
r

1

r

2

r

3

r

m

Constraint

nodes

y

1

y

2

y

3

y

n

Message

nodes

Figure 3: At the beginning of the recall phase, the associative memory is presented with a noisy version of
a message y = x + e. The j-th message node stores yj . The m constraint nodes take values according to
the vector r = By = Be. Note that the m ⇥ n matrix B denotes the edge weight of the bipartite graph
corresponding to the associative memory.

A Proof of Prop. 1

Assume, h =

ˆ

x� x, then

kxk
1

� kˆxk
1

= kx+ hk
1

= kxT + hT k1 + kxT c
+ hT ck

1

� kxT k1 � khT k1 � kxT ck
1

+ khT ck
1

=) khT ck
1

 khT k1 + 2kxT ck
1

,

where T 2 {1, . . . , n} is the largest k coordinates of x and T c
= {1, . . . , n}\T . If B has null-space

property with parameters (k,↵), then, we have,

khT ck
1

 2kxT ck
1

+ ↵khT ck
1

.

Since, khk
1

 (1 + ↵)khT ck
1

,
1� ↵

1 + ↵
khk

1

 2kxT ck
1

.

Hence the null-space property of sampling matrix implies,

kˆx� xk
1

 2(1 + ↵)

1� ↵
kx� xkk1. (21)

B Neural feasibility of recall phase

In this section, we briefly comment on the neural feasibility of the recovery algorithms presented
in Sec. 5. See Fig. 3 for the structure of the associative memory. The edge weights of the bipartite
graph are defined by the m ⇥ n matrix B which is a basis matrix of the subspace orthogonal to
the message set. Thus, the edge weight between i-th constraint node and j-th message node in Bi,j .
Given access to a noisy observation y = x+e, the j-th message node store yj and the i-th constraint
node stores ri, where r = Be. The objective of the recall phase is to enable recovery of ej at the j-th
message node. Towards, this the message nodes start computation with an initial estimate e0 = 0 for
the vector e. Here, we describe how the IST algorithm as defined in (17) can be implemented over
the bipartite graph. Since the Bregman iterative algorithm involves similar steps in its iterations, its
neural feasibility also follows from that of the IST algorithm.

Note that the (t+ 1)-th iteration of the IST algorithm is defined as follows.

e

t+1

= ⌘S(et � ⌧BT
(Be

t � r);� = ⌧⌫).

This can be divided into three basic sequential computation tasks: 1) computation of Be

t � r at the
constraint nodes, 2) computation of et � ⌧BT

(Be

t � r) at the message nodes, and 3) coordinate-
wise soft thresholding operation ⌘S(·, ⌧⌫) at the message nodes. Assuming that the message nodes
store et from the computation from the previous iteration, the i-th constraint node can now compute

r̃t+1

i
nX

j=1

Bi,je
t
j � rj .

10

This completes the first task. Note that each constraint node only accesses the weighted information
stored on its neighbor during the computation. For second task, based on the information collected
from its neighboring constraints nodes, the j-th message node now computes

ẽt+1

j = etj �
mX

i=1

Bi,j r̃
t+1

i .

Once the second task is completed, the message node now applies the soft thresholding operation
which only depends on values it has access to.

et+1

j = ⌘S(ẽt+1

j , ⌧⌫).

C Associative memories based on sparse coding

In this section, we explore another natural model for the dataset (signals) to be stored on an asso-
ciative memory. Many signals in the real life can be expressed as combinations of a small number
of signals from a set of representative signals, namely a dictionary. In particular, assuming that
D 2 Rn⇥m denotes the dictionary with m representative signals from Rn with m � n, a valid
message (signal) to be stored has the form y = Dx, where x 2 Rm is a sparse vector. Given a set
of valid messages y

1

,y
2

, . . . ,yN , finding the dictionary or coding matrix D and sparse coefficient
vectors x

1

,x
2

, . . . ,xN such that yi is approximated by Dxi for every i 2 [N], is known as the dic-
tionary learning problem. This problem was first studied by Olshausen and Field in [24]. Recently
this problem has received a great amount of attention where given certain incoherence assumptions
on the dictionary D and suitable sparsity bounds on the coefficient vectors, provable algorithms for
the dictionary learning problem have been proposed in [3, 1, 2] and references therein.

Along this direction, we here comment on how the sparse coding approach can be utilized to con-
struct associative memories. Learning the dictionary D constitutes the learning phase for the asso-
ciative memory. Towards this, one can employ one of the dictionary learning algorithms proposed
in [3, 1, 2]. These algorithms work under the assumption that the dictionary D 2 Rn⇥m has coher-
ence parameter µ cp

n
. Moreover, the valid messages are assumed to have coefficient vectors with

sparsity at most O(

p
n) with nonzero coefficients taking absolute values that lie in a small enough

interval bounded away from zero.

For the recovery phase, we are interested in recovering the coefficient vector (and thus the message
vector) from z = Dx+e, where e is a noise vector. Assuming e has its entries distributed according
to a sub-gaussian distribution, one can solve the Lasso problem min

x2Rm
1

2nky�Dxk2
2

+�nkxk1 to
recover x provided that the dictionary matrix D satisfies some additional assumptions [28, Theorem
1]. In [28], Wainwright bounds the coordinate-wise error between x and the solution of the Lasso
problem mentioned above by a function of �n. Therefore, if nonzero values in a coefficient vector
are picked from a discrete set such that any two elements of the discrete set are at least 2g(�n) (a
quantity that depends on the regularization parameter �n) far away, then solving Lasso recovers the
coefficient vector x and subsequently the signal y = Dx exactly.

11

