
Appendix

A Auxiliary Results

Lemma 9 (VME and Functional Taylor Expansion). Let P,Q have densities p, q and let T (P ) =
φ(
∫
ν(p)). Then the first order VME of T (Q) around P reduces to a functional Taylor expansion

around p:

T (Q) = T (P ) + T ′(Q− P ;P ) +R2 = T (p) + φ′
(∫

ν(p)

)∫
ν′(p)(q − p) +R2 (12)

Proof. It is sufficient to show that the first order terms are equal.

T ′(Q− P ;P ) =
∂T ((1− t)P + tQ)

∂t

∣∣∣
t=0

=
∂

∂t
φ

(∫
ν((1− t)p+ tq)

) ∣∣
t=0

= φ′
(∫

ν((1− t)p+ tq)

)∫
ν′((1− t)p+ tq)(q − p)

∣∣
t=0

= φ′
(∫

ν(p)

)∫
ν′(p)(q − p)

Lemma 10 (VME and Functional Taylor Expansion - Two Distributions). Let P1, P2, Q1, Q2 be
distributions with densities p1, p2, q1, q2. Let T (P1, P2) =

∫
ν(p1, p2). Then,

T (Q1, Q2) = T (P1, P2) + T ′1(Q1 − P1;P1, P2) + T ′2(Q2 − P2;P1, P2) +R2 (13)

= T (P1, P2) + φ′
(∫

ν(p)

)(∫ ∂ν(p1(x), p2(x))

∂p1(x)
(q1 − p1)dx+∫

∂ν(p1(x), p2(x))

∂p2(x)
(q2 − p2)dx

)
+R2

Proof. Is similar to Lemma 9.

Lemma 11. Let f, g be two densities bounded above and below on a compact space. Then for all
a, b

‖fa − ga‖b ∈ O(‖f − g‖b)

Proof. Follows from the expansion,∫
|fa − ga|b =

∫
|ga(x) + a(f(x)− g(x))ga−1

∗ (x)− ga(x)|b ≤ ab sup |gb(a−1)
∗ (x)|

∫
|f − g|b.

Here g∗(x) takes an intermediate value between f(x) and g(x). In the second step we have used the
boundedness of f , g to bound f∗.

Finally, we will make use of the Efron Stein inequality stated below in our analysis.

Lemma 12 (Efron-Stein Inequality). Let X1, . . . , Xn, X
′
1, . . . , X

′
n be independent random vari-

ables where Xi, X
′
i ∈ Xi. Let Z = f(X1, . . . , Xn) and Z(i) = f(X1, . . . , X

′
i, . . . , Xn) where

f : X1 × · · · × Xn → R. Then,

V(Z) ≤ 1

2
E

[
n∑
i=1

(Z − Z(i))2

]
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B Review: DS Estimator on a Single Distribution

This section is intended to be a review of the data split estimator used in [30]. The estima-
tor was originally analysed in the semiparametric setting. However, in order to be self contained
we provide an h analysis that directly uses the Von Mises Expansion. We state our main result below.

Theorem 13. Suppose f ∈ Σ(s, L,B,B′) and ψ satisfies Assumption 4. Then, E[(T̂DS−T (f))2] is
O(n

−4s
2s+d ) when s < d/2 andO(n−1) when s > d/2. Further, when s > d/2 and when ψf , ψg 6= 0,

T̂DS is asymptotically normal.

√
n(T̂DS − T (f, g))

D−→ N
(

0,
1

ζ
Vf [ψf (X; f, g)] +

1

1− ζ
Vg [ψg(Y ; f, g)]

)
(14)

We begin the proof with a series of technical lemmas.

Lemma 14. The Influence Function has zero mean. i.e. EP [ψ(X;P )] = 0.

Proof. 0 = T ′(P − P ;P ) =
∫
ψ(x;P )dP (x).

Now we prove the following lemma on the preliminary estimator T̂ (1)
DS .

Lemma 15 (Conditional Bias and Variance). Let f̂ (1) be a consistent estimator for f in the L2

metric. Let T have bounded second derivatives and let supx ψ(x; f) and VX∼fψ(X; g) be bounded
for all g ∈M. Then, the bias of the preliminary estimator T̂ (1)

DS (7) conditioned on Xn/2
1 isO(‖f −

f̂ (1)‖22). The conditional variance is O(1/n).

Proof. First consider the conditional bias,

EXn
n/2+1

[
T̂

(1)
DS − T (f)|Xn/2

1

]
= EXn

n/2+1

T (f̂ (1)) +
2

n

n∑
i=n/2+1

ψ(Xi; f̂
(1))− T (f)|Xn/2

1


= T (f̂ (1)) + Ef

[
ψ(X; f̂ (1))

]
− T (f) ∈ O(‖f̂ (1) − f‖22). (15)

The last step follows from the boundedness of the second derivative from which the first order
functional Taylor expansion (4) holds. The conditional variance is,

VXn
n/2+1

[
T̂

(1)
DS |Xn/2

1

]
= VXn

n/2+1

 2

n

n∑
i=n/2+1

ψ(X; f̂ (1))
∣∣∣Xn/2

1

 =
2

n
Vf
[
ψ(X; f̂ (1))

]
∈ O(n−1).

(16)

Lemma 16 (Asymptotic Normality). Suppose in addition to the conditions in the lemma above we
also have Assumption 4 and ‖f̂ (1) − f‖2 ∈ oP (n−1/4) and ψ 6= 0. Then,

√
n(T̂DS − T (f))

D−→ N (0,Vfψ(X; f)).

Proof. We begin with the following expansion around f̂ (1),

T (f) = T (f̂ (1)) +

∫
ψ(u; f̂ (1))f(u)dµ(u) +O(‖f̂ (1) − f‖2). (17)

First consider T̂ (1)
DS . We can write√

n

2

(
T̂

(1)
DS − T (f)

)
=

√
n

2

T (f̂ (1)) +
2

n

n∑
i=n/2+1

ψ(Xi; f̂
(1))− T (f)

 (18)
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=

√
2

n

n∑
i=n/2+1

[
ψ(Xi; f̂

(1))− ψ(Xi; f)−
(∫

ψ(u; f̂ (1))f(u)du−
∫
ψ(u; f)f(u)du

)]

+

√
2

n

n∑
i=n/2+1

ψ(Xi; f) +
√
nO

(
‖f̂ (1) − f‖2

)
.

In the second step we used the VME in (17). In the third step, we added and subtracted
∑
i ψ(Xi; f)

and also added Eψ(·; f) = 0. Above, the third term is oP (1) as ‖f̂ (1)− f‖2 ∈ oP (n−1/4). The first
term which we shall denote by Qn can also be shown to be oP (1) via Chebyshev’s inequality. It is
sufficient to show P(|Qn| > ε|Xn/2

1 )→ 0. First note that,

V[Qn|Xn/2
1 ] = V

√ 2

n

n∑
i=n/2+1

(
ψ(Xi; f̂

(1))− ψ(Xi; f)−
(∫

ψ(u; f̂ (1))f(u)du−
∫
ψ(u; f)f(u)du

)) ∣∣∣Xn/2
1


= V

[
ψ(X; f̂ (1))− ψ(X; f)−

(∫
ψ(u; f̂ (1))f(u)du−

∫
ψ(u; f)f(u)du

) ∣∣∣Xn/2
1

]
≤ E

[(
ψ(X; f̂ (1))− ψ(X; f)

)2
]
∈ O(‖f̂ (1) − f‖2)→ 0, (19)

where the last step follows from Assumption 4. Now, P(|Qn| > ε|Xn
1 ) ≤ V(Qn|Xn/2

1 )/ε → 0.
Hence we have √

n

2
(T̂

(1)
DS − T (f)) =

√
2

n

n∑
i=n/2+1

ψ(Xi; f) + oP (1)

We can similarly show√
n

2
(T̂

(2)
DS − T (f)) =

√
2

n

n∑
i=n/2+1

ψ(Xi; f) + oP (1)

Therefore, by the CLT and Slutzky’s theorem,

√
n(T̂DS − T (f)) =

1√
2

(√
n

2
(T̂

(1)
DS − T (f)) +

√
n

2
(T̂

(2)
DS − T (f))

)
= n−1/2

n∑
i=1

ψ(Xi; f) + oP (1)
D−→ N (0,Vfψ(X; f)

We are now ready to prove Theorem 13. Note that the brunt of the work for the DS estimator was in
analysing the preliminary estimator T̂DS.

Proof of Theorem 13. We first note that in a Hölder class, with n samples the KDE achieves the rate
E‖p− p̂‖2 ∈ O(n

−2s
2s+d ). Then the bias of T̂DS is,

E
X
n/2
1

EXn
n/2+1

[
T̂

(1)
DS − T (f)|Xn/2

1

]
= E

X
n/2
1

[
O
(
‖f − f̂ (1)‖2

)]
∈ O

(
n
−2s
2s+d

)
It immediately follows that E

[
T̂DS − T (f)

]
∈ O

(
n
−2s
2s+d

)
. For the variance, we use Theorem 15

and the Law of total variance for T̂ (1)
DS ,

VXn1
[
T̂

(1)
DS

]
=

1

n
E
X
n/2
1

Vf
[
ψ(X; f̂ (1), ĝ)

]
+ +V

X
n/2
1

[
EXn

n/2+1

[
T̂DS − T (f)|Xn/2

1

]]
∈ O

(
1

n

)
+ E

X
n/2
1

[
O
(
‖f − f̂ (1)‖4

)]
∈ O

(
n−1 + n

−4s
2s+d

)
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In the second step we used the fact that VZ ≤ EZ2. Further, E
X
n/2
1

Vf
[
ψ(X; f̂ (1))

]
is bounded

since ψ is bounded. The variance of T̂DS can be bounded using the Cauchy Schwarz Inequality,

V
[
T̂DS

]
= V

[
T̂

(1)
DS + T̂

(2)
DS

2

]
=

1

4

(
VT̂ (1)

DS + VT̂ (2)
DS + 2Cov(T̂

(1)
DS , T̂

(2)
DS )

)
≤ max

(
VT̂ (1)

DS ,VT̂
(2)
DS

)
∈ O

(
n−1 + n

−4s
2s+d

)
Finally for asymptotic normality, when s > d/2, E‖f̂ (1) − f‖2 ∈ O(n

−s
2s+d ) ∈ o (n−1/4).

C Analysis of LOO Estimator

Proof of Theorem 5. First note that we can bound the mean squared error via the bias and variance
terms.

E[(T̂LOO − T (f))2] ≤ |ET̂LOO − T (f)|2 + E[(T̂LOO − ET̂LOO)2]

The bias is bounded via a straightforward conditioning argument.

E|T̂LOO − T (f)| = E[T (f̂−i) + ψ(Xi; f̂−i)− T (f)] = EX−i
[
EXi [T (f̂−i) + ψ(Xi; f̂−i)− T (f)]

]
= EX−i

[
O(‖f̂−i − f‖2)

]
≤ C1n

−2s
2s+d (20)

for some constant C1. The last step follows by observing that the KDE achieves the rate n
−2s
2s+d in

integrated squared error.

To bound the variance we use the Efron-Stein inequality. For this consider two sets of samples
Xn

1 = {X1, X2, . . . , Xn} and Xn
1
′ = {X ′1, X2, . . . , Xn} which are the same except for the first

point. Denote the estimators obtained using Xn
1 and Xn

1
′ by T̂LOO and T̂ ′LOO respectively. To apply

Efron-Stein we shall bound E[(T̂LOO − T̂ ′LOO)2]. Note that,

|T̂LOO − T̂ ′LOO| ≤
1

n
|ψ(X1; f̂−1)− ψ(X ′1; f̂−1)|+ 1

n

∑
i 6=1

|T (f̂−i)− T (f̂ ′−i)|

+
1

n

∑
i 6=1

|ψ(Xi; f̂−i)− ψ(Xi; f̂
′
−i)| (21)

The first term can be bounded by 2‖ψ‖∞/n using the boundedness of ψ. Each term inside the
summation in the second term in (21) can be bounded via,

|T (f̂−i)− T (f̂ ′−i)| ≤ Lφ
∫
|ν(f̂−i)− ν(f̂ ′−i)| ≤ LνLν

∫
|f̂−i − f̂ ′−i| (22)

≤ LφLν
∫

1

nhd

∣∣∣K (X1 − u
h

)
−K

(
X ′1 − u
h

) ∣∣∣du ≤ ‖K‖∞LφLν
n

.

The substitution (X1 − u)/h = z for integration eliminates the 1/hd. Here Lφ, Lν are the Lip-
schitz constants of φ, ν. To apply Efron-Stein we need to bound the expectation of the LHS over
X1, X

′
1, X2, . . . , Xn. Since the first two terms in (21) are bounded pointwise by O(1/n2) they are

also bounded in expectation. By Jensen’s inequality we can write,

|T̂LOO − T̂ ′LOO|2 ≤
12‖ψ‖2∞
n2

+
3‖K‖2∞L2

φL
2
ν

n2
+

3

n2

∑
i 6=1

|ψ(Xi; f̂−i)− ψ(Xi; f̂
′
−i)|

2

(23)

For the third, such a pointwise bound does not hold so we will directly bound the expectation.∑
16=i,j

E
[
|ψ(Xi; f̂−i)− ψ(Xi; f̂

′
−i)||ψ(Xj ; f̂−j)− ψ(Xj ; f̂

′
−j)|

]
(24)
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We then have,

E
[
(ψ(Xi; f̂−i)− ψ(Xi; f̂

′
−i))

2
]
≤ EX1,X′1

[
C

∫
|f̂−i − f̂ ′−i|2

]
≤ CB2

∫
1

n2h2d

(
K

(
x1 − u
h

)
−K

(
x′1 − u
h

))2

dx1dx′1u

≤ 2CB2‖K‖2∞
n2

I the first step we have used Assumption 4 and in the last step the substitutions (x1−xi)/h = u and
(x1 − xj)/h = v removes the 1/hd twice. Then, by applying Cauchy Schwarz each term inside the
summation in (24) is O(1/n2).

Since each term inside equation (24) isO(1/n2) and there are (n−1)2 terms it isO(1). Combining
all these results with equation (23) we get,

E[(T̂LOO − T̂ ′LOO)2] ∈ O
(

1

n2

)
Now, by applying the Efron-Stein inequality we get V(T̂LOO) ≤ C

2n . Therefore the mean squared
error E[(T − T̂LOO)2] ∈ O(n−

4s
2s+d + n−1) which completes the proof.

D Proofs of Results on Functionals of Two Distributions

D.1 DS Estimator

We generalise the results in Appendix B to analyse the DS estimator for two distributions. As
before we begin with a series of lemmas.

Lemma 17. The influence functions have zero mean. I.e.

EP1
[ψ1(X;P1;P2)] = 0 ∀P2 ∈M EP2

[ψ2(Y ;P1;P2)] = 0 ∀P1 ∈M (25)

Proof. 0 = T ′i (Pi − Pi;P1;P2) =
∫
ψi(u;P1, P2)dPi(u) for i = 1, 2.

Lemma 18 (Bias & Variance of (9)). Let f̂ (1), ĝ(1) be consistent estimators for f, g in the L2 sense.
Let T have bounded second derivatives and let supx ψf (x; f, g), supx ψg(x; f, g), Vfψ(X; f ′, g′),
Vgψg(X; f ′, g′) be bounded for all f, f ′, g, g′ ∈ M. Then the bias of T̂ (1)

DS conditioned on
X
n/2
1 , Y

m/2
1 is |T − E[T̂

(1)
DS |Xn/2

1 , Y
m/2
1 ] ∈ O(‖f − f̂ (1)‖2 + ‖g − ĝ(1)‖2). The conditional

variance is V[T̂
(1)
DS |Xn/2

1 , Y
m/2
1 ] ∈ O(n−1 +m−1).

Proof. First consider the bias conditioned on Xn/2
1 , Y

m/2
1 ,

E
[
T̂

(1)
DS − T (f, g)|Xn/2

1 , Y
m/2
1

]
= E

T (f̂ (1), ĝ(1)) +
2

n

n∑
i=n/2+1

ψf (Xi; f̂
(1), ĝ(1)) +

2

m

m∑
j=m/2+1

ψg(Yj ; f̂
(1), ĝ(1))− T (f, g)

∣∣∣∣∣Xn/2
1 , Y

m/2
1


= T (f̂ (1), ĝ(1)) +

∫
ψf (x; f̂ (1), ĝ(1))f(x)dµ(x) +

∫
ψg(x; f̂ (1), ĝ(1))g(x)dµ(x)− T (f, g)

= O
(
‖f − f̂ (1)‖2 + ‖g − ĝ(1)‖2

)
14



The last step follows from the boundedness of the second derivatives from which the first order
functional Taylor expansion (6) holds. The conditional variance is,

V
[
T̂

(1)
DS |Xn/2

1 , Y
m/2
1

]
= V

[
1

n

2n∑
i=n+1

ψf (Xi; f̂
(1), ĝ(1))

∣∣∣Xn/2
1

]
+ V

 1

m

2m∑
j=m+1

ψg(Yj ; f̂
(1), ĝ(1))

∣∣∣Y m/21


=

1

n
Vf
[
ψf (X; f̂ (1), ĝ(1))

]
+

1

m
Vg
[
ψg(Y ; f̂ (1), ĝ(1))

]
∈ O

(
1

n
+

1

m

)
The last step follows from the boundedness of the variance of the influence functions.

The following lemma characterises conditions for asymptotic normality.

Lemma 19 (Asymptotic Normality). Suppose, in addition to the conditions in Theorem 18 above
and the regularity assumption 4 we also have ‖f̂ − f‖ ∈ oP (n−1/4), ‖ĝ − g‖ ∈ oP (m−1/4) and
ψf , ψg 6= 0. Then we have asymptotic Normality for T̂DS,

√
N(T̂DS − T (f, g))

D−→ N
(

0,
1

ζ
Vf [ψf (X; f, g)] +

1

1− ζ
Vg [ψg(Y ; f, g)]

)
(26)

Proof. We begin with the following expansions around (f̂ (1), ĝ(1)),

T (f, g) = T (f̂ (1), ĝ(1)) +

∫
ψf (u; f̂ (1), ĝ(1))f(u)du+

∫
ψg(u; f̂ (1), ĝ(1))g(u)du +

O
(
‖f − f̂ (1)‖2 + ‖g − ĝ(1)‖2

)
Consider T̂ (1)

DS . We can write√
N

2
(T̂

(1)
DS − T (f)) (27)

=

√
N

2

T (f̂ (1), ĝ(1)) +
2

n

n∑
i=n/2+1

ψf (Xi; f, g) +
2

m

m∑
j=m/2+1

ψg(Yj ; f, g)− T (f, g)


=

√
N

2

(
2

n

n∑
i=n/2+1

ψ(Xi; f̂
(1), ĝ(1)) +

2

m

m∑
j=m/2+1

ψ(Xj ; f̂
(1), ĝ(1))− Ef

[
ψ(X; f̂ (1), ĝ(1))

]

− Eg
[
ψ(X; f̂ (1), ĝ(1))

])
+
√
NO

(
‖f − f̂ (1)‖2 + ‖g − ĝ(1)‖2

)
=

√
2N

n
n−1/2

n∑
i=n/2+1

(
ψf (Xi; f̂

(1), ĝ(1))− ψf (Xi; f, g)− (Efψf (X; f̂ (1), ĝ(1)) + Efψf (X; f, g))
)

+

√
2N

m
m−1/2

m∑
j=m/2+1

(
ψg(Yj ; f̂

(1), ĝ(1))− ψg(Yj ; f, g)− (Egψg(Y ; f̂ (1), ĝ(1)) + Egψg(Y ; f, g))
)

+

√
2N

n
n−1/2

n∑
i=n/2+1

ψf (Xi; f, g) +

√
2N

m
m−1/2

m∑
j=m/2+1

ψg(Yj ; f, g) +

√
NO

(
‖f − f̂ (1)‖2 + ‖g − ĝ(1)‖2

)
The fifth term is oP (1) by the assumptions. The first and second terms are also oP (1) . To see this,
denote the first term by Qn.

V
[
Qn|Xn/2

1 , Y
m/2
1

]
=
N

n
Vf

 n∑
i=n/2+1

(
ψf (X; f̂ (1), ĝ(1))− ψf (X; f, g)− (Efψf (X; f̂ (1), ĝ(1)) + Efψf (X; f, g))

)
≤ N

n
Ef
[(
ψf (Xi; f̂

(1), ĝ(1))− ψf (Xi; f, g)
)2
]
→ 0
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where we have used the regularity assumption 4. Further, P(|Qn| > ε|Xn/2
1 , Y

m/2
1 ) ≤

V[Qn|Xn/2
1 , Y

m/2
1 ] ε → 0, hence the first term is oP (1). The proof for the second term is sim-

ilar. Therefore we have,√
N

2
(T̂

(1)
DS − T (f)) =

√
2N

n
n−1/2

n∑
i=n/2+1

ψf (Xi; f, g) +

√
2N

m
m−1/2

m∑
j=m/2+1

ψg(Yj ; f, g) + oP (1)

Using a similar argument on T̂ (2)
DS we get,√

N

2
(T̂

(2)
DS − T (f)) =

√
2N

n
n−1/2

n/2∑
i=1

ψf (Xi; f, g) +

√
2N

m
m−1/2

m/2∑
j=1

ψg(Yj ; f, g) + oP (1)

Therefore,

√
N(T̂

(2)
DS − T (f)) =

√
2

√2N

n
n−1/2

n∑
i=1

ψf (Xi; f, g) +

√
2N

m
m−1/2

m∑
j=1

ψg(Yj ; f, g)

 + oP (1)

=

√
N

n
n−1/2

2n∑
i=1

ψf (Xi; f, g) +

√
N

m
m−1/2

2m∑
j=1

ψg(Yj ; f, g) + oP (1)

By the CLT and Slutzky’s theorem this converges weakly to the RHS of (26).

We are now ready to prove the rates of convergence for the DS estimator in the Hölder class.

Proof of Theorem 13. . We first note that in a Hölder class, with n samples the KDE achieves the
rate E‖p− p̂‖2 ∈ O(n

−2s
2s+d ). Then the bias for the preliminary estimator T̂ (1)

DS is,

E
[
T̂

(1)
DS − T (f, g)|Xn/2

1 , Y
m/2
1

]
= E

X
n/2
1 ,Y

m/2
1

[
O
(
‖f − f̂ (1)‖2 + ‖g − ĝ(1)‖2

)]
∈ O

(
n
−2s
2s+d +m

−2s
2s+d

)
The same could be said about T̂ (2)

DS . It therefore follows that

E
[
T̂DS − T

]
= E

[
1

2

(
T̂

(1)
DS − T (f)

)
+

1

2

(
T̂

(2)
DS − T (f)

)]
∈ O

(
n
−2s
2s+d +m

−2s
2s+d

)
For the variance, we use Theorem 18 and the Law of total variance to first control VT̂ (1)

DS ,

V
[
T̂

(1)
DS

]
=

1

n
E
[
Vf
[
ψf (X; f̂ (1), ĝ(1))|Xn/2

1

]]
+

1

m
E
[
Vg
[
ψg(Y ; f̂ (1), ĝ(1))|Y m/21

]]
+ V

[
E
[
T̂LOO − T (f, g)|Xn/2

1 Y
m/2
1

]]
∈ O

(
1

n
+

1

m

)
+ E

[
O
(
‖f − f̂ (1)‖4 + ‖g − ĝ(1)‖4

)]
∈ O

(
n−1 +m−1 + n

−4s
2s+d +m

−4s
2s+d

)
In the second step we used the fact that VZ ≤ EZ2. Further, E

X
n/2
1

Vf
[
ψf (X; f̂ (1), ĝ(1))

]
,

E
Y
m/2
1

Vg
[
ψg(Y ; f̂ (1), ĝ(1))

]
are bounded since ψf , ψg are bounded. Then by applying the Cauchy

Schwarz inequality as before we get VT̂DS ∈ O
(
n−1 +m−1 + n

−4s
2s+d +m

−4s
2s+d

)
.

Finally when s > d/2, we have the required oP (n−1/4), oP (m−1/4) rates on ‖f̂ − f‖ and ‖ĝ − g‖
which gives us asymptotic normality.
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D.2 LOO Estimator

Proof of Theorem 7. Assume w.l.o.g that n > m. As before, the bias follows via conditioning.

E|T̂LOO − T (f, g)| = E[T (f̂−i, ĝ−i) + ψf (Xi; f̂−i, ĝ−i) + ψg(Yi; f̂−i, ĝ−i)− T (f, g)]

= E
[
O(‖f̂−i − f‖2 + ‖ĝ − g‖2)

]
≤ C1(n

−2s
2s+d +m

−2s
2s+d )

for some constant C1.

To bound the variance we use the Efron-Stein inequality. Consider the samples
{X1, . . . , Xn, Y1, . . . , Ym} and {X ′1, . . . , Xn, Y1, . . . , Ym} and denote the estimates obtained by
T̂LOO and T̂ ′LOO respectively. Recall that we need to bound E[(T̂LOO − T̂LOO)2]. Note that,

|T̂LOO − T̂ ′LOO| ≤
1

n
|ψf (X1; f̂−1, ĝ−1)− ψf (X ′1; f̂−1, ĝ−1)|+

1

n

∑
i 6=1

|T (f̂−i, ĝ−i)− T (f̂ ′−i, ĝ−i)|+ |ψf (Xi; f̂−i, ĝ−i)− ψf (Xi; f̂
′
−i, ĝ−i)|+ |ψg(Yi; f̂−i, ĝ−i)− ψg(Yi; f̂ ′−i, ĝ−i)|

The first term can be bounded by 2‖ψf‖∞/n using the boundedness of the influence function on
bounded densities. By using an argument similar to Equation (22) in the one distribution case, we
can also bound each term inside the summation of the second term via,

|T (f̂−i, ĝ−i)− T (f̂ ′−i, ĝ−i)| ≤
‖K‖∞LφLν

n

Then, by Jensen’s inequality we have,

|T̂LOO − T̂ ′LOO|2 ≤
8‖ψf‖2∞
n2

+
4‖K‖2∞L2

φL
2
ν

n2
+

4

n2

∑
i6=1

|ψf (Xi; f̂−i, ĝ−i)− ψf (Xi; f̂
′
−i, ĝ−i)|

2

+
4

n2

∑
i 6=1

|ψg(Yi; f̂−i, ĝ−i)− ψg(Yi; f̂ ′−i, ĝ−i)|

2

The third and fourth terms can be bound in expectation using a similar technique to bound the third
term in equation 22. Precisely, by using Assumption (4) and Cauchy Schwarz we get,

E
[
|ψf (Xi; f̂−i, ĝ−i)− ψf (Xi; f̂

′
−i, ĝ−i)||ψf (Xj ; f̂−j , ĝ−j)− ψf (Xj ; f̂

′
−j , ĝ−j)|

]
≤ 2CB2‖K‖2∞

n2

E
[
|ψg(Yi; f̂−i, ĝ−i)− ψg(Yi; f̂ ′−i, ĝ−i)||ψg(Yj ; f̂−j , ĝ−j)− ψg(Yj ; f̂ ′−j , ĝ−j)|

]
≤ 2CB2‖K‖2∞

n2

This leads us to a O(1/n2) bound for E[(T̂LOO − T̂ ′LOO)2],

E[(T̂LOO − T̂ ′LOO)2] ≤
8‖ψf‖2∞ + 4‖K‖2∞L2

φL
2
ν + 16CB2‖K‖2∞

n2

Now consider, the set of samples {X1, . . . , Xn, Y1, . . . , Ym} and {X1, . . . , Xn, Y
′
1 , . . . , Ym} and

denote the estimates obtained by T̂LOO and T̂ ′LOO respectively. Note that some of the Y instances
are repeated but each point occurs at most n/m times. The remaining argument is exactly the same
except that we need to account for this repetition. We have,

|T̂LOO − T̂ ′LOO| ≤
n

m

1

n
|ψf (X1; f̂−1, ĝ−1)− ψf (X ′1; f̂−1, ĝ−1)| +

n

m

1

n

∑
i 6=1

(
|T (f̂−i, ĝ−i)− T (f̂ ′−i, ĝ−i)|+

|ψf (Xi; f̂−i, ĝ−i)− ψf (Xi; f̂
′
−i, ĝ−i)| + |ψg(Yi; f̂−i, ĝ−i)− ψg(Yi; f̂ ′−i, ĝ−i)|

)
(28)

And hence,

E[(T̂LOO − T̂ ′LOO)2] ≤ ‖ψg‖
2
∞

m2
+
n2

m4
4‖K‖2∞L2

φL
2
ν +O

(
n4

m6

)
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where the last two terms of (28) are bounded by O(n4/m6) after squaring and then taking the
expectation. We have been a bit sloppy by bounding the difference by n/m and not dn/me but it is
clear that this doesn’t affect the rate.

Finally by the Efron Stein inequality we have

V(T̂LOO) ∈ O
(

1

n
+
n4

m5

)
which isO(1/n+ 1/m) if n and m are of the same order. This is the case if for instance there exists
ζl, ζu ∈ (0, 1) such that ζl ≤ n/m ≤ ζu.

Therefore the mean squared error is E[(T − T̂LOO)2] ∈ O(n−
4s

2s+d +m−
4s

2s+d +n−1 +m−1) which
completes the proof.

E Proof of Lower Bound (Theorem 8)

We will prove the lower bound in the bounded Hölder class Σ(s, L,B,B′) noting that the lower
bound also applies to Σ(s, L). Our main tool will be LeCam’s method where we reduce the estima-
tion problem to a testing problem. In the testing problem we construct a set of alternatives satisfying
certain separation properties from the null. For this we will use some technical results from Birgé
and Massart [3] and [12]. First we state LeCam’s method below adapted to our setting. We define
the squared Hellinger Divergence between two distributions P,Q with densities p, q to be

H2(P,Q) =

∫ (√
p(x)−

√
q(x)

)2
dx = 2− 2

∫
p(x)q(x)dx

Theorem 20. Let T : M ×M → R. Consider a parameter space Θ ⊂ M ×M such that
(f, g) ∈ Θ and (pλ, qλ) ∈ Θ for all λ in some index set Λ. Denote the distributions of f, g, pλ, qλ by
F,G, Pλ, Qλ respectively. Define P ×Q = 1

|Λ|
∑
λ∈Λ P

n
λ ×Qmλ . If, there exists (f, g) ∈ Θ, γ < 2

and β > 0 such that the following two conditions are satisfied

H2(Fn ×Gm, P ×Q) ≤ γ
T (pλ, qλ) ≥ T (f, g) + 2β ∀ λ ∈ Λ

then,

inf
T̂

sup
(f,g)∈Θ

P
(
|T̂ − T (f, g)| > β

) 1

2

(
1−

√
γ(1− γ/4)

)
> 0.

Proof. The proof is a straightforward modification of Theorem 2.2 of Tsybakov [35] which we
provide here for completeness.

Let Θ0 = {(p, q) ∈ Θ|T (p, q) ≤ T (f, g)} and Θ1 = {(p, q) ∈ Θ|T (p, q) ≥ T (f, g) + 2β}. Hence
(f, g) ∈ Θ0 and (pλ, qλ) ∈ Θ1 for all λ ∈ Λ. Given n samples from p′ and m samples from q′

consider the simple vs simple hypothesis testing problem of H0 : (p′, q′) ∈ Θ0 vs H1 : (p′, q′) ∈
Θ1. The probability of error pe of any test Ψ test is lower bounded by

pe ≥
1

2

(
1−

√
H2(Fn ×Gm, P ×Q)(1−H2(Fn ×Gm, P ×Q))/4

)
.

See Lemma 2.1, Lemma 2.3 and Theorem 2.2 of Tsybakov [35]. Therefore,

inf
ψ

sup
(p′,q′)∈Θ0,(p′′,q′′)∈Θ0

pe ≥
1

2

(
1−

√
γ(1− γ/4)

)
If we make an error in the testing problem the error in estimation is least β in the estimation problem
which completes the proof of the theorem.

Consider the set Γ = {−1, 1}` and a set of densities pγ = f(1 +
∑`
j=1 γjvj) indexed by each

γ ∈ Γ. Here f is itself a density and the vj’s are perturbations on f . We will also use the following
result from Birgé and Massart [3] which bounds the Hellinger divergence between the product
distribution Fn and the mixture product distribution Pn = 1

|Γ|
∑
γ∈Γ P

n
γ .
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Proposition 21. Let {R1, . . . , R`} be a partition of [0, 1]d. Let ρj is zero except on Rj and satisfies
‖ρj‖∞ ≤ 1,

∫
ρjf = 0 and

∫
ρ2
jf = αj . Further, denote α =

∑
j ‖ρj‖∞, s = nα2 supj P (Rj)

and c = n supj αj . Then,

H2(Fn, Pn) ≤ n2

3

∑̀
j=1

α2
j .

We also use the following technical result from Krishnamurthy et al. [12] and adapt it to our setting.

Proposition 22 (Taken from [12]). Let R1, . . . , R` be a partition of [0, 1]d each having size `−1/d.
There exists functions u1, . . . , u` such that,

supp (uj) ⊂ {x|B(x, ε) ⊂ Rj},
∫
u2
j ∈ Θ(`−1),

∫
uj = 0,∫

ψf (x; f, g)uj(x) =

∫
ψg(x; f, g)uj(x) = 0, ‖Druj‖∞ ≤ `r/d ∀r s.t

∑
j

rj ≤ s+ 1

where B(x, ε) denotes an L2 ball around x with radius ε. Here ε is any number between 0 and 1.

Proof. For this we use an orthonormal system of q (> 4) functions on (0, 1)d satisfying φ1 = 1,
supp (φj) ⊂ [ε, 1 − ε]d for any ε > 0 and ‖Drφj‖∞ ≤ J for some J < ∞. Now for any given
functions η1, η2 we can find a function υ such that υ ∈ span({φj}),

∫
υφ1 =

∫
υη1 =

∫
υη2 = 0.

Write υ =
∑
i cjφj . Then Drυ =

∑
j cjD

rφj which implies ‖Drυ‖∞ ≤ K
√
q. Let ν(·) =

1
J
√
qυ(·). Clearly,

∫
ν2 is upper and lower bounded and ‖Drν‖∞ ≤ 1.

To construct the functions uj , we map (0, 1)d to Rj by appropriately scaling it. Then, uj(x) =

ν(m1/d(x−j)) where j is the point corresponding to 0 after mapping. Moreover let η1 be ψf (·; f, g)
constrained to Rj (and scaled back to fit (0, 1)d). Let η2 be the same with ψg . Now,

∫
Rj
u2
j =

1
`

∫
ν2 ∈ Θ(`−1). Also, clearly ‖Druj‖ ≤ mr/d. All 5 conditions above are satisfied.

We now have all necessary ingredients to prove the lower bound.

Proof of Theorem 8. To apply Theorem 20 we will need to construct the set of alternatives Λ which
contains tuples (pλ, qλ) that satisfy the conditions of Theorem 20. First apply Proposition 22 with
` = `1 to obtain the index set Γ̃ = {−1, 1}`1 and the functions u1, . . . , u`1 . Apply it again with
` = `2 to obtain the index set ∆ = {−1, 1}`2 and the functions v1, . . . , v`2 . Define Γ,∆ be the
following set of functions which are perturbed around f and g respectively,

Γ =
{
pγ = f +K1

`1∑
j=1

γjuj |γ ∈ Γ̃
}

∆ =
{
qδ = g +K2

`2∑
j=1

δjvj |δ ∈ ∆̃
}

Since the perturbations in Proposition 22 are condensed into the small Rj’s it invariably violates the
Hölder assumption. The scaling K1 and K2 are necessary to shrink the perturbation and ensure that
pγ , qδ ∈ Σ(s, L). By following essentially an identical argument to [12] (Section E.2) we have that
pγ ∈ Σ(s, L) ifK � `−s/d1 and qδ ∈ Σ(s, L) ifK2 � `−s/d2 . We will set `1 and `2 later on to obtain

the required rates. For future reference denote Pn = 1
|Γ|
∑
γ∈Γ P

n
γ and Qm =

(
1
|∆|
∑
δ∈∆Qmδ

)
.

Now our set of alternatives are formed by the product of Γ and ∆

Λ = Γ×∆ = {(pγ , qδ)|pγ ∈ Γ, qδ ∈ ∆}

First note that for any (pλ, qλ) = (pγ , qδ) ∈ Λ, by the second order functional Taylor expansion we
have,

T (pλ, qλ) = T (f, g) +

∫
ψf (x; f, g)pλ +

∫
ψg(x; f, g)qλ +R2
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By Lemma 17 and the construction the first order terms vanish since,∫
ψf (x; f, g)

f +K1

∑
j

γjuj

 = K1

∑
j

γj

∫
ψf (x; f, g)uj = 0.

The same is true for
∫
ψg(x; f, g). The second order term can be upper bounded by

R2 = φ′′
(∫

ν(f∗, g∗)

)(∫
∂2ν(f∗(x), g∗(x))

∂f2(x)
(pλ − f)2 +

∫
∂2ν(f∗(x), g∗(x))

∂g2(x)
(qλ − g)2+

2

∫
∂2ν(f∗(x), g∗(x))

∂g(x)∂g(x)
(pλ − f)(qλ − g)

)
≥ σmin

(
‖pλ − f‖2 + ‖qλ − g‖2

)
≥ σmin

(
K2

1 +K2
2

)
For the second step note that (f∗, g∗) lies in line segment between (pλ, qλ) and (f, g) and is therefore
both upper and lower bounded. Therefore, the Hessian evaluated at (f∗, g∗) is strictly positive
definite with some minimum eigenvalue σmin. For the third step we have used that (pλ − f, qλ −
g) = (K1

∑`1
j=1 γjuj ,K2

∑`2
j=1 δjvj) and that the uj’s are orthonormal and ‖uj‖2 = 1. This

establishes the 2β separation between the null and the alternative as required by Theorem 20 with
β = σmin(K2

1 +K2
2 )/2. Precisely,

T (pλ, qλ) ≥ T (f, g) +O(`
−2s/d
1 + `

−2s/d
2 )

Now we need to bound the Hellinger separation, between Fn × Gm and P ×Q. First note that by
our construction,

P ×Q =
1

|Λ|
∑
λ∈Λ

Pnλ ×Qmλ =

 1

|Γ|
∑
γ∈Γ

Pnγ

×( 1

|∆|
∑
δ∈∆

Qmδ

)
= Pn ×Qm

By the tensorization property of the Hellinger affinity we have,

H2(Fn ×Gm, P ×Q) = 2

(
1−

(
1− H2(Fn, Pn)

2

)(
1− H2(Gm, Qm)

2

))
≤ H2(Fn, Pn) +H2(Gm, Qm)

We now apply Proposition 21 to bound each Hellinger divergence. If we denote ρj(·) =
K1uj(·)/f(·) then we see that the ρj’s satisfy the conditions of the proposition and further
pγ = f(1 +

∑
j γjρj) allowing us to use the bound. Accordingly αj =

∫
ρ2
jf ≤ CK2

1/`1 for
some C. Hence,

H2(Fn, Pn) ≤ n2

3

m∑
j=1

α2
j ≤

Cn2K4
1

`1
∈ O(n2`

− 4s+d
d

1 ).

A similar argument yields H2(Gm, Qm) ∈ O(m2`
− 4s+d

d
2 ). If we pick `1 = n

2d
4s+d and `2 = m

2d
4s+d

and hence K1 = n
−2s
2s+d and K2 = m−

−2s
2s+d , then we have that the Hellinger separation is bounded

by a constant.

H2(Fn ×Gm, P ×Q) ≤ H2(Fn, Pn) +H2(Gm, Qm) ∈ O(1)

Further, the error is larger than β � Ks
1 +K2

2 � n
−4s
2s+d +m

−4s
2s+d .

The first part of the lower bound for τ = 8s/(4s+ d) is concluded by Markov’s inequality,

E
[
(T̂ − T (f, g))2]

(n−τ/2 +m−τ/2)2
≤ P

(
|T̂ − T (f, g)| > (n−τ/2 +m−τ/2)

)
> c

where we note that (n−τ/2 + m−τ/2)2 � n−τ + m−τ . The n−1 + m−1 lower bound is straight-
forward as as we cannot do better than the the parametric rate [2]. See [12] for an proof that uses a
contradiction argument in the setting n = m.
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F An Illustrative Example - The Conditional Tsallis Divergence

In this section we present a step by step guide on applying our framework to estimating any desired
functional. We choose the Conditional Tsallis divergence because pedagogically it is a good example
in Table 1 to illustrate the technique. By following a similar procedure, one may derive an estimator
for any desired functional. The estimators are derived in Section F.1 and in Section F.2 we discuss
conditions for the theoretical guarantees and asymptotic normality.

The Conditional Tsallis-α divergence (α 6= 0, 1) between X and Y conditioned on Z can be written
in terms of joint densities pXZ , pY Z .

CTα (pX|Z‖pY |Z ; pZ) = CTα (pXZ , pY Z) =

∫
pZ(z)

1

α− 1

(∫
pαX|Z(u, z)p1−α

Y |Z (u, z)du− 1

)
dz

=
1

1− α
+

1

α− 1

∫
pαXZ(u, z)pβY Z(u, z)dudz

where we have taken β = 1 − α. We have samples Vi = (Xi, Z1i) ∼ pXZ , i = 1, . . . , n and
Wj = (Yj , Z1j) ∼ pY Z , j = 1, . . . ,m We will assume pXZ , pY Z ∈ Σ(s, L,B′, B). For brevity,
we will write p = (pXZ , pY Z) and p̂ = (p̂XZ , p̂Y Z).

F.1 The Estimators

We first compute the influence functions of CTα and the use it to derive the DS/LOO estimators.

Proposition 23 (Influence Functions of CTα ). The influence functions of CTα w.r.t pXZ , pY Z are

ψXZ(X,Z1; pXZ , pY Z) =
α

α− 1

(
pXZ

α−1(X,Z1)pY Z
β(X,Z1)−

∫
pXZ

αpY Z
β

)
(29)

ψY Z(Y,Z2; pXZ , pY Z) = −
(
pXZ

α(Y, Z2)pY Z
β−1(Y,Z2)−

∫
pXZ

αpY Z
β

)
Proof. Recall that we can derive the influence functions via ψXZ(X,Z1; p) = CTα

′
XZ(δX,Z1

−
pXZ ; p), ψY Z(Y,Z2; p) = CTα

′
Y Z(δX,Z2 − pY Z ; p) where CTα

′
XZ , C

T
α
′
Y Z are the Gâteaux deriva-

tives of CTα w.r.t pXZ , pY Z respectively. Hence,

ψXZ(X,Z1) =
1

α− 1

∂

∂t

∫
((1− t)pXZ + tδXZ1

)αpY Z
β
∣∣∣
t=0

=
α

α− 1

∫
pXZ

α−1pY Z
β(δXZ1 − pXZ)

from which the result follows. Deriving ψY Z is similar. Alternatively, we can directly show that
ψXZ , ψY Z in Equation (29) satisfy Definition 2.

DS estimator: Use V n/21 ,W
m/2
1 to construct density estimates p̂(1)

XZ , p̂
(1)
Y Z for pXZ , pY Z . Then, use

V 2n
n/2+1,W

m
m/2+1 to add the sample means of the influence functions given in Theorem 23. This

results in our preliminary estimator,

ĈT (1)
α =

1

1− α
+

α

α− 1

2

n

n∑
i=n/2+1

(
p̂

(1)
XZ(Xi, Z1i)

p̂
(1)
Y Z(Xi, Z1i)

)α−1

− 2

m

m∑
j=m/2+1

(
p̂

(1)
XZ(Yj , Z2j)

p̂
(1)
Y Z(Yj , Z2j)

)α
(30)

The final estimate is ĈTα,DS = (Ĉ
T (1)
α + Ĉ

T (2)
α )/2 where ĈT (2)

α is obtained by swapping the two
samples.

LOO Estimator: Denote the density estimates of pXZ , pY Z without the ith sample by p̂XZ,−i and
p̂Y Z,−i. Then the LOO estimator is,

ĈTα,LOO =
1

1− α
+

α

α− 1

1

n

n∑
i=1

(
p̂XZ,−i(Xi, Z1i)

p̂Y Z(Xi, Z1i)

)α−1

−
(

p̂XZ(Yi, Z2i)

p̂Y Z,−i(Yi, Z2i)

)α
(31)
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F.2 Analysis and Asymptotic Confidence Intervals

We begin with a functional Taylor expansion of CTα (f, g) around (f0, g0). Since α, β 6= 0, 1, we
can bound the second order terms by O

(
‖f − f0‖2 + ‖g − g0‖2

)
.

CTα (f, g) = CTα (f0, g0) +
α

α− 1

∫
fα−1

0 gβ0 −
∫
fα0 g

β−1
0 +O

(
‖f − f0‖2 + ‖g − g0‖2

)
(32)

Precisely, the second order remainder is,

α2

α− 1

∫
fα−2
∗ gβ∗ (f − f0)2 − β

∫
fα∗ g

β−2
∗ (g − g0)2 +

αβ

α− 1

∫
fα−1
∗ gβ∗ (f − f0)(g − g0)

where (f∗, g∗) is in the line segment between (f, g) and (f0, g0). If f, g, f0, g0 are bounded
above and below so are f∗, g∗ and fa∗ g

b
∗ where a, b are coefficients depending on α. The first

two terms are respectively O
(
‖f − f0‖2

)
, O

(
‖g − g0‖2

)
. The cross term can be bounded via,∣∣∫ (f − f0)(g − g0)

∣∣ ≤ ∫ max{|f − f0|2, |g − g0|2} ∈ O(‖f − f0‖2 + ‖g − g0‖2).

As mentioned earlier, the boundedness of the densities give us the required rates given in Theorems 7
for both estimators.

For the DS estimator, to show asymptotic normality, we need to verify the conditions in Theorem 19.
We state it formally below, but prove it at the end of this section.

Corollary 24. Let pXY , pXZ ∈ Σ(s, L,B,B′). Then ĈTα,DS is asymptotically normal when pXZ 6=
pY Z and s > d/2.

Finally, to construct a confidence interval we need a consistent estimate of the asymptotic variance
: 1
ζVXZ [ψXZ(V ; p)] + 1

1−ζVY Z [ψY Z(W ; p)] where,

VXZ [ψXZ(X,Z1; pXZ , pY Z)] =

(
α

α− 1

)2
(∫

pXZ
2α−1pY Z

2β −
(∫

pXZ
αpY Z

β

)2
)

VY Z [ψY Z(Y,Z2; pXZ , pY Z)] =

(∫
pXZ

2αpY Z
2β−1 −

(∫
pXZ

αpY Z
β

)2
)

From our analysis above, we know that any functional of the form S(a, b) =
∫
pXZ

apY Z
b, a+ b =

1, a, b 6= 0, 1 can be estimated via a LOO estimate

Ŝ(a, b) =
1

n

n∑
i=1

a
p̂bY Z,−i(Vi)

p̂bXZ,−i(Vi)
+ b

p̂aXZ,−i(Wi)

p̂aY Z,−i(Wi)

where p̂XZ,−i, p̂Y Z,−i are the density estimates from V−i,W−i respectively. n/N is a consistent
estimator for ζ. This gives the following estimator for the asymptotic variance,

N

n

α2

(α− 1)2
Ŝ(2α− 1, 2β) +

N

m
Ŝ(2α, 2β − 1)− N(mα2 + n(α− 1)2)

nm(α− 1)2
Ŝ2(α, β).

The consistency of this estimator follows from the consistency of Ŝ(a, b) for S(a, b), Slutzky’s
theorem and the continuous mapping theorem.

Proof of Corollary 24. We now prove that the DS estimator satisfies the necessary conditions for
asymptotic normality. We begin by showing that CTα ’s influence functions satisfy the regularity
condition 4. We will show this for ψY Z . The proof for ψXZ is similar. Consider two pairs of
densities (f, g) (f ′, g′) on the (XZ, Y Z) spaces.∫

(ψXZ(u; f, g)− ψXZ(u; f ′, g′))
2
f

=
α2

(1− α)2

∫ (
fα−1gβ −

∫
fαgβ −

[
f ′α−1g′β −

∫
f ′αg′β

])2

f
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≤ 2
α2

(1− α)2

[∫ (
fα−1gβ − f ′α−1g′β

)2
f +

(∫
fαgβ −

∫
f ′αg′β

)2
]

≤ 2
α2

(1− α)2

[∫ (
fα−1gβ − f ′α−1g′β

)2
f +

∫ (
fαgβ − f ′αg′β

)2]
≤ 4

α2

(1− α)2

[
‖gβ‖2∞

∫
(fα−1 − f ′α−1)2 + ‖f ′α−1‖2∞

∫
(gβ − g′β)2+

‖gβ‖2∞
∫

(fα − f ′α)2 + ‖f ′α‖2∞
∫

(gβ − g′β)2

]
∈ O

(
‖f − f ′‖2

)
+O

(
‖g − g′‖2

)
where, in the second and fourth steps we have used Jensen’s inequality. The last step follows from
the boundedness of all our densities and estimates and by lemma 11.

The bounded variance condition of the influence functions also follows from the boundedness of the
densities.

VpXZψXZ(V ; pXZ , pY Z) ≤ α2

(α− 1)2
EpXZ

[
pXZ

2α−2(X,Z1)pY Z
2β(X,Z1)

]
=

α2

(α− 1)2

∫
pXZ

2α−1pY Z
2β <∞

We can bound VpY ZψY Z similarly. For the fourth condition, note that when pXZ = pY Z ,

ψXZ(X,Z1; pXZ , pXZ) =
α

α− 1

(
pXZ

α+β−1(X,Z1)−
∫
pXZ

)
= 0,

and similarly ψY Z = 0. Otherwise, ψXZ depends explicitly on X,Z and is nonzero. Therefore we
have asymptotic normality away from pXZ = pY Z .

G Addendum to Experiments

G.1 Details on Simulations

In our simulations, for the first figure comparing the Shannon Entropy in Fig 1 we generated data
from the following one dimensional density,

f1(t) = 0.5 + 0.5t9

For this, with probability 1/2 we sample from the uniform distribution U(0, 1) on (0, 1) and other-
wise sample 10 points from U(0, 1) and pick the maximum. For the third figure in Fig 1 comparing
the KL divergence, we generate data from the one dimensional density

f2(t) = 0.5 +
0.5t19(1− t)19

B(20, 20)

where B(·, ·) is the Beta function. For this, with probability 1/2 we sample from U(0, 1) and
otherwise sample from a Beta(20, 20) distribution. The second and fourth figures of Fig 1 we
sampled from a 2 dimensional density where the first dimension was f1 and the second was U(0, 1).
The fifth and sixth were from a 2 dimensional density where the first dimension was f2 and the
second was U(0, 1). In all figures of Fig. 2, the first distribution was a 4-dimensional density where
all dimensions are f2. The latter was U(0, 1)4.

Methods compared to: In addition to the plug-in, DS and LOO estimators we perform compar-
isons with several other estimators. For the Shannon Entropy we compare our method to the k-NN
estimator of Goria et al. [8], the method of Stowell and Plumbley [33] which uses K − D parti-
tioning, the method of Noughabi and Noughabi [23] based on Vasicek’s spacing method and that
of Learned-Miller and John [15] based on Voronoi tessellation. For the KL divergence we compare
against the k-NN method of Pérez-Cruz [26] and that of Ramırez et al. [29] based on the power
spectral density representation using Szego’s theorem. For Rényi-α , Tsallis-α and Hellinger diver-
gences we compared against the k-NN method of Póczos et al. [28].
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(a) (b)

Figure 3: (a) Some sample images from the three categories apples, cows and cups. (b) The affinity matrix
used in clustering.

G.2 Image Clustering Task

Here we demonstrate a simple image clustering task using a nonparametric divergence estimator. For
this we use images from the ETH-80 dataset. The objective here is not to champion our approach
for image clustering against all methods for image clustering out there. Rather, we just wish to
demonstrate that our estimators can be easily and intuitively applied to many Machine Learning
problems.

We use the three categories Apples, Cows and Cups and randomly select 50 images from each
category. Some sample images are shown in Fig 3(a). We convert the images to grey scale and
extract the SIFT features from each image. The SIFT features are 128-dimensional but we project
it to 4 dimensions via PCA. This is necessary because nonparametric methods work best in low
dimensions. Now we can treat each image as a collection of features, and hence a sample from a 4
dimensional distribution. We estimate the Hellinger divergence between these “distributions”. Then
we construct an affinity matrix A where the similarity metric between the ith and j th image is given
by Aij = exp(−Ĥ2(Xi, Xj)). Here Xi and Xj denotes the projected SIFT samples from images
i and j and Ĥ(Xi, Xj) is the estimated Hellinger divergence between the distributions. Finally, we
run a spectral clustering algorithm on the matrix A.

Figure 3(b) depicts the affinity matrix A when the images were ordered according to their class
label. The affinity matrix exhibits block-diagonal structure which indicates that our Hellinger di-
vergence estimator can in fact identify patterns in the images. Our approach achieved a clustering
accuracy of 92.47%. When we used the k-NN based estimator of [28] we achieved an accuracy
of 90.04%. When we instead applied Spectral clustering naively, with Aij = exp(−L2(Pi, Pj)

2)
where L2(Pi, Pj) is the squared L2 distance between the pixel intensities we achieved an accu-
racy of 70.18%. We also tried Aij = exp(−αĤ2(Xi, Xj)) as the affinity for different choices of
α and found that our estimator still performed best. We also experimented with the Rényi-α and
Tsallis-α divergences and obtained similar results.

On the same note, one can imagine that these divergence estimators can also be used for a classifi-
cation task. For instance we can treat exp(−Ĥ2(Xi, Xj)) as a similarity metric between the images
and use it in a classifier such as an SVM.
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H Estimators for Some Information Theoretic Quantities

In this section, we present estimators for several common Information Theoretic quantities. The
definitions and estimators are in Table 1. The table presents the LOO estimators.

For several functionals (e.g. conditional and unconditional Rényi-α divergence, conditional
Tsallis-α mutual information and more) the estimators are not listed only because the expressions
are too long to fit into the table. Our software implements a total of 17 functionals which include all
the estimators in the table.

Functional LOO Estimator
Tsallis-α Entropy

1
α−1

(
1−

∫
pα
) 1

1−α + 1
n

∑
i

∫
p̂α−i − α

α−1
p̂α−1
−i (Xi)

Rényi-α Entropy
−1
α−1

log
∫
pα

α
α−1

+ 1
n

∑
i
−1
α−1

log
∫
p̂α−i − p̂α−1

−i (Xi)+

Shannon Entropy
−
∫
p log p

− 1
n

∑
i log p̂−i(Xi)

L2
2 Divergence∫
(pX − pY )2

2
n

∑
i p̂X,−i(Xi)− p̂Y (Xi)−

∫
(p̂X,−i − p̂Y )2 + 2

m

∑
j p̂X(Yj)− p̂Y,−j(Yj)

Hellinger Divergence
2− 2

∫
pX

1/2pY
1/2 2− 1

n

∑
i p̂
−1/2
X,−i(Xi)p̂

1/2
Y (Xi)− 1

m

∑
j p̂

1/2
X (Yj)p̂

−1/2
Y,−j (Yj)

Chi-Squared Divergence∫ (pX−pY )2

pX

−1 + 1
n

∑
i

p̂2Y (Xi)

p̂2
X,−i(Xi)

+ 2 1
m

∑
j

p̂Y,−j(Yj)
p̂X (Yj)

f -Divergence∫
φ( pX

pY
)pY

1
n

∑
i φ
′
(
p̂X,−i(Xi)
p̂Y (Xi)

)
+ 1

m

∑
j

(
φ
(
p̂Y,−j(Yj)
p̂X (Yj)

)
− p̂X (Yj)

p̂Y,−j(Yj)
φ
(

p̂X (Yj)

p̂Y,−j(Yj)

))
Tsallis-α Divergence
1

α−1

(∫
pX

αpY
1−α − 1

) 1
1−α + α

α−1
1
n

∑
i

(
p̂X,−i(Xi)
p̂Y (Xi)

)α−1

− 1
m

∑
j

(
p̂X (Yj)

p̂Y,−j(Yj)

)α
KL divergence∫
pX log pX

pY

1 + 1
n

∑
i log

p̂X,−i(Xi)
p̂Y (Xi)

− 1
m

∑
j

p̂X (Yj)

p̂Y,−j(Yj)

Conditional-Tsallis-α divergence∫
pZ

1
α−1

(∫
pαX|Zp

1−α
Y |Z − 1

) 1
1−α + α

α−1
1
n

∑
i

(
p̂XZ,−i(Vi)
p̂Y Z(Vi)

)α−1

− 1
m

∑
j

(
p̂XZ(Wj)

p̂Y Z,−j(Wj)

)α
Conditional-KL divergence∫

pZ
∫
pX|Z log

pX|Z
pY |Z

1 + 1
n

∑
i log

p̂XZ,−i(Vi)
p̂Y Z(Vi)

− 1
m

∑
j

p̂XZ(Wj)

p̂Y Z,−j(Wj)

Shannon Mutual Information∫
pXY log pXY

pXpY

1
n

∑
i log p̂XY,−i(Xi, Yi)− log p̂X,−i(Xi)− log p̂Y,−i(Yi)

Conditional Tsallis-α MI∫
pZ

1
α−1

(∫
pαX,Y |Zp

1−α
X|Zp

1−α
Y |Z − 1

) 1
1−α + 1

α−1
1
n

∑
i α
(

p̂XYZ,−i(Xi,Yi,Zi)p̂Z(Zi)

p̂XZ,−i(Xi,Zi)p̂Y Z,−i(Yi,Zi)

)α−1

−(1− α) 1
α−1

1
n

∑
i p̂
α−2
Z (Zi)

∫
p̂αXYZ,−i(·, ·, Zi)p̂

1−α
XZ,−i(·, Zi)

+ 1
α−1

1
n

∑
i(1− α)p̂−αXZ,−i(Xi, Zi)p̂

1−α
Z (Zi)

∫
p̂αXYZ,−i(Xi, ·, Zi)p̂

1−α
Y Z,−i(·, Zi)

+ 1
α−1

1
n

∑
i(1− α)p̂−αY Z,−i(Yi, Zi)p̂

α−1
Z (Zi)

∫
p̂αXYZ,−i(·, Yi, Zi)p̂

1−α
XZ,−i(·, ·)

Table 1: Definitions of functionals and the corresponding estimators. Here pX|Z , pXZ etc. are
conditional and joint distributions. For the conditional divergences we take Vi = (Xi, Z1i), Wj =
(Yj , Z2j) to be the samples from pXZ , pY Z respectively. For the mutual informations we have
samples (Xi, Yi) ∼ pXY and for the conditional versions we have (Xi, Yi, Zi) ∼ pXY Z .
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