A Convergence Guarantees with Dense Noise and Sparse Corruptions

We will now present recovery guarantees for the TORRENT-FC algorithm when both, dense noise,
as well as sparse adversarial corruptions are present. Extensions for TORRENT-GD and TORRENT-
HYB will follow similarly.

Theorem 10. Let X = [x1,...,X,] € RPX™ be the given data matrix and y = XTw* +b + €
be the corrupted output with sparse corruptions ||bllg < « - n as well as dense bounded noise €.
Let Algorithm 2| be executed on this data with the thresholding parameter set to 3 > o. Let 3 be

an invertible matrix such that X = ¥ 2y satisfies the SSC and SSS propernes at level vy with
constants Ay and A, respectively (see Definition|] . If the data satisfies fat < 1, then after t =

‘/Al,g

O (l og (\} I 6”2 )) iterations, Algorithmobtains an e-accurate solution w' i.e. |w' — w*||, <

llell,
e+C NG for some constant C > 0.

Proof. We being by observing that the optimality of the model w'*! on the active set S; ensures
Hyst - X;Wt+1||2 = HX;(W* —w'th) teg, + bStH2 < HYt - X;,W*Hz = lles, + bs, 5,
which, upon the application of the triangle inequality, gives us

[ Xg, (w* —=w)||, < 2]les, +bs, |-

Since || Xd, (w* —w'T)||, > /A1_p ||[w* —wiT|

| < 2 2
2= /N5 VM_s

The hard thresholding step, on the other hand, guarantees that

o» WE get

[w" —w les, +bs, |, < (lelly + IIbs.Il,) -

2
t+1H

2
T * t+1 _
“‘<8t+1("“ - W ) tTES t bSt+1 5 5

T
Hyst+1 - XSt+1W

<Jlys. - XL
T * 2
— ||XS*(W —Wt+1) 9"
As before, let CR¢11 = S¢11\Sx and MDyy; = S,\S¢4+1. Then we have
T T
HXCRt+1 (w* — wt+1) + €cr,y1 + PR,y ) < HXMDt+1 (w* — wt+1) + EMD, 44 )

An application of the triangle inequality and the fact that ||bCRt - H 5 = Hbst - || gives us
Hb5t+1 ||2 < HXI:/ertH (w* — Wt+1)H2 + HXgRtJrl (w" — Wt+1)H2 + ||€CRt+1 ||2 + HeMDt+1H2
<2y/Ag [[w* — W[, + V2],
4./A 4./A\
b
\//\17_” Sf”2 (\/Ai_+\[) ||€||2
<n-[bs,ll + 1+ V2) el
where the second step uses the fact that max {|CRt1|, [MDs41]} < /-7 and the Cauchy-Schwartz

4y/As

inequality, and the last step uses the fact that for sufficiently small 3, we have n := eTert Using
1-8

the inequality for ||w'*!

, again gives us

2
* t+1
wh—w < —==(llelly + Ibs.l,)
H o < (el + s,
4+2\/§ n'
< —=—= H elly + ||b||2
«//\ _
For large enough n we have /A\1_3 > O (\/ﬁ), which completes the proof. O
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Notice that for random Gaussian noise, this result gives the following convergence guarantee.

Corollary 11. Let the date be generated as before with random Gaussian dense noise i.e. 'y =
XTw* + b+ e with |bllo < a-nand e ~ N(0,0%-1I). Let Algorithm be executed on
this data with the thresholding parameter set to B > «. Let X be an invertible matrix such that

X = X0 12x satisfies the SSC and SSS properties at level v with constants A and A, respectively

(see Definition |(l)). If the data satisfies j//\;”AB < 1, then after t = O (log (ﬁ %)) iterations,
1-5

Algorithm 2| obtains an e-accurate solution w' i.e. ||w' —w*|, < €+ 20C, where C > 0 is the
constant in Theorem[I10}

Proof. Using tail bounds on Chi-squared distributions [16], we get, with probability at least 1 — 4,

1 1
lell3 < o? <n+2\/nlog§ +210g6> :

Thus, for n > 4log §, we have ||€H§ < 20n which proves the result. O

Vs
to those made by Theorem [3| and would be satisfied with high probability by data sampled from

sub-Gaussian distributions (see Appendix G| for details).

Remark 7. We also note that Corollary |1 1| does not guarantee a consistent estimate of w* whereas
the least squares estimate is a consistent one in the non-corrupted regression setting. This is indeed a
point of interest. However, we notice that existing works [0, 5] also are unable to tolerate a high level
of adversarial corruption along with dense noise. Whereas [[6] are only able to tolerate a vanishing
1/,/p fraction of corruptions, [5] require the corruptions not be adaptive and be added independently
of the data points and the white noise.

. . . A .
Remark 6. We note that the design assumptions made by Theorem [10{(i..e RaVA < 1) are similar

B Proof of Theorem

Theorem 3. Let X = [x1,...,%,] € RPX" be the given data matrix and y = X7 w* + b be the

corrupted output with ||b[|y < a - n. Let Algorithm 2] be executed on this data with the thresholding

parameter set to 5 > «. Let 3 be an invertible matrix such that X = X, 12X satisfies the

SSC and SSS properties at level v with constants A, and A, respectively (see Definition . If the

data satisfies % < 1, then aftert = O (log (ﬁ@)) iterations, Algorithmobtains an

e-accurate solution w’ i.e. |w! — w*||, <e.

Proof. Letrt =y — X Tw! be the vector of residuals at time ¢ and C;, = X 5, X ; Since A\, > 0
(something which we shall establish later), we get
witl = Ot_lXStySt = Ct_lXSt (X;W* + bst) =w"+ Ct_lXStbSt.
Thus, for any set S C [n], we have
I‘?—l =Y¥Ys — ngt_,'_l = bS — Xérct_lXStbSt
This, gives us
2 _

HbSt+1 HQ = HbSt+1 - X;—t+10t IXStbSt

G

2 2
9 - HX;—HJC;lXStbSt 5 +2- bT X‘;;+IC;1XStbSt

Stt1

IN

_ 2 _ 2 _
bs, — X&.C; X, bs, || — ngﬂq Xs,bs, | +2-b3,, XL, O X, bs,

Stt1

¢ _ 2 _ 2 -
£ || x4.C7 X, [l - |[ X4, G Xsibs, | +2- b5, XE,,, €7 X bs,

St+1

2
< HX;—*\Sf,-klct_lXStbSt 5 +2'bT X;HCt_lXStbSt

11



2

¢ || 37 v vT\ ¥ v vT\ ¥
A‘XST*\SM (XStXSTt) Xsbs,|| +2-bd X4 (XSth“t) Xs,bs,
2
G A% Ag
S5z Ibsl 42 b s
1-5
2
where (; follows since the hard thresholding step ensures rgtll < HrtHH (see Claimand

use the fact that 5 > «), (2 notices the fact that bg, = 0. (3 follows from setting X = 251/2)( and
XJ{Cr'Xg = XJ(Xs,X4,) ' Xgr. (4 follows from the definition of SSC and SSS properties,
IIbs,llp < |Ibllyg < B-nand |S,\Siy1] < B - n. So]ving the quadratic equation gives us

[bs. ., < (1 +v2)- = ||bst|\2 (4)

(1+v2)Ag
)\173

Letn := denote the convergence rate in (4] . We shall show below that for a large family

of random designs, we have < 1if n > Q (p + log 3 ). We now recall from our earlier discussion

that wit! = w* + C; ' Xg, b, which gives us
VA VA
N s, ll, < n'- N bl <

lw'™ = well, =[G X, bs, |, <

1-8

fort > log1 ( N As ”b“ > Noting that V P <o ( ) establishes the convergence result. [

C Proof of Theorem 4

Theorem 4. Let X = [x1,...,%,] € RP*" be the given data matrix with each x; ~ N(0,Y). Let
y = X "w*+band bl < a-n. Also, leta < B < gz andn > Q (p + log 5 ). Then, with proba-

bility at least 1 — 4, the data satisfies (H‘f)A” More specifically, after 7" > 10log (\lf HbeHQ )

|§6.

iterations of Algorithm Iwrth the thresholdmg parameter set to 3, we have Hw

Proof. We note that whenever x ~ A(0, %) then ©~/2x ~ A(0,I). Thus, Theoremassures

us that with probability at least 1 — J, the data matrix X = X71/2X satisfies the SSC and SSS
properties with the following constants

Ag < pn (1—+—3e1 /610g;> +0 (Unp-i—nlogi)
Al—g >n—pn <1—|—361 /610g2> - Q (\/np—i-nlog}S)

Thus, the convergence given be Algorithm |1} when invoked with ¥g = X, relies on the quantity
= % being less than unity. This translates to the requirement (1 ++/2)Az < A\;_ 5. Using
the above bounds translates that requirement to

(24+V2)8 <1+361/610g;>+0(Vi"‘ibg;) < 1.

(4) (B)

Forn = Q (p + log %) the second quantity (B) can be made as small a constant as necessary.

Tackling the first quantity (A) turns out to be more challenging. However, we can show that for all
B < a5, We getn = (1?{;1\’3 <
tolerate a corruptlon index of upto a < 190 However, we note that using a more finely tuned setting
of the constant € in the proof of Theorem [I5]and a more careful proof using tight tail mequahtres
for chi- squared distributions [[16]], we can achieve a better corruption level tolerance of a < 65 The
constants in the expression for n can be optimized as well. The current bound can be shown to hold
for n > 270 (p + log 1). O

0 Wthh establishes the claimed result. Thus, Algorrthmcan
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D Proof of Theorem 3

Theorem 5. Let X = [x1,...,%,] € RPX" be the given data matrix and y = X7 w* + b be the
corrupted output with ||b|lp < « - n. Let X satisfy the SSC and SSS properties at level v with
constants A, and A, respectively (see Definition . Let Algorithmbe executed on this data with
the GD update (Algorithm [3)) with the thresholding parameter set to 3 > « and the step length set

ton = ﬁ If the data satisfies max {77 Ag,1— 77>\1—5} < %, then aftert = @ (10g (%%))

iterations, Algorithmobtains an e-accurate solution w' i.e. |[w! — w*|, <e.

Proof. Letr" =y — X "w' be the vector of residuals at time ¢ and C; = X, XJ . We have

W = wh . Xerl, = w41 X, (ys, — Xg,w')

2 2
The thresholding step ensures that ‘ rgﬁl < Hrtsﬂ||2 (see Claim |19 and use 3 > a) which
) .
implies
rt+1 t+1
CR¢41 9 = MDy 41 5’

where CRyy1 = St41\ S, are the corrupted recoveries and MDy 1 = S, \S;; are the clean points
missed out from detection. Note that |[CR; 41| < « - n and [MD;41| < - n. Since bg, = 0 and
MDy; C S., we get

T " t+1 T x t4+1
HbCRH»l +Xc11,,+1("" -w )HQS HXMDHl(W -Ww )H2

Using the SSS conditions and the fact that ||bs, ,, ||, = ||bs,,\s.

Ibsiall, = bers fl, < (VAa +V/Ag) w7 = wi ], <20/Ag [Jw = w!*
Now, using the expression for w*! gives us
[w* = w ™, < [[(1 = nCo(w* = W), +nXs,bs,,
We will bound the two terms on the right hand separately. We can bound the second term easily as
01 Xs,bs, [l < 1v/Aa s, [l < nv/Ag s, s
since ||bg, ||, < a - n. For the first term we observe that for 7 < ﬁ, we have

, gives us

|I —nCill, = sup |1 -n- VTCtV‘ = sup {l-n- VTCtV} <1-—nA_g,
vesr—1 vesr-1
which we can use to bound
[w* =Wy < (1= nhap) [w" = w'||, +1/As [[bs, [

This gives us, for n = ~—,

1-8
A— A
sl < 285 o = w2 <2 (12 3152 ) VRS o = wil 2 52 o,
—_———— ——
(P) (@)

For Gaussian designs and small enough 3, we can show (Q) < i as we did in Theorem 4| To bound
(P), we use the lower bound on A;_g given by Theorem |15]and use the following tighter upper
bound for A;_g:

AN_p < ((1—6)—!—36 66(1—6)log;)n+(’)< np+n10g(15>

The above bound is obtained similarly to the one in Theorembut uses the identity (2) = (nf k) <

n—~k
(nefk> for values of k > n/2 instead. For small enough 3 and n = Q (k*(X)(p + log §)),

we can then show (P) < 1 aswell. Let ¥, := /n|jw* —w'|, + ||bs,||. Using elementary

manipulations and the fact that \/Ag > 2 (y/n), we can then show that
\I’t+1 S 3/4 . \I/t.

Thus,int = O (log ((HW* o + %) %)) iterations of the algorithm, we arrive at an e-optimal

solution i.e. ||[w* — w'||, < e. A similar argument holds true for sub-Gaussian designs as well. [

13



E Proof of Theorem

Theorem 6. Suppose Algorithm[d]is executed on data that allows Algorithms[2]and [3]a convergence
rate of ngc and ngp respectively. Suppose we have 2-1pc-17gp < 1. Then for any interleavings of the

FC and GD steps that the policy may enforce, after t = O (log (ﬁ |\b€|\2 )) iterations, AlgorithmH

ensures an e-optimal solution i.e. ||[w! — w*|| < e.

Proof. Our proof shall essentially show that the FC and GD steps do not undo the progress made by
the other if executed in succession and if 2 - ngc - ngp < 1, actually ensure non-trivial progress. Let

W€ = [|bs, |l
WP = Vn[[w' —w[| + |[bs, |

denote the potential functions used in the analyses of the FC and GD algorithms before. Then we
will show below that if the FC and GD algorithms are executed in steps ¢ and ¢ + 1 then we have

Wiy <2 mec - np - Ui©

Alternatively, if the GD and FC algorithms are executed in steps ¢ and ¢ + 1 respectively, then
PPy <2 nec - np - UFP

Thus, if algorithm executes the FC step at the time step ¢, then it would at least ensure WF¢ <

(2 npc - 77GD)t/2 - WEC (similarly if the last step is a GD step). Since both the FC and GD algorithms

ensure ||w’ — w*||, < ¢ fort > O (log (ﬁ %)), the claim would follow.

We now prove the two claimed results regarding the two types of interleaving below

1. FC — GD
The FC step guarantees ||bs,,, ||, < nec - [|bs, || as well as |[|w'™ — w*||, < npc - ”‘:/Sﬁt” ,
whereas the GD step guarantees U§P, < njgp - ¥EP; . Together these guarantee
Vallw' T = wr [, + sl < mep - Vi W = w7l + [bs
< 2-7rc - 1o - |[bs, [l
Since \/n Hwt+2 — W*| , > 0, this yields the result.
2. GD — FC
The GD step guarantees WP, < ngp - UEP whereas the FC step guarantees ||byg, ,, ||, <

b
|2 < Mrc - % Together these guarantee

MIFC - Hbst+1 H as well as Hwt-‘rZ —w

\/7>7,||Wt+2 o W*HQ + ||bSt+2H2 S 277FC Hb5t+1 H2
< 2-mrc - nop - ¥EP,

*

where the second step follows from the GD step guarantee since /n HwtJrl -wW > 0.

2

This finishes the proof. O

F Proof of Theorem [9]

Theorem 9. Let X = [x1,...,X,] € RPX" be the given data matrix and y = XZw* + b be the
corrupted output with [[w*|[, < s* and |[bllp < « - n. Let Algorithm [2] be executed on this data

with the THT update from [[12] and thresholding parameter set to 5 > «a. Let 3 be an invertible
matrix such that ¥ /2 X satisfies the SRSC and SRSS properties at level (v, 2s+ s*) with constants

Q(y,2545*)

. AL (5 o1 o . . . .
X also satisfies — 2=+ 1 then after t = O (log ( L Ikl )) iterations, Algorlthmobtalns
Q1B s4s%) NG

Q(y,25+s) ANd L4 2544+ TESpectively (see Deﬁnition for s > 32 (M) withy = 1- 3. If
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an e-accurate solution w' i.e. [[w' —w*[|, < e. In particular, if X is sampled from a Gaussian
distribution (0, %) and n > Q ((2s + s*) logp + log 3 ), then for all values of & < 8 < &, we
can guarantee recovery as |[w’ — w*[|, <e.

Proof. We first begin with the guarantee provided by existing sparse recovery techniques. The
results of [12]], for example, indicate that if the input to the algorithm indeed satisfies the RSC and

RSS properties at the level (1 — 3, 2s + s*) with constants aag 5+ and Log ¢+ for s > 32 (LQL> R

Q254 s*
HbHZ

thenin time 7 = O <L“+* -log

Qogtgx

), the IHT algorithm [[12} Algorithm 1] outputs an updated

model w!T! that satisfies |

Hl“o g s, as well as
lys, = X5 w5 < s, — Xdw* ||, + .

We will set p later. Since the SRSC and SRSS properties ensure the above and y = X " w* + b, this
gives us

w3 |2 *
HX;(Wt'H - W )H2 < 2(WH'1 —w )Tthbst +p= 2(wt )TXng bs.ns, + P

since bg = 0 for any set S N S, = ¢. We now analyze the two sides separately below using the
SRSC and SRSS properties below. For any S C [n], denote Xg := ¥ 2x

2
Xg W' —w
H t( t+1 ) ‘

- s -

1/2 *
Z 04(1,515+S*) ’EO/ (Wt+1 — W )

< Lstsn)
> /Amin(Z0) - €. This give us

2
||XSmS** (wt+1 _ w*)” _ HXSth*E(l)/Q(WHl —w)

B - w)

, > € then HZUQ L w*)

Now, if Hw'“rl ‘
2

H21/2(Wt+1 W) ‘ 2y/Lgsts7) p
0 2 Q-Bsts7) Q(1-B,s+5*)
2/ L sts7) p
=—————|bs|,+ :
a(l—ﬂa8+8*) € )\min(EO) : a(l—ﬂ,s-&-s*)

We note that although we declared the SRSC and SRSS properties for the action of matrices on
sparse vectors (such as w* — w't!), we instead applied them above to the action of matrices on

sparse vectors transformed by El/ 2 (21/ 2( — witl)). Since Z(l)/ %v need not be sparse even if v
is sparse, this appears to pose a problem However, all we need to resolve this is to notice that the
proof technique of Theorem [18 which would be used to establish the SRSC and SRSS properties,
holds in general for not just the action of a matrix on the set of sparse vectors, but on vectors in the
union of any fixed set of low dimensional subspaces.

More specifically, we can modify the RSC and RSS properties (and by extension, the SRSC and
SRSS properties), to requiring that the matrix X act as an approximate isometry on the following

1/2

set of vectors Sp (5,50) ° {v v =13, /v for some v/ € 5P~! } We refer the reader to the work

of [17] which describes this technique in great detail. Proceeding with the proof, the assurance of
the thresholding step, as used in the proof of Theorem 5] along with a straightforward application of
the (modified) SRSS property gives us

t+1 *

HbSHl H2 < HXCTRf,H(W —w*) ‘2 + HXI\IDf,H(WHl —wY)

‘ 2

= R e

S 2, / L(,B,s-&-s*) ‘2(1]/2(Wt+1 - W*) )
< 4L(5 s+s* ||b H 2p\/ L(ﬁw“""‘?*)
N a(l B,s+s*) 2 €4/ Amin(zO) . a(l*ﬁ,s+8*)

- 1/2 «
‘2 + HXI\—l/[—Dt+120/ (Wit —w*)

‘ 2
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Thus, whenever ||w'™! — w*
4L (g, s+s%)

A(1-p,s5+5%)’
Hbs || <n'-|bl, + (1 - 77t> 2pm
t+1 112 — 2 1-— n € - Amin(zo) . a(l*,@,S#»S*)
‘2 >/ Amin(Zo) [[W — w*||, gives us

|, > € in successive steps, ||bg, ||, undergoes a linear decrease. De-

noting 7 := we get

and using HE(1)/2 (w! —w*)

2,/L *
1 _ k|| < (Bs+s7) b + £
I+ ¥l < VAmin(Zo) - @(1-p,545) [Ps... ]l Amin(¥0) - @(1-p,s45%)
2 L(B,s-&-S*) 36p

< 7lt Hb||2+ c

9

. )\min(ZO) : a(l—ﬂ,s+s*)

vV )\min(EO) : a(lfﬁ,s%»s*)

L . . .
where we have assumed that % < 9/10, something that we shall establish below. Note that

Amin(Z0) > 0 since ¥ is assumed to be invertible. In the random design settings we shall consider,
VI, s+s*)
\/)\rxlixx(zo)'a(l—ﬂ,s+s*}

proves the convergence result.

we also have =0 (ﬁ) Then setting p < =562 - Amin(Z0) * ¢(1-g,545)

As before, we can use the above result to establish sparse recovery guarantees in the statistical setting
for Gaussian and sub-Gaussian design models. If our data matrix X is generated from a Gaussian
distribution A (0, X) for some invertible %, then the results in Theorem can be used to establish
that /2 X satisfies the SRSC and SRSS properties at the required levels and that for « < —L- and

190
n>Q((2s+ s*)logp+ log §), we have ) = 2Lt o 9/10.

Q(1-B,s+s*)

Thus, the above result can be applied with ¥y = 3 to get convergence guarantees in the general
Gaussian setting. We note that the above analysis can tolerate the same level of corruption as Theo-
rem (4| and thus, we can improve the noise tolerance level to a < é here as well. We also note that
these results can be readily extended to the sub-Gaussian setting as well. O

G Robust Statistical Estimation

This section elaborates on how results on the convergence guarantees of our algorithms can be used
to give guarantees for robust statistical estimation problems. We begin with a few definition of
sampling models that would be used in our results.

Definition 12. A random variable x© € R is called sub-Gaussian if the following quantity is finite
_ 1
sup p~*/2 (Eaf")"/".
p=1
Moreover, the smallest upper bound on this quantity is referred to as the sub-Gaussian norm of x

and denoted as ||z||,;,-

Definition 13. A vector-valued random variable x € RP is called sub-Gaussian if its unidimen-
sional marginals (x,v) are sub-Gaussian for all v.€ SP~1. Moreover, its sub-Gaussian norm is
defined as follows

1X[ly, == sup [[(x,v)]l,
vesr—1
We will begin with the analysis of Gaussian designs and then extend our analysis for the class of

general sub-Gaussian designs.

Lemma 14. Let X € RP*™ be a matrix whose columns are sampled i.i.d from a standard Gaussian
distribution i.e. x; ~ N (0, I). Then for any € > 0, with probability at least 1 — 6, X satisfies

2

Smax(XXT) <n+ (1 —2¢)7t cnp—i—c’nlogg
T -1 2

Smin (XX ) > n — (1 — 2¢) cnp—|—c’nlogg7

where c = 24¢€2 log % and ¢ = 24¢€2.
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Proof. We will first use the fact that X is sampled from a standard Gaussian to show that its covari-
ance concentrates around identity. Thus, we first show that with high probability,

[XXT ], <
for some €; < 1. Doing so will automatically establish the following result
n—€ < Smin(XX ) < smax(XXT) <n+er.

Let A := XX — I. We will use the technique of covering numbers [[18] to establish the above.
Let CP~1(e) C SP~! be an € cover for SP~1 i.e. for all u € SP~1, there exists at least one v € CP~!
such that ||u — v||, < e. Standard constructions [18} see Lemma 5.2] guarantee such a cover of size

atmost (1 + 2)” < (2)”. Now forany u € SP~ and v € CP~* such that |[u — v||, < ¢, we have
[luTAu—vTAv| < [uTA(u—v)|+ [vT A(u —v)| < 2¢ || A,

which gives us

|IXXT —nif, < @-207" sup [[xTv][;—n|.
velCr—1(e)

Now for a fixed v € S"~1, the random variable HX TVH§ is distributed as a x?(n) distribution with
n degrees of freedom. Using Lemma [20] we get, for any ;1 < 1,

2,2 2
T 2 i wn un ©en
IP’HHX VHzfn‘ Z,un] < 2exp (mm{24ne2,4\/§6}> < 2exp <24€2).

log 2 . .
Oi 2 where ¢ = 24¢? log % and ¢/ = 24¢2, and taking a union bound over

Setting i* =¢- £ + ¢
all CP~1(e), we get

2 3 p 2
P Legypl(e) ‘HXTsz — n‘ >y /enp + ¢/nlog 61 <2 (6) exp (—54;) < 4.

This implies that with probability at least 1 — 4,

HXXT —nIH2 <(1- 26)_1\/cnp+c’nlog§,

which gives us the claimed bounds on the singular values of X X T O

Theorem 15. Let X € RP*"™ be a matrix whose columns are sampled i.i.d from a standard Gaussian
distribution i.e. x; ~ N(0,I). Then for any v > 0, with probability at least 1 — 0, the matrix X
satisfies the SSC and SSS properties with constants

1
Agams S yn (1 +3€\/@> =+ O ( np—|—n10g 5)

1
)\g“”‘“zn—(l—'y)n(l—i—?)e 610g1i7>—9< np+n10g5>.

Proof. For any fixed S € S, Lemma|[I4] guarantees the following bound

2
Smax(XsXg) < yn+ (1 - 26)‘1\/0771;0 +¢ynlog =

Taking a union bound over S, and noting that (Z) < (%l)k forall 1 < k < n, gives us

2
A, <yn+(1- 26)1\/0’)/7?,]7 + v2n? log 4 cynlog 5
v

2
<n (1 +(1—2¢)7", /' log e> +(1- 26)1\/C’an+ cynlog 5
Y
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which finishes the first bound after setting e = 1/6. For the second bound, we use the equality
XeXd =XXT - XgX],
which provides the following bound for ),
Ay > Smin(XX ) — sup XpX; = spmin(XX ) — Ay,
TES:_,

Using Lemma [14|to bound the first quantity and the first part of this theorem to bound the second
quantity gives us, with probability at least 1 — 6,

2
Ay >n—9'n (1-1—(1 —2¢)7t, /c’log%) (1—2¢)~ (1 + ) \/cnp—i-c’nlogg,
Y

where 7' = 1 — . This proves the second bound after setting e = 1/6. O

We now extend our analysis to the class of isotropic subGaussian distributions. We note that this
analysis is without loss of generality since for non-isotropic sub-Gaussian distributions, we can
simply use the fact that Theorem [3| can admit whitened data for calculation of the SSC and SSS
constants as we did for the case of non-isotropic Gaussian distributions.

Lemma 16. Let X € RP*™ be a matrix with columns sampled from some sub-Gaussian distribution
with sub-Gaussian norm K and covariance Y. Then, for any 6 > 0, with probability at least 1 — 9,
each of the following statements holds true:

Smax(XXT) S Amax(z) -n+ CK /PN + t\/ﬁ
Smin (XX 1) > Amin(8) - n — Cx - /pn — t/m,

where t = 4/ i log % and cg, Cy are absolute constants that depend only on the sub-Gaussian
norm K of the distribution.

Proof. Since the singular values of a matrix are unchanged upon transposition, we shall prove the
above statements for X ' . The benefit of this is that we get to work with a matrix with independent
rows, so that standard results can be applied. The proof technique used in [[18, Theorem 5.39] (see
also Remark 5.40 (1) therein) can be used to establish the following result: with probability at least
1 — 4, with ¢ set as mentioned in the theorem statement, we have

1 p t
< L
_CKwn—F\/ﬁ

’XXT—

n

L Ty —vT
—v' XX Yv
n

This implies that for any v € SP~1, we have

%HXTVH;fVTEV < X Tv—Yv

<CK\[

The results then follow from elementary manipulations and the fact that the singular Values and
eigenvalues of real symmetric matrices coincide. O

Theorem 17. Let X € RP*™ be a matrix with columns sampled from some sub-Gaussian distribu-
tion with sub-Gaussian norm K and covariance .. Let ci, C and t be fixed to values as required
in Lemma(I6] Note that cx and C'i are absolute constants depend only on the sub-Gaussian norm
K of the distribution. Let v € (0, 1] be some fixed constant. Then, with we have the following:

AfyubGauss(K,E) < <)\max(2) Sy 4 W) -n+ Cg -4 /ypn + t\/?l.

Furthermore, fix any € € (0, 1) and let v be a value in (0, 1) satisfying the following

7>11Mn{ié:§§?¢mp(l+ﬂﬁ1( Qi%mgn)>},

where W_1 (-) is the lower branch of the real valued restriction of the Lambert W function. Then we
have, with the same confidence,

XbGass(K2) > (1= 2¢) - Ayin(Z) - m = Cic (14 /T=7) yvom = 24V
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Proof. The first result follows from an application of Lemma|[T6] a union bound over sets in S, as

well as the bound (Z) < (%) b for all 1 < k < n which puts a bound on the number of sparse sets
aslog|S,| < v -nlog %

For the second result, we observe that XSX; = XXT — XSX , so that smin(XSXg) >
Smin(X X T) — smax(X5XJ). This gives us

inf smin(XSX,;'r) Z Smin(XXT) — sup Smax(XSX;)-
Se8&y SES1—~

Using Lemma|[I6]and the first part of this result gives us

Siéléf Smin(XsXd) > Amin(E) -n — Cx - /o — t/n
vy

1=
- (AmaX(E)(l -7+ g log ‘
CK 1-—

- (Amm@)—Amax(E)(l—v)— 1;{” loglfy)n
—CK(1+\/1— ) Vpn —2ty/n
> (1—2¢€) - Anin(X) - n—CK(l—l—\/l— ) Vpn = 2t\/n,

where the last step follows from the assumptions on v and by noticing that it suffices to show the
following two inequalities to establish the last step

L Amax(Z)(1 = 7) <€ Amin (D)
2. (1=9)log 5 < €202 (%)

The first part gives us the condition vy > 1 — % in a straightforward manner. For the second

part, denote v = cxe? - A2 (¥). Note that for v > 1, all values of € (0, 1] satisfy the inequality.

min

Otherwise we require the use of the Lambert W function (also known as the product logarithm
function). This function ensures that its value W (z) for any z > —1/e satisfies 2 = W (2)e"V (*). In
our case, making a change of variable (1 — ) = e gives us the inequality (n — 1)e"~t > —uv/e.
Note that since v < 1 in this case, —v/e € (—1/e, 0) i.e. a valid value for the Lambert W function.
However, (—1/e,0) is also the region in which the Lambert W function is multi-valued. Taking
the worse bound for y by choosing the lower branch W_;(-) gives us the second condition y >

1fexp(1+W_1( w)) O

e

It is important to note that for any —1/e < z < 0, we have exp (1 + W_1(z)) > 0 which means
that the bounds imposed on v by Theorem |17|always allow a non-zero fraction of the data points
to be corrupted in an adversarial manner. However, the exact value of that fraction depends, in
a complicated manner, on the sub-Gaussian norm of the underlying distribution, as well as the
condition number and the smallest eigenvalue of the second moment of the underlying distribution.

We also note that due to the generic nature of the previous analysis, which can handle the entire class
of sub-Gaussian distributions, the bounds are not as explicitly stated in terms of universal constants
as they are for the standard Gaussian design setting (Theorem|I5).

We now establish that for a wide family of random designs, the SRSC and SRSS properties are
satisfied with high probability as well. For sake of simplicity, we will present our analysis for the
standard Gaussian design. However, the results would readily extend to general Gaussian and sub-
Gaussian designs using techniques similar to Theorem [I7]

Theorem 18. Let X € RP*"™ be a matrix whose columns are sampled i.i.d from a standard Gaussian
distribution i.e. x; ~ N(0,I). Then for any v > 0 and s < p, with probability at least 1 — §, the
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matrix X satisfies the SRSC and SRSS properties with constants

Gauss € A 1
LS <n (1 + 3e, /6 log 7) +0 (wns + nlog 5)
%S > — (1 —~)n 1+ 3e,/6log ¢ -0 \/ns—&—nlogl .
(7,8) = 1— ~y K}

Proof. The proof of this theorem proceeds similarly to that of Theorem[I3] Hence, we simply point
out the main differences. First, we shall establish, that for any € > 0, with probability at least 1 — 9,
X satisfies the RSC and RSS properties at level s with the following constants

2

Ly <n+(1—2¢) "y bns + b’nlogg
) 2

as >n—(1—2¢) bns—!—b’nlogg,

where b = 24¢? log 35%17 and b’ = 24¢e2. To do so we notice that the only change needed to be made
would be in the application of the covering number argument. Instead of applying the union bound
over an e-cover CP~! of SP~1, we would only have to consider an e-cover C?~! of the set SP~! of
all s-sparse unit vectors in p-dimensions. A straightforward calculation shows us that

=) 102 < (27)

log %
n

2
sup ’”XVHg - n’ >4/bns +b'nlog —| <4,
veck! 1)

which establishes the required RSC and RSS constants for X. Now, moving on to the SRSS constant,
it follows simply by applying a union bound over all sets in S, much like in Theorem [I5} One can
then proceed to bound the SRSC constant in a similar manner.

Thus, setting > = b- £ 4+ b’ - , where b = 24e? log 22 and b/ = 24¢2, we get

P

We note that the nature of the SRSC and SRSS bounds indicate that our TORRENT-FC algorithm
in the high dimensional sparse recovery setting has noise tolerance properties, characterized by
the largest corruption index « that can be tolerated, identical to its low dimnensional counterpart -
something that Theorem [J]states explicitly. O

H Supplementary Results

Claim 19. Given any vector v € R", let 0 € S,, be defined as the permutation that orders elements
of v in descending order of their magnitudes i.e. |UU(1)’ > |va(2)’ > ... > }va(n)|. For any
0<p<gq<1letS €S,beanarbitrarysetof sizeqnand Sy = {o(i) :n—p-n+1<i<n}

Then we have ||vs, |5 < 2 |[vs, |3 < [[vs, [I5-

Proof. Let S3 ={o(i):n—qg-n+1<i<n}and Sy ={o(i):n—¢-n+1<i<n—p-n}
Clearly, we have ||vg, ||§ < |lvs, Hg since S5 contains the smallest g - n elements (by magnitude).

Now we have ||vg, Hg = |lvs, |\§ + ||vs, ||§ Moreover, since each element of Sy is larger in magni-
tude than every element of S5, we have

1 5 1 )
A [vsally > Sl Vs, Iz -

This gives us

2 2 2 2 |54 2
[Vsalla = 1Vssllz = IVsallz < llvssllz = 15 Ivs,llz

which upon simple manipulations, gives us the claimed result. O
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Lemma 20. Let Z be distributed according to the chi-squared distribution with k degrees of freedom
ie. Z ~ x*(k). Then forall t > 0,

2 ¢
— > < — mi -
Pz k|t]2€xp< mln{24k62,4\/§€}>

Proof. This lemma requires a proof structure that traces several basic results in concentration in-
equalities for sub-exponential variables [18, Lemma 5.5, 5.15, Proposition 5.17]. The purpose of
performing this exercise is to explicate the constants involved so that a crisp bound can be provided
on the corruption index that our algorithm can tolerate in the standard Gaussian design case.

We first begin by establishing the sub-exponential norm of a chi-squared random variable with a
single degree of freedom. Let X ~ x?(1). Then using standard results on the moments of the
standard normal distribution gives us, for all p > 2,

(219)!)1/‘7S V3

X1 = (- iy = (S) <

2

Thus, the sub-exponential norm of X is upper bounded by v/3/2. By applying the triangle inequal-
ity, we obtain, as a corollary, an upper bound on the sub-exponential norm of the centered random
variable Y = X — Las [[Y ], <2 X[, <V3.

Now we bound the moment generating function of the random variable Y. Noting that EY = 0, we

1
have, for any |\| < 3730

€

Y4 )\ >
Eexp(\Y) = 1+Z (q Z \ﬂ 0" <14+ (VBe|A])? < 146e*A% < exp(6e*\%).

q=2 =2 q=2

Note that the second step uses the sub-exponentially of Y, the third step uses the fact that ¢! >
(g/e)?, and the fourth step uses the bound on |\|. Now let X1, X5, ... X}, be k independent random

variables distributed as x2(1). Then we have Z ~ Zle X;. Using the exponential Markov’s
inequality, and the independence of the random variables X; gives us

k
PZ—k>t]=P|eMN7F) > e’\t] < e MEHMPTH = M T Eexp(M(X; — 1)).
i=1

For any |\| < the above bounds on the moment generating function give us

2f’

k
P[Z—k>t]<e M Hexp(662/\2) = exp(—A\t + 6ke?\?).

i=1

Choosing A = min {2%/5(), i }, we get

t2 t
PlZ-EkE>t < — 1mi _— .
[ k>t _exp( mln{24k62,4\/§e}>

Repeating this argument gives us the same bound for P [k — Z > ¢]. This completes the proof. [J
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I Supplementary Experimental Results

n = 2000 alpha = 0.25 sigma = 0.2 p =500 n = 2000 alpha = 0.25 p =500 alpha = 0.25 sigma = 0.2 p =500 n = 2000 alpha = 0.25 sigma = 0.2
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Figure 3: (a), (b), (c) Variation of recovery error with varying p, o and n. TORRENT was found to outperform

DALM-L; in all these settings. (d) Recovery error as a function of runtime for various state-of-the-art L
solvers as indicated in [[15].
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