Hence, Tx

1 is in canonical form with respect to the inequality constraint. The remaining
3 tuples correspond to choosing one of the constraints from {Ax1

I , Ax2

D } for x1 and one from the
set {Ax2

I , Ax2

D } for x2 (and leaving out (Ax1

I , Ax2

I) combination which has already been covered).
Intuitively, the 4 tuples divide the supports of x1, x2 into 4 possible cases depending on whether
the constant subset is allowed by both the variables (intersection of supports) or only one of the
variables and not the other (set difference of supports). Hence, all possible combinations of V1 and
V2 are covered by these four tuples, resulting an equivalent constraint set (remaining constraints are
the same as in Tx). Tx

1 is the only tuple allowing for common values of x1 and x2, so we can safely
omit the inequality constraint from the other tuples.

Theorem 3.1. A constraint tuple Tx can be converted into its canonical form in time O(mk + k3)
where m is the total number of constants appearing in any of the subset constraints in Tx and k is
the number of variables in x.

Proof. Subset constraints can be processed using the proof of lemma 1. The procedure involves a
constant number of set operations, once for each variable, which can all be implemented in time
linear in the number of constants in the tuple (using a hashtable). The multiple variable constraints
can again be taken care of using proof for lemma 3. There is a total of O(k2) such constraints
and each involves a constant number of set operations over constants in the tuple. A closure for
transitivity can be obtained as follows. Each variable is assigned a unique identifier in the beginning.
Each time an equality constraint is processed, the lower of the identifiers of the variables in the
constraint is taken and assigned to all the variables which share the identifier with any of the variables
in the constraint. There is a total of O(k2) equality constraints and each re-assignment takes O(k)
time. The operation is independent of the number of constants in Tx.

Lemma 3.1. Let Tx be a constraint tuple in its canonical form. If xi ∈ x is a variable involved
only in subset constraint or involved in at least one equality constraint then, every solution v̄i to the
projected constraint T x̄i has the same extension count. In the former case, the extension count is the
size of the support of xi. In the latter case, it is equal to 1.

2

Proof. When xi ∈ x is involved only in subset constraint, it is not involved in any constraint with
another variable, so the values it can take in a solution are independent of other variable assignments.
Every solution v̄i over T x̄i can be extended to Tx by choosing any value from Vi, the support of xi,
and hence the same extension count of |Vi|.
Let xi is involved in an equality constraint with some variable xj . Since the tuple is in canonical form
with respect to equality constraints, Vi = Vj where Vi, Vj are the supports for xi, xj , respectively.
Further, if xk is another variable involved in (in)equality constraint with xi in Tx, it is also involved
in the corresponding (in)equality constraint with xj by transitivity property of canonical forms. This
constraint involving xj , xk must be present in T x̄i by the definition of a projection. Therefore, any
admissible solution v̄i over T x̄i can be extended to Tx by choosing a value vi ∈ Vi such that
vi = vj

1, and this is the only valid extension. Hence, every solution v̄i to the projected constraint
T x̄i has the same extension count of 1.

Next, we describe the time complexity of the project operation. Suppose the extension count
property has been ensured by splitting the constraint as described earlier in the text. Let k be
the number of the variables involved in the inequality constraints. Then, the number of splits is
O(BellNumber(k)) [2]. For each split, the complexity of the project operation is linear in the size of
the constraint. Therefore, the total complexity of the operation is given by O(l ∗ BellNumber(k)),
where l is the size of the original constraint. When dealing with models such as MLNs, k is at most
the number of variables in a formula, which is typically very small (single digit).

4 Lifted Inference Rules
Algorithm 3 gives the pseudocode for partitioning a theory M with respect to a set of variables y.
In Algorithm 3, Sx

M represents the set of all the constraints in M (line 2). Ay
M represents the set of

subset constraints in M over y variables (line 3). This set is split into equivalent non-intersecting
sets of constraints (line 4). This can be done by Algorithm 2. The resulting set of constraints can
be thought of as the base set from which all the original constraints over y can be constructed. For
every constraint tuple Tx in every formula for every variable yj ∈ y (lines 5-8). we extract the
subset constraints Ayj (line 9), find the constraints in the base set which represent Ayj (i.e. have
non-empty intersection with Ayj) (line 10) and then replace the tuple Tx by a set of tuples one
for each element in the base set elements for Ayj (line 11). The original set of constraint tuples is
replaced with the new (equivalent) set of tuples at the end of the iteration (line 13). The process is
complete once iterate over all the variables yj ∈ y.

To split the set of subset constraints into equivalent non-intersecting sets of constraints, Al-
gorithm 2 creates a bitStr (a vector of bits) for each value v. bitStr stores a bit for every constraint
which is set if v appears in that constraint. bitStrToV als is a mapping from bit vectors to sets
of values. Intuitively, each element of bitStrToV als maps a bit vector to a set of values having
the corresponding bit vector (this mapping can be constructed using standard hashing techniques).
Therefore, bitStrToV als enforces the desired partition. Finally getSubsetConstraints returns
the subset constraints corresponding to partitions created in bitStrToV als.

Algorithm 2 Split into non-intersecting constraints

SplitNonIntersect(Ay
M)

V ←
⋃

yi∈y V
yi // V yi is support set of Ayi

M

bitStrToV als = {} //empty mapping
for v ∈ V do

bitStr = getBitVec(v,Ay
M)

bitStrToV als[bitStr].add(v)
end for
return getSubsetConstraints(bitStrToV als)

Next, we describe the time complexities of the partition and the restriction operations. Let n be the
total number of constants appearing in m subset constraints. Then assuming constant time hashing,
the time complexity of the partition operation is O(mn). Let y denote the set of variables being
restricted. Let m denote the total number of constraints in which y variables appear. Let n be the

1vi satisfies all the required constraints that xi is involved in, by virtue of being equal to vj

3

Algorithm 3 Partition the theory with respect to a given set of variables
1:partition(M ,y)
2: Sx

M ← ∪m
l=1S

x
l

3: Ay
M ← getAllSubsetCt(Sx

M ,y) ;
4: Ay

M ← SplitNonIntersect(Ay
M);

5: for all yj ∈ y do
6: for all l ∈ {1, . . .m} do
7: S′x

l ← {}
8: for all Tx ∈ Sx

l do
9: Ayj = Tx.getSubsetCt(yj)

10: Ayj ← getIntersecting(Ayj ,Ay
M);

11: Sx
l ← S′x

l ∪ replace(Tx, yj , A
yj ,Ayj)

12: end for
13: Sx

l ← S′x
l

14: end for
15: end for

number of constants appearing in those constraints. The complexity of the restriction operation is
O(|y| ∗m ∗ |V |) where |V | is the size of the support set for the restriction.

Theorem 4.1. Let M be a partitioned theory with respect to the decomposer x̂. Let M x̂
l denote the

restriction of M to the partition element V x̂
l . Let Ax be a constraint with V x̂

l as the set of potential
values. Let M ′x̂

l further restricts M x̂
l to a singleton for Ax. Then, the partition function Z(M) can

be written as Z(M) = Πr
l=1Z(M x̂

l) = Πr
l=1Z(M ′x̂

l)|V
x̂
l |

Proof. Since x̂ is decomposer, it is easy to see that restriction of M to the partition elements for
values of x̂ breaks M into r independent components. Each grounding of M is covered in some
restriction since we consider restriction to every possible partition element. Hence, the partition
function for M can be written as the product of partition functions for each of the r restrictions. Now,
the next thing remaining to show is that the partition function Z(M x̂

l) for each of the restrictions is
equal to the expression Z(M ′x̂)|V

x̂
l |.

For each of the restriction of the form M x̂
l , the values in the set V x̂

l are symmetrical to each other
due to the partitioning of the theory. Further, since x̂ is a decomposer, groundings corresponding to
each value in the set V X̂

l are disjoint with each other i.e. do not share atoms. Hence, the partition
function for M x̂

l can be written as the product of partition functions for |V x̂
l independent MLNs

which are identical to each other (upto renaming of a constant). These identical MLNs are described
by the restriction M ′x̂

l of M x̂
l to the singleton Ax as define above. Hence, the result follows.

Theorem 4.2. Let M be an MLN theory partitioned with respect to variable xj . Let P (xj) be
a singleton predicate. Let the projections T x̄j of tuples associated with the formulas in which xj

appears only in P (xj) be count preserving. Let Vxj = {V xj

l }rl=1 denote the partition of xj values
in M and let nl = |V xj

l |. Then, the partition function Z(M) can be computed using the recursive
application of the following rule for each l:

Z(M) =

nl∑
k=0

(
nl

k

)(
Z(MP

l,k))
)

Proof. The proof follows immediately from the construction of the MLN MP
l,k and realizing that

we apply the Binomial only over those constraint tuples taking values from the partition component
V

xj

l . From the partitioning property of M each V
xj

l is disjoint from other partition components and
hence, can be processed independently. Further, from the canonical form of constraints in M and
the count preserving property, each constant in the set V xj

l is symmetrical to others and hence, we
only need to keep an account of for how many of these, P (xj) groundings are true (or false). Hence,
the proof follows.

4

4.1 Single Occurrence

Mittal et al. [3] proposed the single occurrence rule for lifting in MAP problems. An equivalence
class of variables x̂ is said to be single occurrence if any given formula fl ∈ F contains at most one
occurrence of variables from the set x̂. If x̂ is a single occurrence variable in an MLN theory M ,
then the problem of finding the MAP solution of M can be equivalently formulated as the problem
of finding MAP over a reduced theory M ′ such that a) For every formula fl ∈ F with weight wl in
which a variable x ∈ x̂ appears, there is a formula in M ′ with weight wl b) For every formula fl ∈ F
with weight wl in which a variable x ∈ x̂ does not appear, M ′ has a formula fl with weight wl/n, n
being the domain size of variables in x̂. c) Domain of every variable in the set x̂ has been reduced to
a single constant. The proof follows from the fact that there are n equivalent reduced theories (up to
renaming of a constant) whose groundings add up to groundings in M and hence, the MAP solution
for the original theory can be read off from any of the reduced theories M ′. Note that since we are
only care about the MAP solution, the reduced theory M ′ can be equivalently constructed by having
a weight of wl ∗ n for the formulas containing a variable from the set x̂ and the original weight wl

for the remaining formulas.

Next, we will extend the above rule to work with constrained theories. We will perform a construc-
tion similar to the case of Binomial. Let M be a constrained theory. Let x̂ be single occurrence in M
and let M be partitioned with respect to the set of variables in x̂. Let V x̂ = {V x̂

l }rl=1 be the partition
of x̂ values in M . Let Ax

l be a subset constraint with support given by the set V x̂
l . We will construct

a reduced theory M x̂
l from M in the following manner. For every formula fl ∈ F be a formula in

M which contains variables from the set x̂ a) Restrict fl to the constraint ¬Ax
l (i.e. tuples not taking

values for x̂ variables from the set V x̂
l . b) For the remaining tuples, create a new formula f ′

l with
weight w′

l by:
1. Restricting the domain of x̂ to a singleton for Ax

l

2. Assigning a weight of w′
l=wl ∗ |V x̂| to the new formula

Intuitively, we have restricted the domain of partition component V x̂
l to a single constant. We are

now ready to define the single occurrence rule for constrained theories.
Theorem. Let M be a constrained MLN theory all of whose constraints are in canonical form. Let
x̂ denote an equivalence class of variables which is single occurrence in M . Let V x̂ = {V x̂

l }rl=1
denote the partition of x̂ values in M . Then, the problem for finding MAP over M can be solved by
recursively reducing the theory to M x̂

l for each l.

Proof. The proof follows from the construction of the reduced theory Mlx̂. Mlx̂ applies the single
occurrence decomposition only over those constraint tuples which take x̂ values in the set V x̂

l . From
the partitioning property of M each V x̂

l is disjoint from other partition components and hence, can
be processed independently. Further, From the canonical form of constraints in M , we know that
each constant in the set V x̂

l is symmetric to each other and hence, single occurrence decomposition
can be applied over this set of constants. This process is repeated in turn for every V x̂

l to get the
final decomposition.

Theorem 4.3. Let M be a constrained MLN theory. The application of the modified lifting rules
over this constrained theory can be exponentially more efficient than first converting the theory in
the normal form and then applying the original formulation of the lifting rules.

Proof. We will prove the theorem by giving the template for constructing an example MLN where
the result holds. Consider an MLN theory with a singleton predicate P (x) with Dom(x) = {ci}ni=1.
Let C1 = {ci}n/2

i=1 and C2 = {ci}ni=n/2+1 be a partition of the domain. Let there be full binary
evidence on P (x) with P (ci) = true,∀ci ∈ C1 and P (ci) = false, ∀ci ∈ C2. And let this be the
only evidence. Further, let there be no additional constraints. Let x̂ be the equivalence class in which
x appears and let x̂ be a decomposer. Then, partition of x̂ in M will have two components one each
for the constraints of the form, x ∈ C1 and x ∈ C2 (all the values in each of the sets C1 and C2 are
symmetric to each other). This will require two applications of the decomposer rule, one for each
partition component, leading a complexity of O(1). In contrast, to convert the theory in the normal
form, we will have to first create ground predicates for every substitution of the constants appearing
in the evidence i.e. Dom(x). This will mean creating at least n groundings for every predicate in
which x̂ appears, leading to a complexity of O(2n) (two possibilities for each of the n groundings
being true or false).

5

4.2 Example

Now we will illustrate the application of different operations and rules presented in the paper using
a simple example. Suppose we have a constrained MLN theory M as follows :

M = {{P (x1) ∨Q(x2), w1, S
x}, {P (y1), w2, S

y}}
Here Sx = {Tx}, Sy = {Ty},
where Tx = {x1, x2 ∈ {1, 2, . . . , 20}, x1 = x2}, Ty = {y1 ∈ {1, 2, . . . , 15}}
We wish to find the partition function Z of the above MLN theory. For that, we do the following
steps :
1. Convert M into canonical form : M is already in canonical form so we don’t need to do
anything.
2. Apply binomial rule on M : Note that there is no decomposer in M , therefore we can’t apply
the decomposer rule at this stage. P is a singleton predicate, so we can apply the binomial rule.
The variables which appear as arguments of P are x1 and y1. To apply the binomial rule, we need
to partition the theory M with respect to the variables x1 and y1. The original support sets of x1

and y1 are given by {1, 2, . . . , 20} and {1, 2, . . . , 15}, respectively. After partitioning, we get the
following support sets : {1, 2, . . . , 15} and {16, 17, . . . , 20}. Consequently, the constraint tuples
corresponding to the formulas split apart and the constraint sets can be described as follows:

Sx = {Tx
1 , T

x
2 }, Sy = {Ty}

where Tx
1 = {x1 ∈ {1, 2, . . . , 15}, x2 ∈ {1, 2, . . . , 20}, x1 = x2},

Tx
2 = {x1 ∈ {16, 17, . . . , 20}, x2 ∈ {1, 2, . . . , 20}, x1 = x2}, and

Ty = {y1 ∈ {1, 2, . . . , 15}}
Note that after the application of the partition operation, the constraint tuples Tx

1 and Tx
2 are no

longer in the canonical form since the variables x1 and x2, which participate in the equaility con-
straint do not have identical support sets. Therefore we need to canonicalize the constraint tuples.
After canonicalizing, the new constraint sets can be described as:

Sx = {Tx
1 , T

x
2 }, Sy = {Ty}

where Tx
1 = {x1 x2 ∈ {1, 2, . . . , 15}, x1 = x2},

Tx
2 = {x1, x2 ∈ {16, 17, . . . , 20}, x1 = x2}, and

Ty = {y1 ∈ {1, 2, . . . , 15}}
Since the theory has been partitioned with respect to the variables x1 and y1, and is now in the canon-
ical form, we can apply the binomial rule recursively on the two partition elements {1, 2, . . . , 15}
and {16, 17, . . . , 20}. Let MP

l,k be the constrained MLN obtained from M by considering the lth

partition element and setting k groundings of the predicate P to true and remaining to false. Then

Z(M) =
∑k=n

k=0

(
n
k

)
Z(MP

l,k) (refer Theorem 4.2)

In our example above, considering the 1st partition element {1, 2, . . . , 15}, during the application
of the binomial rule, we get 16 constrained MLN theories MP

1,0,M
P
1,1,M

P
1,2, . . . ,M

P
1,15. Therefore

Z(M) =
∑k=15

k=0

(
15
k

)
Z(MP

1,k)

For clarity, we describe one of the MLN theories MP
1,5 obtained using steps as described in section

4.2. Recall that MP
1,5 means 5 of the 15 groundings of Predicate P are true and the remaining 10

are false.

MP
1,5 = {{P (x1) ∨Q(x2), w1, S

x
1 }, {true ∨Q(x2), w1, S

x
2 }, {false ∨Q(x2), w1, S

x
3 },

{true, 5w2, S
y
1 }, {false, 10w2, S

y
2 }}

Here Sx
1 = {Tx

11}, Sx
2 = {Tx

21}, Sx
3 = {Tx

31}, S
y
1 = Sy

2 = {}
where Tx

11 = {x1, x2 ∈ {16, 17, . . . , 20}, x1 = x2},
Tx

21 = {x2 ∈ {1, 2, . . . , 5}}, Tx
31 = {x2 ∈ {6, 7, . . . , 15}}

First formula in the above theory represents the restriction of the theory M to the partition ele-
ment {16, 17, . . . , 20}. Remaining formulas represent the restriction of M to the partition element
{1, 2, . . . , 15}, where each of the original formula is split into two formulas corresponding to P
being true or false. Note that since we are working on the partition element {1, 2, . . . , 15}, this
splitting of the formulas on P being true or false happens only for the theory restricted to this

6

partition element. Weight of the formula {true, 5w2, S
y
1 } is 5w2, since the extension count of

the constraint tuple T ȳ1 i.e., constraint tuple obtained after setting P (y1) to true in the formula
{P (y1), w2, S

y}, is 5. Similarly the weight of the formula {false, 10w2, S
y
1 } is 10w2.

Next we recursively apply the binomial rule on the 2nd partition {16, 17, . . . , 20} for each of the
theories MP

1,0,M
P
1,1,M

P
1,2, . . . ,M

P
1,15 obtained above. As before, let us consider the theory MP

1,5.
During the application of the binomial rule on the 2nd partition {16, 17, . . . , 20}, we get 6 con-
strained MLN theories (MP

1,5)2,0, (M
P
1,5)2,1, (M

P
1,5)2,2 . . . (M

P
1,5)2,5. Below we show one of the

MLN theories (MP
1,5)2,2. Let us call it M ′. Note that in M ′, we set 5 groundings of P as true

for the partition {1, 2, . . . , 15}, and 2 groundings of P as true for the partition {16, 17, . . . , 20}.
Therefore M ′ can be written as :

M ′ = {{true ∨Q(x2), w1, S
x
1 }, {false ∨Q(x2), w1, S

x
2 }, {true, 5w2, S

y
1 }, {false, 10w2, S

y
2 }}

Here Sx
1 = {Tx

11 ∨ Tx
12}, Sx

2 = {Tx
21 ∨ Tx

22}, S
y
1 = Sy

2 = {},
where Tx

11 = {x2 ∈ {1, 2, . . . , 5}}, Tx
12 = {x2 ∈ {16, 17}},

Tx
21 = {x2 ∈ {6, 7, . . . , 15}}, Tx

22 = {x2 ∈ {18, 19, 20}}
Note that we have merged those constrained formulas together which have the same underlying first
order formula but possibly different constraint sets.

3. Apply Decomposer : Note that we can split the theory M ′ into two independent theories M
′′

and M
′′′

given as follows :

M
′′

= {{true ∨Q(x2), w1, S
x
1 }, {False ∨Q(x2), w1, S

x
2 }}

Here Sx
1 = {Tx

11 ∨ Tx
12}, Sx

2 = {Tx
21 ∨ Tx

21}
where Tx

11 = {x2 ∈ {1, 2, . . . , 5}}, Tx
12 = {x2 ∈ {16, 17}},

Tx
21 = {x2 ∈ {6, 7, . . . , 15}}, Tx

22 = {x2 ∈ {18, 19, 20}}

M
′′′

= {{true, 5w2, S
y
1 }, {false, 10w2, S

y
2 }}

Here Sy
1 = Sy

2 = {}

Since M
′′

and M
′′′

do not share any ground atom, they can be dealt with independently. Let us
consider M

′′
first. We can apply the decomposer rule on the equivalence class {x2}. Note that

this theory is already partitioned with respect to {x2} since the corresponding support sets (partition
elements) {1, 2, . . . , 5}, {6, 7, . . . , 15}, {16, 17}, and {18, 19, 20} are disjoint with each other. We
will use Vl to denote the lth partition element where 1 ≤ l ≤ 4. Let M

′′

l denote the theory obtained
by restricting M ′′ to a singleton {v}, where v ∈ Vl. Then

Z(M ′′) = Π4
l=1(Z(M

′′

l))|Vl| (refer theorem 4.1).

For illustration, M
′′

2 can be described as :

M
′′

2 = {{false ∨Q(x2), w1, S
x
1 }}

Here Sx
1 = {Tx

11, where Tx
11 = {x2 ∈ {6}}

Note that the support set of x2 has been reduced to a single constant due to the application of the
decomposer rule. We can perform a similar reduction for the other partition elements. Therefore

Z(M
′′
) = (Z(M

′′

1))5 ∗ (Z(M
′′

2))10 ∗ (Z(M
′′

3))2 ∗ (Z(M
′′

4))3

Note that each of the theories on R.H.S. above is now propositional and thus can be solved easily
using a propositional solver.

Next let us consider the theory M
′′′

. The first formula in M ′′′ evaluates to true, and the second
formula evaluates to false. Therefore applying the base case, we get

Z(M
′′′

) = e5w2 + 1

Finally, since M ′′ and M ′′′ are independent of each other :

Z(M
′
) = Z(M

′′
) ∗ Z(M

′′′
)

7

Domain Source Rules Type (# Evidence
of const.)

Professor & [1] GoodStud(s) ∧ GoodProf(p) ∧ AdvBy(s,p) prof (100) GoodStud
Student (PS) ⇒ FutrProf(s); AdvBy(s,p)⇒ CoAuth(s,p) student (var) GoodProf

Table 2: Dataset Details. var means the domain of this type was varied in experiments. Non-
evidence predicates were modeled as Query.

5 Experiments
Professor and Student (PS) : The details of dataset are provided in table 2. Figure 1a shows the
results as the domain size of student is varied from 100 to 800 with 40% evidence on student in the
PS domain. Evidence on prof is 50% in each case. The time taken by Normal grows exponentially
(y-axis is on log scale) whereas SetInEq scales almost linearly. GCFOVE fails to run even on
domain size of 100 of student. Figure 1b plots the number of nodes expanded by Normal and
SetInEQ. In SetInEq, no. of nodes almost remain constant whereas in Normal, no. of nodes increase
linearly. Figure 1c shows the time taken by SetInEq and Normal algorithms as we vary the evidence
on student with a fixed domain size of 300. Evidence on prof was not varied, keeping it fixed at
50%. The time required by SetInEq stays almost the constant whereas Normal grows exponentially
(y-axis is on log scale).

 1

 10

 100

 1000

 100 200 300 400 500 600 700 800

T
im

e
 (

in
 s

e
c
o

n
d

s
)

Domain Size

SetInEq
Normal

(a) Domain size vs time (seconds).
Y-axis is on log scale

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 100 200 300 400 500 600 700 800

N
o

.
o

f
n

o
d

e
s

Domain Size

SetInEq
Normal

(b) Domain size vs no. of nodes ex-
panded.

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

T
im

e
 (

in
 s

e
c
o

n
d

s
)

Evidence %

SetInEq
Normal

(c) Evidence percentage vs time
(seconds). Y-axis is on log scale

Figure 1: PS domain

References
[1] V. Gogate and P. Domingos. Probabilisitic theorem proving. In Proc. of UAI-11, pages 256–265, 2011.

[2] J. Kisyński and D. Poole. Constraint processing in lifted probabilistic inference. In Proc. of UAI-09, 2009.

[3] H. Mittal, P. Goyal, V. Gogate, and P. Singla. New rules for domain independent lifted MAP inference. In
Proc. of NIPS-14, pages 649–657, 2014.

8

	Constraint Language
	Splitting Operation

	Lifted Inference Rules
	Single Occurrence
	Example

	Experiments

