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1 Derivation of the Likelihood Gain

In this section, we derive the likelihood gain of adding an And-Or fragment into the grammar. In
our learning algorithm when an And-Or fragment is added into the grammar, we try to reduce the
training samples using the new grammar rules and update the top-level And-rules accordingly. We
denote the set of reductions being made on the training samples by RD. Suppose in reduction
rd ∈ RD, we replace a configuration e of nodes a1j1a2j2 . . . anjn with the new And-node A, where
aiji(i = 1 . . . n) is an existing terminal or nonterminal node that can be generated by the new Or-
node Oi in the And-Or fragment. With reduction rd, the Viterbi likelihood of the training sample x
where rd occurs is changed by two factors. First, since the grammar now generates the And-node
A first, which then generates a1j1a2j2 . . . anjn , the Viterbi likelihood of sample x is reduced by a
factor of:

P (A→ a1j1a2j2 . . . anjn) =

n∏
i=1

P (Oi → aiji)fA(a1j1a2j2 . . . anjn)

where fA is the probability distribution defined on the relations in the And-rule A→ O1O2 . . . On.
In the derivation below we omit the fA term for clarity, i.e., we assume deterministic relations in
the And-rule. In the final likelihood gain formula, we can add the fA term back by multiplying
the likelihood gain with the factor of

∏
rd∈RD fA(rd) where fA(rd) is the value of the fA term in

reduction rd.

Second, the reduction may make sample x identical to some other training samples, which increases
the Viterbi likelihood of sample x by a factor equal to the ratio of the numbers of such identical
samples after and before the reduction. This factor can be computed based on the context matrix
CM , in which each row is a configuration of existing nodes covered by the And-Or fragment, each
column is a context which is the surrounding patterns of a configuration, and each element is the
number of times that the corresponding configuration and context co-occur in the training set. So
the second factor is equal to: ∑

e′ CM [e′, x− e]
CM [e, x− e]

where x− e denotes the context of configuration e in sample x, and e′ in the summation or product
range over all the configurations covered by the And-Or fragment.

Putting these two types of changes to the likelihood together, we can formulate the likelihood gain
of learning from the And-Or fragment as follows.

P (X|Gt+1)

P (X|Gt)
=

∏
rd∈RD

(
n∏

i=1

P (Oi → aiji)

) ∑
e′ CM [e′, x− e]
CM [e, x− e]

=

n∏
i=1

mi∏
j=1

P (Oi → aij)
‖RDi(aij)‖ ×

∏
c(
∑

e CM [e, c])
∑

e
CM [e,c]∏

e,c CM [e, c]CM [e,c]
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whereGt andGt+1 are the grammars before and after learning from the And-Or fragment,RDi(aij)
denotes the subset of reductions in RD in which the i-th node of the configuration being reduced
is aij , e′ and e in the summation or product range over all the configurations covered by the And-
Or fragment, and c in the product ranges over all the contexts that appear in CM . By applying
the Lagrange multiplier method, it can be shown that the probabilities of Or-rules in the And-Or
fragment must take the following values in order to maximize the likelihood gain:

∀i, j P (Oi → aij) =
‖RDi(aij)‖∑mi

j′=1 ‖RDi(aij′)‖
=
‖RDi(aij)‖
‖RD‖

Since the prior probability of the grammar does not involve the rule probabilities, the above optimal
values of rule probabilities also maximize the posterior gain. Putting the optimal rule probabilities
into the likelihood gain formula, we get:

P (X|Gt+1)

P (X|Gt)
=

∏n
i=1

∏mi

j=1 ‖RDi(aij)‖‖RDi(aij)‖

‖RD‖n‖RD‖
×
∏

c(
∑

e CM [e, c])
∑

e
CM [e,c]∏

e,c CM [e, c]CM [e,c]

2 Interpretation of the Likelihood Gain

Despite the complex form of the likelihood gain, it has an intuitive interpretation. We first define the
multiplicative coherence of a tensor. A tensor is multiplicatively coherent when the numbers in the
tensor are proportional. More specifically, given a tensor T of order n in which the i-th index ranges
from 1 to mi, T is multiplicatively coherent iff. there exists a constant µ and a set of constants
βij (i = 1, . . . , n; j = 1, . . . ,mi) such that

T [a1, a2, . . . , an] = µ

n∏
i=1

βiai

The multiplicative coherence of a tensor T can be measured with the following formula, which is
extended from a similar measurement on matrices [1].∏n

i=1

∏mi

j=1 ‖Ti(aij)‖‖Ti(aij)‖

‖T‖(n−1)‖T‖
∏

e ‖T (e)‖‖T (e)‖

where Ti(aij) denotes the sub-tensor of T in which the i-th index takes the value of aij , e in the
product ranges over all the elements of T , and ‖ · ‖ denotes the summation of all the elements in the
enclosed tensor. It can be shown that this formula has a larger value if the elements in the tensor are
closer to being multiplicatively coherent, and the formula reaches its maximal value of 1 when the
the tensor is perfectly coherent.

Now let us rewrite the likelihood gain formula. Let RD(e) be the subset of reductions in RD in
which the configuration being reduced is e. Based on the definition of the context matrix CM , we
have ‖RD(e)‖ =

∑
c CM [e, c] and ‖RD‖ =

∑
e,c CM [e, c]. So we can rewrite the likelihood gain

as:∏n
i=1

∏mi

j=1 ‖RDi(aij)‖‖RDi(aij)‖

‖RD‖(n−1)‖RD‖
∏

e ‖RD(e)‖‖RD(e)‖×
∏

c(
∑

e CM [e, c])
∑

e
CM [e,c] ×

∏
e(
∑

c CM [e, c])
∑

c
CM [e,c]∏

e,c CM [e, c]CM [e,c] × (
∑

e,c CM [e, c])

∑
e,c

CM [e,c]

The first of the two factors in the formula measures the multiplicative coherence of the n-gram
tensor of the And-Or fragment. The n-gram tensor NA of an And-Or fragment is an order n tensor
where n is the number of Or-nodes in the fragment. The i-th dimension of the n-gram tensor NA is
indexed by the set of nodes ai1, ai2, . . . , aimi that the Or-node Oi can generate. The tensor element
NA[a1, a2, . . . , an] is the number of times the configuration consisting of a1, a2, . . . , an as defined
by the And-Or fragment appears in the training samples. It can be seen that if the generation of
child nodes at each Or-node is independent of that at the other Or-nodes in the And-Or fragment,
then the resulting n-gram tensor NA is very likely to be multiplicatively coherent. Therefore, the
first factor of the formula provides a surrogate measure of how much the training data support the
context-freeness within the And-Or fragment. The second factor of the formula, on the other hand,
measures the multiplicative coherence of the context matrix CM (which is an order 2 tensor). If the
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generation of configurations at the And-Or fragment is independent of its context, then the resulting
context matrix CM is very likely to be multiplicatively coherent. Therefore, the second factor of the
formula provides a surrogate measure of how much the training data support the context-freeness
of the And-Or fragment against its context. By combining these two factors, the likelihood gain
measures the support of the training data to the context-freeness of the new And-Or fragment when
it is added into the And-Or grammar.

3 The Complete Algorithm

We have described the learning algorithm framework in section 3.2 and the algorithm of finding
And-Or fragments in section 3.3. Here we give the pseudocode of the complete algorithm. We
employ greedy search in the pseudocode, and it is straightforward to extend the code to perform
beam search.

Algorithm 1 Structure Learning of And-Or Grammars
Input: the training set X
Output: an And-Or grammar G

1: G⇐ the initial grammar constructed from X
2: loop
3: F ⇐ {}
4: repeat
5: f ⇐ an And-Or fragment with two Or-nodes and two leaf nodes constructed from a ran-

domly selected bigram from X
6: optimize the posterior gain of f using greedy or beam search via four operators:

adding/removing Or-nodes, adding/removing leaf nodes
7: if f increases the posterior gain and f 6∈ F then
8: add f into F
9: end if

10: until after a pre-specified number of iterations
11: if F is empty then
12: return G
13: end if
14: f∗ ⇐ the fragment in F with the highest posterior gain
15: insert f∗ into G
16: reduce X using the grammar rules in f∗ and update G accordingly
17: end loop

In computing the posterior gain of an And-Or fragment, we need to construct its context matrix. The
complete context matrix can be very large and sparse, and we restrict the range of the context to
compress the matrix and accelerate the computation.

Note that the grammar learned with the approach described so far does not contain any recursive
grammar rule, because the new grammar rules introduced in each learning iteration only specify
how the new nonterminal node generates existing terminal or nonterminal nodes but not the reverse.
Recursive grammar rules, while not useful in some types of grammars (e.g., image grammars),
can be important in other types of grammars (e.g., natural language grammars). In order to learn
recursive grammar rules, at the end of each learning iteration we can additionally search for grammar
rules that generate the new And-node from existing nonterminal nodes based on the same posterior
probability objective.

4 Experimental Results

In section 4.2 we have described our experiments of learning image grammars and shown that our
approach outperforms the competing approach. Here we illustrate a few grammars learned in the
experiments to gain more insight. Figure 1 shows the top levels of the true grammar used to produce
the synthetic dataset of animal face sketches [2]. Figure 2 shows the top levels of the grammar
produced by our learning approach when trained on 400 synthetic images. It can be seen that the

3



S

A B C D E F G H

And‐node Or‐node

A

a1 a2 a3

B

b1 b2 b3

C

c1 c2 c3

D

d1 d2 d3

E

e1 e2 e3

F

f1 f2 f3

G

g1 g2 g3

H

h1 h2 h3

SSAnd‐node Or‐node

A B C D
e1

e2 e3

F G H

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 f1 f2 f3 g1 g2 g3 h1 h2 h3

Figure 1: The top three levels of the true grammar that produces the synthetic dataset of animal face
sketches [2]. The eight Or-nodes in the second level represent different parts of the animal face, e.g.,
ears, eyes, nose and mouth. The spatial relations specified at the And-nodes are not shown.
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Figure 2: The top levels of the grammar produced by our learning algorithm which was trained on
400 synthetic images.

SAnd‐node Or‐node

h1h2 h3h1h2 h3

61 And‐nodes 52 And‐nodes 66 And‐nodes

Figure 3: The top levels of the grammar produced by the competing algorithm [3] which was trained
on the same set of 400 synthetic images.

learned grammar is equivalent to the true grammar, although it unnecessarily separates the three
configurations of node H in the true grammar into two groups. Figure 3 shows the top levels of
the grammar produced by the competing approach [3] which was trained on the same set of 400
synthetic images. This grammar has a very different structure from the true grammar in that it
enumerates a large number of sub-grammars each representing a small subset of valid compositions,
which are then grouped under a few top-level Or-nodes. As a result, the size of the grammar is
about 100 times larger than the true grammar and the grammar learned by our approach. It is also
less general than the true grammar, as indicated by the low recall. We believe that the separation of
learning And-nodes and Or-nodes in [3] is to blame. In contrast, our approach learns And-nodes and
Or-nodes in a unified manner via And-Or fragments, which leads to a more compact and accurate
grammar.
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