
A Proof of Theorem 1

Our proof has four main parts. In Appendix A.1, we bound the regret associated with the event that
our high-probability confidence intervals do not hold. In Appendix A.2, we change counted events,
from partially-observed suboptimal solutions to their fully-observed prefixes. In Appendix A.3, we
bound the number of times that any suboptimal prefix can be chosen instead of the optimal solution
A⇤. In Appendix A.4, we apply the counting argument of Kveton et al. [12] and finish our proof.

Let Rt = R(At,wt) be the stochastic regret of CombCascade at time t, where At and wt are the
solution and the weights of the items at time t, respectively. Let:

Et =
�9e 2 E s.t.

��w̄(e)� ˆwTt�1(e)(e)
�� � ct�1,Tt�1(e)

 

be the event that w̄(e) is outside of the high-probability confidence interval around ˆwTt�1(e)(e) for
at least one item e 2 E at time t; and let Et be the complement of event Et, the event that w̄(e) is in
the high-probability confidence interval around ˆwTt�1(e)(e) for all items e 2 E at time t. Then we
can decompose the expected regret of CombCascade as:

R(n) = E
"

nX

t=1

1{Et}Rt

#
+ E

"
nX

t=1

1
�Et

 
Rt

#
. (4)

A.1 Confidence Intervals Fail

The first term in (4) is easy to bound because Rt is bounded and our confidence intervals hold with
high probability. In particular, Hoeffding’s inequality yields that for any e, s, and t:

P (|w̄(e)� ˆws(e)| � ct,s)  2 exp[�3 log t] ,

and therefore:

E
"

nX

t=1

1{Et}
#

X

e2E

nX

t=1

tX

s=1

P (|w̄(e)� ˆws(e)| � ct,s)

 2

X

e2E

nX

t=1

tX

s=1

exp[�3 log t]  2

X

e2E

nX

t=1

t�2  ⇡2

3

L .

Since Rt  1, E [

Pn
t=1 1{Et}Rt]  ⇡2

3 L.

A.2 From Partially-Observed Solutions to Fully-Observed Prefixes

Let Ht = (A1,O1, . . . ,At�1,Ot�1,At) be the history of CombCascade up to choosing solution
At, the first t� 1 observations and t actions. Let E [· |Ht] be the conditional expectation given this
history. Then we can rewrite the expected regret at time t conditioned on Ht as:

E [Rt |Ht] = E [�At1{�At > 0} |Ht] = E

�At

pAt

1{�At > 0, Ot � |At|}
����Ht

�

and analyze our problem under the assumption that all items in At are observed. This reduction is
problematic because the probability pAt can be low, and as a result we get a loose regret bound. To
address this problem, we introduce the notion of prefixes.

Let A = (a1, . . . , a|A|). Then B = (a1, . . . , ak) is a prefix of A for any k  |A|. In the rest of our
analysis, we treat prefixes as feasible solutions to our original problem. Let Bt be a prefix of At as
defined in Lemma 1. Then �Bt � 1

2�At and pBt � 1
2f

⇤, and we can bound the expected regret at
time t conditioned on Ht as:

E [Rt |Ht] = E

�At

pBt

1{�At > 0, Ot � |Bt|}
����Ht

�

 4

f⇤E [�Bt1{�Bt > 0, Ot � |Bt|} |Ht] . (5)

10



Now we bound the second term in (4):

E
"

nX

t=1

1
�Et

 
Rt

#
(a)
=

nX

t=1

E
⇥
1
�Et

 
E [Rt |Ht]

⇤

(b)
 4

f⇤E
"

nX

t=1

�Bt1
�Et, �Bt > 0, Ot � |Bt|

 
#
. (6)

Equality (a) is due to the tower rule and that 1
�Et

 
is only a function of Ht. Inequality (b) follows

from the upper bound in (5).

A.3 Counting Suboptimal Prefixes

Let:

Ft =

8
<

:2

X

e2B̃t

cn,Tt�1(e) � �Bt , �Bt > 0, Ot � |Bt|
9
=

; (7)

be the event that suboptimal prefix Bt is “hard to distinguish” from A⇤, where ˜Bt = Bt \A⇤ is the
set of suboptimal items in Bt. The goal of this section is to bound (6) by a function of Ft.

We bound �Bt1
�Et, �Bt > 0, Ot � |Bt|

 
from above for any suboptimal prefix Bt. Our bound

is proved based on several facts. First, Bt is a prefix of At, and hence f(Bt,Ut) � f(At,Ut) for
any Ut. Second, when CombCascade chooses At, f(At,Ut) � f(A⇤,Ut). It follows that:

Y

e2Bt

Ut(e) = f(Bt,Ut) � f(At,Ut) � f(A⇤,Ut) =

Y

e2A⇤

Ut(e) .

Now we divide both sides by
Q

e2A⇤\Bt
Ut(e):

Y

e2B̃t

Ut(e) �
Y

e2A⇤\Bt

Ut(e)

and substitute the definitions of the UCBs from (3):
Y

e2B̃t

min

�
ˆwTt�1(e)(e) + ct�1,Tt�1(e), 1

 �
Y

e2A⇤\Bt

min

�
ˆwTt�1(e)(e) + ct�1,Tt�1(e), 1

 
.

Since Et happens,
��w̄(e)� ˆwTt�1(e)(e)

�� < ct�1,Tt�1(e) for all e 2 E and therefore:
Y

e2A⇤\Bt

min

�
ˆwTt�1(e)(e) + ct�1,Tt�1(e), 1

 �
Y

e2A⇤\Bt

w̄(e)

Y

e2B̃t

min

�
ˆwTt�1(e)(e) + ct�1,Tt�1(e), 1

 
Y

e2B̃t

min

�
w̄(e) + 2ct�1,Tt�1(e), 1

 
.

By Lemma 2:
Y

e2B̃t

min

�
w̄(e) + 2ct�1,Tt�1(e), 1

 
Y

e2B̃t

w̄(e) + 2

X

e2B̃t

ct�1,Tt�1(e) .

Finally, we chain the last four inequalities and get:
Y

e2B̃t

w̄(e) + 2

X

e2B̃t

ct�1,Tt�1(e) �
Y

e2A⇤\Bt

w̄(e) ,

which further implies that:

2

X

e2B̃t

ct�1,Tt�1(e) �
Y

e2A⇤\Bt

w̄(e)�
Y

e2B̃t

w̄(e)

�
Y

e2A⇤\Bt

w̄(e)

| {z }
1

2

4
Y

e2A⇤\Bt

w̄(e)�
Y

e2B̃t

w̄(e)

3

5

= �Bt .
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Since cn,Tt�1(e) � ct�1,Tt�1(e) for any time t  n, the event Ft in (7) happens. Therefore, we can
bound the right-hand side in (6) as:

E
"

nX

t=1

�Bt1
�Et, �Bt > 0, Ot � |Bt|

 
#
 E

h
ˆR(n)

i
,

where:

ˆR(n) =

nX

t=1

�Bt1{Ft} . (8)

A.4 CombUCB1 Analysis of Kveton et al. [12]

It remains to bound ˆR(n) in (8). Note that the event Ft can happen only if the weights of all items
in Bt are observed. As a result, ˆR(n) can be bounded as in stochastic combinatorial semi-bandits.
The key idea of our proof is to introduce infinitely-many mutually-exclusive events and then bound
the number of times that these events happen when a suboptimal prefix is chosen [12]. The event i
at time t is:

Gi,t = {less than �1K items in ˜Bt were observed at most ↵1
K2

�

2
Bt

log n times,

. . . ,

less than �i�1K items in ˜Bt were observed at most ↵i�1
K2

�

2
Bt

log n times,

at least �iK items in ˜Bt were observed at most ↵i
K2

�

2
Bt

log n times,

Ot � |Bt|} ,
where we assume that �Bt > 0; and the constants (↵i) and (�i) are defined as:

1 = �0 > �1 > �2 > . . . > �k > . . .

↵1 > ↵2 > . . . > ↵k > . . . ,

and satisfy limi!1 ↵i = limi!1 �i = 0. By Lemma 3 of Kveton et al. [12], Gi,t are exhaustive at
any time t when (↵i) and (�i) satisfy:

p
6

1X

i=1

�i�1 � �ip
↵i

 1 .

In this case:

ˆR(n) =

nX

t=1

�Bt1{Ft} =

1X

i=1

nX

t=1

�Bt1{Gi,t, �Bt > 0} .

Now we introduce item-specific variants of events Gi,t and associate the regret at time t with these
events. In particular, let:

Ge,i,t = Gi,t \
⇢
e 2 ˜Bt, Tt�1(e)  ↵i

K2

�

2
Bt

log n

�

be the event that item e is not observed “sufficiently often” under event Gi,t. Then it follows that:

1{Gi,t, �Bt > 0}  1

�iK

X

e2Ẽ

1{Ge,i,t, �Bt > 0}

because at least �iK items are not observed “sufficiently often” under event Gi,t. Therefore, we can
bound ˆR(n) as:

ˆR(n) 
X

e2Ẽ

1X

i=1

nX

t=1

1{Ge,i,t, �Bt > 0} �Bt

�iK
.
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Let each item e be in Ne suboptimal prefixes and �e,1 � . . . � �e,Ne be the gaps of these prefixes,
ordered from the largest gap to the smallest. Then ˆR(n) can be further bounded as:

ˆR(n) 
X

e2Ẽ

1X

i=1

nX

t=1

NeX

k=1

1{Ge,i,t, �Bt = �e,k} �e,k

�iK

(a)

X

e2Ẽ

1X

i=1

nX

t=1

NeX

k=1

1

(
e 2 ˜Bt, Tt�1(e)  ↵i

K2

�

2
e,k

log n, �Bt = �e,k, Ot � |Bt|
)

�e,k

�iK

(b)

X

e2Ẽ

1X

i=1

↵iK log n

�i

"
�e,1

1

�

2
e,1

+

NeX

k=2

�e,k

 
1

�

2
e,k

� 1

�

2
e,k�1

!#

(c)
<
X

e2Ẽ

1X

i=1

↵iK log n

�i

2

�e,Ne

=

X

e2Ẽ

K
2

�e,Ne

" 1X

i=1

↵i

�i

#
log n ,

where inequality (a) follows from the definition of Ge,i,t and inequality (b) is from solving:

max

A1:n,O1:n

nX

t=1

NeX

k=1

1

(
e 2 ˜Bt, T

A1:n,O1:n
t�1 (e)  ↵i

K2

�

2
e,k

log n, �Bt = �e,k, Ot � |Bt|
)

�e,k

�iK
,

where A1:n = (A1, . . . , An) is a sequence of n solutions, O1:n = (O1, . . . , On) is a sequence of n
observations, TA1:n,O1:n

t (e) is the number of times that item e is observed in t steps under A1:n and
O1:n, Bt is the prefix of At as defined in Lemma 1, and ˜Bt = Bt \A⇤. Inequality (c) is by Lemma
3 of Kveton et al. [11]:

"
�e,1

1

�

2
e,1

+

NeX

k=2

�e,k

 
1

�

2
e,k

� 1

�

2
e,k�1

!#
<

2

�e,Ne

.

For the same (↵i) and (�i) as in Theorem 4 of Kveton et al. [12],
P1

i=1
↵i
�i

< 267. Moreover, since
�Bt � 1

2�At for any solution At and its prefix Bt, we have �e,Ne � 1
2�e,min. Now we chain all

inequalities and get:

R(n)  4

f⇤E
h
ˆR(n)

i
+

⇡2

3

L  K

f⇤

X

e2Ẽ

4272

�e,min
log n+

⇡2

3

L .

B Proof of Theorem 2

The key idea is to decompose the regret of CombCascade into two parts, where the gaps �At are at
most ✏ and larger than ✏. In particular, note that for any ✏ > 0:

R(n) = E
"

nX

t=1

1{�At  "}Rt

#
+ E

"
nX

t=1

1{�At > "}Rt

#
. (9)

The first term in (9) can be bounded trivially as:

E
"

nX

t=1

1{�At  "}Rt

#
= E

"
nX

t=1

�At1{�At  ", �At > 0}
#
 ✏n

because �At  ". The second term in (9) can be bounded in the same way as R(n) in Theorem 1.
The only difference is that �e,min � ✏ for all e 2 ˜E. Therefore:

E
"

nX

t=1

1{�At > "}Rt

#
 K

f⇤

X

e2Ẽ

4272

�e,min
log n+

⇡2

3

L  4272KL

f⇤✏
log n+

⇡2

3

L .
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Now we chain all inequalities and get:

R(n)  4272KL

f⇤✏
log n+ ✏n+

⇡2

3

L .

Finally, we choose ✏ =

s
4272KL log n

f⇤n
and get:

R(n)  2

p
4272

s
KLn log n

f⇤ +

⇡2

3

L < 131

s
KLn log n

f⇤ +

⇡2

3

L ,

which concludes our proof.

C Technical Lemmas

Lemma 1. Let A = (a1, . . . , a|A|) 2 ⇥ be a feasible solution and Bk = (a1, . . . , ak) be a prefix of
k  |A| items of A. Then k can be set such that �Bk � 1

2�A and pBk � 1
2f

⇤.

Proof. We consider two cases. First, suppose that f(A, w̄) � 1
2f

⇤. Then our claims hold trivially
for k = |A|. Now suppose that f(A, w̄) < 1

2f
⇤. Then we choose k such that:

f(Bk, w̄)  1

2

f⇤  pBk .

Such k is guaranteed to exist because
S|A|

i=1[f(Bi, w̄), pBi ] = [f(A, w̄), 1], which follows from the
facts that f(Bi, w̄) = pBiw̄(ai) for any i  |A| and pB1 = 1. We prove that �Bk � 1

2�A as:

�Bk = f⇤ � f(Bk, w̄) � 1

2

f⇤ � 1

2

�A .

The first inequality is by our assumption and the second one holds for any solution A.

Lemma 2. Let 0  p1, . . . , pK  1 and u1, . . . , uK � 0. Then:

KY

k=1

min {pk + uk, 1} 
KY

k=1

pk +

KX

k=1

uk .

This bound is tight when p1, . . . , pK = 1 and u1, . . . , uK = 0.

Proof. The proof is by induction on K. Our claim clearly holds when K = 1. Now choose K > 1

and suppose that our claim holds for any 0  p1, . . . , pK�1  1 and u1, . . . , uK�1 � 0. Then:

KY

k=1

min {pk + uk, 1} = min {pK + uK , 1}
K�1Y

k=1

min {pk + uk, 1}

 min {pK + uK , 1}
 

K�1Y

k=1

pk +

K�1X

k=1

uk

!

 pK

K�1Y

k=1

pk + uK

K�1Y

k=1

pk

| {z }
1

+min {pK + uK , 1}| {z }
1

K�1X

k=1

uk


KY

k=1

pk +

KX

k=1

uk .
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