A Proof of Theorem 1

Our proof has four main parts. In Appendix A.1, we bound the regret associated with the event that
our high-probability confidence intervals do not hold. In Appendix A.2, we change counted events,
from partially-observed suboptimal solutions to their fully-observed prefixes. In Appendix A.3, we
bound the number of times that any suboptimal prefix can be chosen instead of the optimal solution
A*. In Appendix A.4, we apply the counting argument of Kveton et al. [12] and finish our proof.

Let Ry = R(A¢, w;) be the stochastic regret of CombCascade at time ¢, where A; and w; are the
solution and the weights of the items at time ¢, respectively. Let:

& = {36 € Es.t. ‘w(e) — thfl(e)(e)| > Ct—l,Tt,l(e)}

be the event that w(e) is outside of the high-probability confidence interval around W, , (.)(e) for
at least one item e € E at time ¢; and let £; be the complement of event &, the event that w(e) is in
the high-probability confidence interval around W, , (¢)(e) for all items e € E at time ¢. Then we
can decompose the expected regret of CombCascade as:

R(n)=E li 1{&}Ry| +E

S 1{E) Rt] . o

t=1

A.1 Confidence Intervals Fail

The first term in (4) is easy to bound because R is bounded and our confidence intervals hold with
high probability. In particular, Hoeffding’s inequality yields that for any e, s, and ¢:

P([i(e) — Wa(e)| > 1.0) < 2exp[—3logt],

and therefore:

E lz 11{&}1 <D DD Plwle) —Wile)] = )

t=1 ecE t=1 s=1
n t n
<23 Y explSlogt] <233 2 < T
e€E t=1 s=1 e€E t=1 3

2

Since Rt < 1, ]E[ ::1 ]l{gt} Rt] < %L

A.2  From Partially-Observed Solutions to Fully-Observed Prefixes

Let H; = (A1,01,...,A;—1,04_1, A;) be the history of CombCascade up to choosing solution
A,, the first £ — 1 observations and ¢ actions. Let [E |- | ;] be the conditional expectation given this
history. Then we can rewrite the expected regret at time ¢ conditioned on H,; as:

Aa

E[R;|H:] =E[Aa, 1{AA, >0} |H] =E L1{Aa, >0, O; > |A¢|} ‘ Ht}

t
and analyze our problem under the assumption that all items in A, are observed. This reduction is
problematic because the probability pa, can be low, and as a result we get a loose regret bound. To
address this problem, we introduce the notion of prefixes.

Let A = (ai,...,ay4)). Then B = (a1, ...,ax) is a prefix of A for any k < |Al. In the rest of our
analysis, we treat prefixes as feasible solutions to our original problem. Let B, be a prefix of A; as
defined in Lemma 1. Then Ag, > %A A, and pg, > % f*, and we can bound the expected regret at
time ¢ conditioned on H; as:

A
E[R|H] =E | =2:1{AA, >0, O, > [B,|} ‘ Ht}
4
< FE [ABt]l{ABt > 0, Ot > |Bt|}"Ht] . (5)
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Now we bound the second term in (4):

E in{et}Rtl @ij[n{a}E[Rtth

t=1 t=1

®) 4
< —E
f*

Equality (a) is due to the tower rule and that ]1{5 t} is only a function of H,. Inequality (b) follows
from the upper bound in (5).

ZABJ{&, Ap, >0, 0, > [Bi}| . (©)

A.3 Counting Suboptimal Prefixes

Let:

Fe=142Y car () = AB,, Ap, >0, O, > |By| (7)
eEBt
be the event that suboptimal prefix B; is “hard to distinguish” from A*, where B, =B, \ A* is the
set of suboptimal items in B;. The goal of this section is to bound (6) by a function of F;.

We bound ABt]l{Et, Ag, >0, Oy > |Bt|} from above for any suboptimal prefix B;. Our bound
is proved based on several facts. First, B, is a prefix of A;, and hence f(B;, U;) > f(A;, Uy) for
any Uy. Second, when CombCascade chooses A;, f(Ay, Uy) > f(A*, Uy). It follows that:

I1 Uile) = f(B,UL) > f(A, Uy) > (A", Uy) = ] Uile
e€B; e€A*
Now we divide both sides by [].c 4-p, Us(e):
H Uy(e) > H Uy(e)
GEEt e€A*\B,
and substitute the definitions of the UCBs from (3):
H min {Wthl(E) (6) + thl,thl(e)a 1} Z H min {thfl(E) (6) + thl,thl(eﬁ 1} .
ecB; e€ A*\B¢

Since &,

w(e) — W, ,(e)(€)| < c—1m, (e forall e € E and therefore:

H min {VA\ITFl(e)(e) + €171 (e)s 1} > H w(e)

e€ A*\B, e€A*\B,
H min {vAthil(e)( +e1m, 1(5),1} < H mln{w +2c_171, l(e),l}
e€B; e€B;
By Lemma 2:
Hmln{w +2Ct1Tt 1(5),1}< Hw -‘1-2th LTe 1(e) -
e€B; ecB; e€B;

Finally, we chain the last four inequalities and get:

Hw +QZCt LT 1(e) 2 Hw

ecB; eeB; e€ A*\By
which further implies that:

2 Z Ct—1,T,_y(e) = H w(e) — H w(e)

ecB, e€A*\By e€B;
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Since ¢, 1, (e) = Ct—1,T,_,(e) fOr any time ¢ < n, the event JF; in (7) happens. Therefore, we can
bound the right-hand side in (6) as:

> Ap1{E, Ap, >0, 0, > B/} <E[R(n)] .
t=1
where:
= Z ABt]]'{“Ft} . (8)
t=1

A.4 CombUCB1 Analysis of Kveton ez al. [12]

It remains to bound f{(n) in (8). Note that the event F; can happen only if the weights of all items

in B; are observed. As a result, R(n) can be bounded as in stochastic combinatorial semi-bandits.
The key idea of our proof is to introduce infinitely-many mutually-exclusive events and then bound
the number of times that these events happen when a suboptimal prefix is chosen [12]. The event ¢
at time ¢ is:
K2
G = {less than 51 K items in Bt were observed at most oy —— A? log n times,
B:

ey

2

—— log n times
2 ?
Ag,

less than 3;_1 K items in Bt were observed at most «; 1

2

. LA K
at least §; K items in B; were observed at most c; —— A2 log n times,
B

O; > |B4l},
where we assume that Ag, > 0; and the constants («;) and (3;) are defined as:
1=060>p1>02>...> 0> ...
>0 > .. >0 > ...,

and satisfy lim; oo o; = lim; o 8; = 0. By Lemma 3 of Kveton et al. [12], G; ; are exhaustive at
any time ¢ when («;) and (3;) satisfy:

o Bi—1 — Bi
\/6;7\/07 <1

In this case:

ZABt]l{]-}} = ZZABJ{GW Ag, >0} .

i=1 t=1

Now we introduce item-specific variants of events G; + and associate the regret at time ¢ with these
events. In particular, let:

- K2
Geit=GitN {e € By, Ti_1(e) < O‘iAT logn}
B

be the event that item e is not observed “sufficiently often” under event G; ;. Then it follows that:

1{Gi An, >0} £ 5 3" H{Geiss Ap, >0}
3 ~
ecE
because at least 3; K items are not observed “sufficiently often” under event G; ;. Therefore, we can
bound R(n) as

ABt

ZZZMGM, ABt>O}

ecE =1 t=1
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Let each item e be in N, suboptimal prefixes and A, ; > ... > A, n_ be the gaps of these prefixes,
ordered from the largest gap to the smallest. Then R(n) can be further bounded as:

R(n) <) > D ) 1{Geir, Ap, =A

ech i=1t=1 k=1
@) o e N K? Ac
< ZZZ L1de€By, Tii(e) < cigo— ~logn, Ap, = Ack, Ov = [Bil ¢ 25
ecE =1 t=1 k=1 €,
(b) =\ a;Klogn 1 1 1
I o R M PP |
EEE i=1 T e,l k=2 e,k—1
© = a;Klogn 2
Z ; /Bz Ae,Ne
eck =
= logn,
sy
ecE g
where inequality (a) follows from the definition of G ; ; and inequality (b) is from solving:
g 5 A0 K? Ak
1 By, T, (e) < oy 1 A Ack, O > |B &
A:ffgiﬂ;; e€ by, 1y, (e) < Ae,k ogn, Ap, = Acy, Op > | By B.K
where Ay., = (A1,..., A,) is a sequence of n solutions, O1., = (O1,...,0,) is a sequence of n

observations, TA1 nOtin (e) is the number of times that item e is observed in ¢ steps under A;.,, and

O1.n, By is the prefix of A, as defined in Lemma 1, and Bt = B, \ A*. Inequality (c) is by Lemma
3 of Kveton et al. [11]:

1 1 1
Aei > B |2 — o —
e > (N A)

k=2

2
AeN ’

s iVe

<

For the same («;) and (/3;) as in Theorem 4 of Kveton et al. [12], >°°° 5 < 267. Moreover, since

Ag, > %AA,, for any solution A, and its prefix B;, we have A, n, > %Amnin. Now we chain all
inequalities and get:

2
R(n) < %E R+ L < f Z 427? logn + L.

B Proof of Theorem 2

The key idea is to decompose the regret of CombCascade into two parts, where the gaps A 5, are at
most € and larger than e. In particular, note that for any € > 0:

R(n) = Z]l{AAt <e}R;| +E

t=1

Z]l{AAt > E}Rt . )

t=1

The first term in (9) can be bounded trivially as:

ZAAt]]'{AAt <e, Aap, > 0} <en

t=1

E|> 1{Aa, <c}Ry| =E

t=1

because Ap, < . The second term in (9) can be bounded in the same way as R(n) in Theorem I.
The only difference is that A, i, > € for all e € E. Therefore:

1{A R — 1 —L < ——1 —L.
; { At>€} ' f* Aemln Ogn+3 n f)kE Ogn+3

. [ " ] K 4272 2 4972KL 72
ecE
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Now we chain all inequalities and get:

4272K L
<
R(n) < Fre

4272K L1
Finally, we choose € = \/7%'” and get:
fn
KInl 2 KLnl 2
R(n) <2 4mm+gk 131W+2L’

which concludes our proof.

72
logn + en + ?L.

C Technical Lemmas

Lemma 1. Let A = (ay,...,a4|) € © be a feasible solution and By, = (ay, . .., ax) be a prefix of
k < |Al items of A. Then k can be set such that Ap, > 1A, and pp, > 5 f*.

Proof. We consider two cases. First, suppose that f(A,w) > % f*. Then our claims hold trivially
for k = |A|. Now suppose that f(A, @) < f*. Then we choose k such that:

f(Bg,w) < =f* <pg, .

N |

Such k is guaranteed to exist because Uiill [f(Bi,w),pB;] = [f(A,®), 1], which follows from the
facts that f(B;, w) = pp,w(a;) for any i < [A| and pp, = 1. We prove that A, > $A 4 as:

* — 1 * 1
Ap, =" = [(Br®) 2 3" = 384.
The first inequality is by our assumption and the second one holds for any solution A. m

Lemma2. Let0 < py,...,px < landuy,...,ug > 0. Then:

K K K
[T min {pe +ur, 13 < ] oe+ D s
k=1 k=1 k=1

This bound is tight when p1,...,px = land uy,...,uxg = 0.

Proof. The proof is by induction on K. Our claim clearly holds when K = 1. Now choose K > 1

and suppose that our claim holds for any 0 < py,...,px—1 < land uy,...,uxg—1 > 0. Then:
K K—1
H min {pk + Uf ]-} = min {pK + UK, ]-} H min {pk + Uf 1}
k=1 k=1
K-1 K-1
< min{px +ug,1} (H et Y Uk)
k=1 k=1
K-1 K-1 K-1
<p ] pr +ux [] pr+min{px +ux, 1} > we
k=1 k=1 > k=1
~—— <1
<1

K K
< Hpk+zuk'
= k=1

k=1
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