
Quartz
Supplementary material

In this document the reader can find the proof of Theorem 2 in Section 5, the proof of Proposition 4 in Secion 6, two
more examples of sampling in Section 7 and the complexity results of Quartz specialzed in these two samplings in
Section 8.

5 Proof of Theorem 2

In this section we prove our main result (Theorem 2). In order to make the analysis more transparent, we will first
establish three auxiliary results.

5.1 Three lemmas

Lemma 5.1 Function f : RN → R defined in (3) satisfies the following inequality:

f(α+ h) ≤ f(α) + 〈∇f(α), h〉+
1

2λn2
h>A>Ah, ∀α, h ∈ RN . (25)

Proof Since g is 1-strongly convex, g∗ is 1-smooth. Pick α, h ∈ RN . Since, f(α) = λg∗(1
λnAα), we have

f(α+ h) = λg∗
(

1
λnAα+ 1

λnAh
)
≤ λ

(
g∗
(

1
λnAα

)
+ 〈∇g∗

(
1
λnAα

)
, 1
λnAh〉+ 1

2

∥∥ 1
λnAh

∥∥2
)

= f(α) + 〈∇f(α), h〉+ 1
2λn2h

>A>Ah.

For s = (s1, . . . , sn) ∈ RN , h = (h1, . . . , hn) ∈ RN , where si, hi ∈ Rm for all i, we will for convenience write

〈s, h〉p =

n∑
i=1

pi〈si, hi〉,

where p = (p1, . . . , pn) and pi = P(i ∈ Ŝ) for i ∈ [n].

In the next lemma we give an expected separable overapproximation of the convex function −D.

Lemma 5.2 If Ŝ and v ∈ Rn satisfy (5), then for all α, h ∈ RN , the following holds:

E[−D(α+ h[Ŝ])]

≤ f(α) + 〈∇f(α), h〉p +
1

2λn2
‖h‖2p·v +

1

n

n∑
i=1

[(1− pi)φ∗i (−αi) + piφ
∗
i (−αi − hi)] .

(26)

Proof By definition of D, we have

−D(α+ h[Ŝ])
(2)
= f(α+ h[Ŝ]) + ψ(α+ h[Ŝ]),

1

where f and ψ are defined in (3). Now we apply Lemma 5.1 and (5) to bound the first term:

E[f(α+ h[Ŝ])]
(25)
≤ E[f(α) + 〈∇f(α), h[Ŝ]〉+

1

2λn2
h>

[Ŝ]
A>Ah[Ŝ]]

(5)
≤ f(α) + E[〈∇f(α), h[Ŝ]〉] +

1

2λn2
‖h‖2p·v

= f(α) + 〈∇f(α), h〉p +
1

2λn2
‖h‖2p·v.

Moreover, since ψ is block separable, we can write

E[ψ(α+ h[Ŝ])]
(3)
=

1

n

n∑
i=1

[
P(i /∈ Ŝ)φ∗i (−αi) + P(i ∈ Ŝ)φ∗i (−αi − hi)

]
=

1

n

n∑
i=1

[(1− pi)φ∗i (−αi) + piφ
∗
i (−αi − hi)] .

Our last auxiliary result is a technical lemma for further bounding the right hand side in Lemma 5.2.

Lemma 5.3 Suppose that Ŝ and v ∈ Rn satisfy (5). Fixing α ∈ RN and w ∈ Rd, let h ∈ RN be defined by:

hi = −θp−1
i (αi +∇φi(A>i w)), i ∈ [n],

where θ be as in (7). Then

f(α) + 〈∇f(α), h〉p +
1

2λn2
‖h‖2p·v +

1

n

n∑
i=1

[(1− pi)φ∗i (−αi) + piφ
∗
i (−αi − hi)]

≤ −(1− θ)D(α)− θλg(∇g∗(ᾱ))− 1

n

n∑
i=1

〈θ∇g∗(ᾱ), Ai∇φi(A>i w)〉+
θ

n

n∑
i=1

φ∗i (∇φi(A>i w)),

(27)

where ᾱ = 1
λnAα.

Proof Recall from (3) that f(α) = λg∗(ᾱ) and hence∇f(α) = 1
nA
>∇g∗(ᾱ). Thus,

f(α) + 〈∇f(α), h〉p +
1

2λn2
‖h‖2p·v

= λg∗(ᾱ)−
n∑
i=1

pi〈
1

n
A>i ∇g∗(ᾱ), θp−1

i (αi +∇φi(A>i w))〉+
1

2λn2
‖h‖2p·v

= (1− θ)λg∗(ᾱ) + θλ(g∗(ᾱ)− 〈∇g∗(ᾱ), ᾱ〉)

− 1

n

n∑
i=1

〈θ∇g∗(ᾱ), Ai∇φi(A>i w)〉+
1

2λn2
‖h‖2p·v.

(28)

Since the functions φi are (1/γ)-smooth, the conjugate functions φ∗i must be γ-strongly convex. Therefore,

φ∗i (−αi − hi)
= φ∗i (−(1− θp−1

i)αi + θp−1
i ∇φi(A

>
i w))

≤ (1− θp−1
i)φ∗i (−αi) + θp−1

i φ∗i (∇φi(A>i w))− γθp−1
i (1− θp−1

i)

2
‖αi +∇φi(A>i w)‖2

= (1− θp−1
i)φ∗i (−αi) + θp−1

i φ∗i (∇φi(A>i w))− γpi(1− θp−1
i)

2θ
‖hi‖2, (29)

2

and we can write

1

n

n∑
i=1

[(1− pi)φ∗i (−αi) + piφ
∗
i (−αi − hi)]

(29)
≤ (1− θ)ψ(α) +

θ

n

n∑
i=1

(φ∗i (∇φi(A>i w)))− 1

2λn2

n∑
i=1

nλγp2
i (1− θp

−1
i)

θ
‖hi‖2.

(30)

Then by combining (28) and (30) we get:

f(α) + 〈∇f(α), h〉p +
1

2λn2
‖h‖2p·v +

1

n

n∑
i=1

[(1− pi)φ∗i (−αi) + piφ
∗
i (−αi − hi)]

≤ −(1− θ)D(α)− θλg(∇g∗(ᾱ))− 1

n

n∑
i=1

〈θ∇g∗(ᾱ), Ai∇φi(A>i w)〉+
θ

n

n∑
i=1

φ∗i (∇φi(A>i w))

+
1

2λn2

n∑
i=1

(
pivi −

nλγp2
i (1− θp

−1
i)

θ

)
‖hi‖2.

It remains to notice that for θ defined in (7), we have:

pivi ≤
nλγp2

i (1− θp
−1
i)

θ
, ∀i ∈ [n].

5.2 Proof of Theorem 2

Let t ≥ 1. Define ht = (ht1, . . . , h
t
n) ∈ RN by:

hti = −θp−1
i (αt−1

i +∇φi(A>i wt)), i ∈ [n]

and κt = (κt1, · · · , κtn) by:

κti = arg max
∆∈Rm

[
−φ∗i (−(αt−1

i + ∆))−∇g∗(ᾱt−1)>Ai∆−
vi‖∆‖2

2λn

]
, ∀i ∈ [n].

If we use Option I in Algorithm 1, then αt = αt−1 + κt
[Ŝ]

. If we use Option II in Algorithm 1, then we have

αt = αt−1 + ht
[Ŝ]

. In both cases, by Lemma 5.2:

Et[−D(αt)]

≤ f(αt−1) + 〈∇f(αt−1), ht〉p +
1

2λn2
‖ht‖2p·v +

1

n

n∑
i=1

[
(1− pi)φ∗i (−αt−1

i) + piφ
∗
i (−αt−1

i − hti)
]
.

We now apply Lemma 5.3 to further bound the last term and obtain:

Et[−D(αt)] ≤ −(1− θ)D(αt−1)− θλg(∇g∗(ᾱt−1))

− 1

n

n∑
i=1

〈θ∇g∗(ᾱt−1), Ai∇φi(A>i wt)〉+
θ

n

n∑
i=1

φ∗i (∇φi(A>i wt)).
(31)

By convexity of g,

P (wt) =
1

n

n∑
i=1

φi(A
>
i w

t) + λg((1− θ)wt−1 + θ∇g∗(ᾱt−1))

≤ 1

n

n∑
i=1

φi(A
>
i w

t) + (1− θ)λg(wt−1) + θλg(∇g∗(ᾱt−1)).

(32)

3

By combining (31) and (32) we get:

Et[P (wt)−D(αt)] ≤ 1

n

n∑
i=1

φi(A
>
i w

t) + (1− θ)λg(wt−1)− (1− θ)D(αt−1)

− 1

n

n∑
i=1

〈θ∇g∗(ᾱt−1), Ai∇φi(A>i wt)〉+
θ

n

n∑
i=1

φ∗i (∇φi(A>i wt))

= (1− θ)(P (wt−1)−D(αt−1)) +
1

n

n∑
i=1

(φi(A
>
i w

t)− (1− θ)φi(A>i wt−1))

− 1

n

n∑
i=1

〈θ∇g∗(ᾱt−1), Ai∇φi(A>i wt)〉+
θ

n

n∑
i=1

φ∗i (∇φi(A>i wt)).

(33)

Note that θ∇g∗(ᾱt−1) = wt − (1− θ)wt−1 and φ∗i (∇φi(A>i wt)) = 〈∇φi(A>i wt), A>i wt〉 − φi(A>i wt). Finally, we
plug these two inequalities into (33) and obtain:

Et[P (wt)−D(αt)] ≤(1− θ)(P (wt−1)−D(αt−1)) +
1

n

n∑
i=1

(φi(A
>
i w

t)− (1− θ)φi(A>i wt−1))

− 1

n

n∑
i=1

〈A>i wt − (1− θ)A>i wt−1,∇φi(A>i wt)〉

+
θ

n

n∑
i=1

(
〈∇φi(A>i wt), A>i wt〉 − φi(A>i wt)

)
=(1− θ)(P (wt−1)−D(αt−1)) +

1− θ
n

n∑
i=1

(φi(A
>
i w

t)− φi(A>i wt−1))

− 1− θ
n

n∑
i=1

〈A>i wt −A>i wt−1,∇φi(A>i wt)〉

=(1− θ)(P (wt−1)−D(αt−1))

+
1− θ
n

n∑
i=1

[
φi(A

>
i w

t)− φi(A>i wt−1) + 〈A>i wt−1 −A>i wt,∇φi(A>i wt)〉
]

≤(1− θ)(P (wt−1)−D(αt−1)),

where the last inequality follows from the convexity of φi.

6 Proof of Proposition 4

Proof [Proof of Proposition 4] As long as λγτn ≥ 1, which holds under our assumption, the iteration complexity of
ASDCA is:

Õ

(
max

{
n

τ
,

√
n

λγτ
,

1

λγτ
,

n
1
3

(λγτ)
2
3

})
= Õ

(√
n

λγτ

)
.

which is already less than that of SPDC. Moreover,√
n

λγτ

(24)
≥

1 + nλγ + (τ−1)(ω̃−1)
n−1

λγτ
=
n

τ
+

1 + (τ−1)(ω̃−1)
n−1

λγτ
.

4

7 Two more samplings

7.1 Product sampling

In this section we give an example of a sampling Ŝ which can be both non-uniform and non-serial (i.e., for which
P(|Ŝ| = 1) 6= 1). We make the following group separability assumption: there is a partition X1, . . . , Xτ of [n]
according to which the examples {Ai} can be partitioned into τ groups such that no feature is shared by any two
examples belonging to different groups.

Consider the following example with m = 1, n = 5 and d = 4:

A = [A1, A2, A3, A4, A5] =

0 0 6 4 9
0 3 0 0 0
0 0 3 0 1
1 8 0 0 0

If we choose τ = 2 and X1 = {1, 2}, X2 = {3, 4, 5}, then no row of A has a nonzero in both a column belonging to
X1 and a column belonging to X2.

With each i ∈ [n] we now associate li ∈ [τ] such that i ∈ Xli and define:

S def
= X1 × · · · ×Xτ .

The product sampling Ŝ is obtained by choosing S ∈ S, uniformly at random; that is, via:

P(Ŝ = S) =
1

|S|
=

1∏τ
l=1 |Xl|

, S ∈ S. (34)

Then Ŝ is proper and

pi
def
= P(i ∈ Ŝ) =

∏
l 6=li |Xl|
|S|

(34)
=

1

|Xli |
, i ∈ [n]. (35)

Hence the sampling is nonuniform as long as not all of the sets Xl have the same cardinality. We next show that the
product sampling Ŝ defined as above allows the same stepsize parameter vi as the serial uniform sampling.

Lemma 7.1 Under the group separability assumption, (5) is satisfied for the product sampling Ŝ and

vi = λmax(A>i Ai), i ∈ [n].

Proof For each j ∈ [d], denote by Aj: the j-th row of the matrix A and Ωj the column index set of nonzero blocks in

Aj:: Ωj
def
= {i ∈ [n] : Aji 6= 0}. For each l ∈ [τ], define:

Jl
def
= {j ∈ [d] : Ωj ⊂ Xl}. (36)

In words, Jl is the set of features associated with the examples inXl. By the group separability assumption, J1, . . . , Jτ
forms a partition of [d], namely,

τ⋃
l=1

Jl = [d]; Jk ∩ Jl = ∅, ∀k 6= l ∈ [τ]. (37)

Thus,

A>A =

d∑
j=1

A>j:Aj:
(37)
=

τ∑
l=1

∑
j∈Jl

A>j:Aj:. (38)

Now fix l ∈ [τ] and j ∈ Jl. For any h ∈ RN we have:

E[h[Ŝ]A
>
j:Aj:h[Ŝ]] =

∑
i,i′∈[n]

h>i A
>
jiAji′hi′P(i ∈ Ŝ, i′ ∈ Ŝ) =

∑
i,i′∈Ωj

h>i A
>
jiAji′hi′P(i ∈ Ŝ, i′ ∈ Ŝ).

5

SinceX1, . . . , Xτ forms a partition of [n], then any two indexes belonging to the same subsetXl will never be selected
simultaneously in Ŝ, i.e.,

P(i ∈ Ŝ, i′ ∈ Ŝ) =

{
pi if i = i′

0 if i 6= i′
, ∀i, i′ ∈ Xl.

Therefore,

E[h[Ŝ]A
>
j:Aj:h[Ŝ]] =

∑
i∈Ωj

h>i A
>
jiAjihipi =

n∑
i=1

h>i A
>
jiAjihipi. (39)

It follows from (38) and (39) that:

E[‖Ah[Ŝ]‖
2] = E[h[Ŝ]A

>Ah[Ŝ]] =

τ∑
l=1

∑
j∈Jl

E[h[Ŝ]A
>
j:Aj:h[Ŝ]] =

τ∑
l=1

∑
j∈Jl

n∑
i=1

h>i A
>
jiAjihipi. (40)

Hence, E[‖Ah[Ŝ]‖2]
(37)
=
∑d
j=1

∑n
i=1 h

>
i A
>
jiAjihipi ≤

∑n
i=1 λmax(A>i Ai)h

>
i hipi = ‖h‖2p·v.

7.2 Distributed sampling

We now describe a sampling which is particularly suitable for a distributed implementation of Quartz. This sampling
was first proposed in [RT13] and later used in [FQRT14], where the distributed coordinate descent algorithm Hydra
and its accelerated variant Hydra2 were proposed and analyzed, respectively. Both methods were shown to be able to
scale up to huge problem sizes (tests were performed on problem sizes of several TB; and up 50 billion dual variables
in size).

Consider a distributed computing environment with c nodes/computers. For simplicity, assume that n is an integer
multiple of c and let the blocks {1, 2, . . . , n} be partitioned into c sets of equal size: P1, P2, . . . , Pc. We assign
partition Pl to node l. The dataA1, . . . , An and the dual variables (blocks) α1, . . . , αn are partitioned accordingly and
stored on the respective nodes.

At each iteration, all nodes l ∈ {1, . . . , c} in parallel pick a subset Ŝl of τ dual variables from those they own, i.e.,
from Pl, uniformly at random. That is, each node locally performs a τ -nice sampling, independently from the other
nodes. Node l computes the updates to the dual variables αi corresponding to i ∈ Sl, and locally stores them. Hence,
in a single distributed iteration, Quartz updates the dual variables belonging to the set Ŝ def

= ∪cl=1Ŝl. This defines a
sampling, which we will call (c, τ)-distributed sampling.

Of course, there are other important considerations pertaining to the distributed implementation of Quartz, but we do
not discuss them here as the focus of this section is on the sampling. However, it is possible to design a distributed
communication protocol for the update of the primal variable.

The following result gives a formula for admissible parameters {vi}.

Lemma 7.2 (compare with [FQRT14]) If Ŝ is a (c, τ)-distributed sampling, then (5) is satisfied for

vi = λmax

 d∑
j=1

(
1 +

(τ − 1)(ωj − 1)

max
{
n
c − 1, 1

} +

(
τc

n
− τ − 1

max{nc − 1, 1}

)
ω′j − 1

ω′j
ωj

)
A>jiAji

 , i ∈ [n], (41)

where ωj is the number of nonzero blocks in the j-th row of the matrix A, as defined previously in (14), and ω′j is the
number of partitions ”active” at row j of A, more precisely,

ω′j
def
= |{l ∈ [c] : {i ∈ Pl : Aji 6= 0} 6= ∅}|, j ∈ [d]. (42)

Proof When m = 1, the result is equivalent to Theorem 4.1 in [FQRT14]. The extension to blocks (m > 1) is
straightforward.

6

The formula (13) is a special case of Lemma 7.2 when only a single node (c = 1) is used, in which case ω′j = 1 for all
j ∈ [d]. Lemma 7.2 also improves the constants {vi} derived in [RT13], where instead of ωj and ω′j in (41) one has
maxj ωj and maxj ω

′
j .

Lemma 7.2 is expressed in terms of certain sparsity parameters associated with the data ({ωj}) and the partitioning
({ω′j}). However, it is possible to derive alternative ESO results for the (c, τ)-distributed sampling. For instance, one
can instead express the parameters {vj} without any sparsity assumptions, using only spectral properties of the data
only. We have not included these results here, but in the m = 1 case such results have been derived in [FQRT14]. It is
possible to adopt them to the m > 1 case as we have done it with Lemma 7.2.

8 Quartz specialized to product sampling and distributed sampling

8.1 Quartz with product sampling

In this section we apply Theorem 2 to the case when Ŝ is the product sampling (see the description in Section 7.1).
All the notation we use here was established there.

Corollary 1 Under the group separability assumption, let Ŝ be the product sampling and let vi = λmax(A>i Ai) for
all i ∈ [n]. If we fix ε ≤ P (w0)−D(α0) and

T ≥ max
i

(
|Xli |+

λmax(A>i Ai)|Xli |
λγn

)
log

(
P (w0)−D(α0)

ε

)
, (43)

then E[P (wT)−D(αT)] ≤ ε.

Proof The proof follows directly from Theorem 2, Lemma 7.1 and (35).

Recall from Section 7.1 that the product sampling Ŝ has cardinality τ ≥ 1 and is non-uniform as long as all the sets
{X1, . . . , Xτ} do not have the same cardinality. To the best of our knowledge, Corollary 1 is the first explicit com-
plexity bound of stochastic algorithm using non-serial and non-uniform sampling for composite convex optimization
problem (the paper [RT15] only deals with smooth functions and the method is not primal-dual), albeit under the group
separability assumption.

Let us compare the complexity bound (43) with that of serial uniform sampling (18):

n+
maxi λmax(A>

i Ai)
λγ

maxi

(
|Xli |+

λmax(A>
i Ai)|Xli

|
λγn

) ≥ min
i

n

|Xli |
.

Hence the iteration bound of Quartz specialized to product sampling is at most a maxi |Xli |/n fraction of that of
Quartz specialized to serial uniform sampling. The factor maxi |Xli |/n varies from 1/τ to 1, depending on the degree
to which the partition X1, . . . , Xτ is balanced. A perfect linear speedup (maxi |Xli |/n = 1/τ) only occurs when
the partition X1, . . . , Xτ is perfectly balanced (i.e., the set Xl have the same cardinality), in which case the product
sampling is uniform (recall the definition of uniformity we use in this paper: P(i ∈ Ŝ) = P(i′ ∈ Ŝ) for all i, i′ ∈ [n]).
Note that if the partition is not perfectly but sufficiently so, then the factor maxi |Xli |/n will be close to the perfect
linear speedup factor 1/τ .

8.2 Quartz with Distributed Sampling

In this section we apply Theorem 2 to the case when Ŝ is the (c, τ)-distributed sampling; see the description of this
sampling in Section 7.2.

Corollary 2 Assume that Ŝ is a (c, τ)-distributed sampling and v is chosen as in (41). If we let ε ≤ P (w0)−D(α0)
and

T ≥ T (c, τ)× log

(
P (w0)−D(α0)

ε

)
, (44)

7

where

T (c, τ)
def
=

n

cτ
+ max

i

λmax

(∑d
j=1

(
1 +

(τ−1)(ωj−1)
max{n/c−1,1} +

(
τc
n −

τ−1
max{n/c−1,1}

)
ω′

j−1

ω′
j
ωj

)
A>jiAji

)
λγcτ

, (45)

then E[P (wT)−D(αT)] ≤ ε.

Proof If Ŝ is a (c, τ)-distributed sampling, then

pi =
cτ

n
, i ∈ [n].

It now only remains to combine Theorem 2 and Lemma 7.2.

The expression (45) involves ω′j , which depends on the partitioning {P1, P2, . . . , Pc} of the dual variable and the
data. The following lemma says that the effect of the partition is negligible, and in fact vanishes as τ increases. It was
proved in [FQRT14, Lemma 5.2].

Lemma 8.1 ([FQRT14]) If n/c ≥ 2 and τ ≥ 2, then for all j ∈ [d], we have(
τc

n
− τ − 1

n/c− 1

)
ω′j − 1

ω′j
ωj ≤

1

τ − 1

(
1 +

(τ − 1)(ωj − 1)

n/c− 1

)
.

According to this result, when each node owns at least two dual examples (n/c ≥ 2) and picks and updates at least
two examples in each iteration (τ ≥ 2), then

T (c, τ) ≤ n

cτ
+

(
1 +

1

τ − 1

) maxi λmax

(∑d
j=1

(
1 +

(τ−1)(ωj−1)
n/c−1

)
A>jiAji

)
λγcτ

=
n

cτ
+

(
1 +

1

τ − 1

)(
1 +

(τ − 1)(ω̂ − 1)

n/c− 1

)
maxi λmax(A>i Ai)

λγcτ
, (46)

where ω̂ ∈ [1, n] is an average sparsity measure similar to that one we introduced in the study of τ -nice sampling.
This bound is similar to that we obtained for the τ -nice sampling; and can be interpreted in an analogous way.
Note that as the first term (n) receives perfect mini-batch scaling (it is divided by cτ), while the condition number
maxi λmax(A>i Ai)/(λγ) is divided by cτ but also multiplied by

(
1 + 1

τ−1

)(
1 + (τ−1)(ω̂−1)

n/c−1

)
. However, this term is

bounded by 2ω̂, and hence if ω̂ is small, the condition number also receives a nearly perfect mini-batch scaling.

8.3 Quartz vs DiSDCA

A distributed variant of SDCA, named DisDCA, has been proposed in [Yan13] and analyzed in [YZL13]. The authors
of [Yan13] proposed a basic DisDCA variant (which was analyzed) and a practical DisDCA variant (which was not
analyzed). The complexity of basic DisDCA was shown to be:(

n

cτ
+

maxi λmax(A>i Ai)

λγ

)
log

(
n

cτ
+

(
maxi λmax(A>i Ai)

λγ

)
· D(α∗)−D(α0)

ε

)
, (47)

where α∗ is an optimal dual solution. Note that this rate is much worse than our rate. Ignoring the logarithmic terms,
while the first expression n/(cτ) is the same in both results, if we replace all ωj by the upper bound n and all ω′j by
the upper bound c in (45), then

T (c, τ) ≤ n

cτ
+
(

max
i
λmax(A>i Ai)

)
·

1 + (τ−1)(n−1)
max(n/c−1) + (τcn −

τ−1
max(n/c−1,1)) c−1

c n

λγcτ

≤ n

cτ
+

maxi λmax(A>i Ai)

λγ
.

8

Therefore, the dominant term in (44) is a strict lower bound of that in (47). Moreover, it is clear that the gap be-
tween (44) and (47) is large when the data is sparse. For instance, in the perfectly sparse case with ω̂ = 1, the bound
(46) for Quartz becomes

n

cτ
+

(
1 +

1

τ − 1

)
maxi λmax(A>i Ai)

λγcτ
,

which is much better than (47).

References
[FQRT14] Olivier Fercoq, Zheng Qu, Peter Richtárik, and Martin Takáč. Fast distributed coordinate descent for minimizing

non-strongly convex losses. IEEE International Workshop on Machine Learning for Signal Processing, 2014.

[RT13] Peter Richtárik and Martin Takáč. Distributed coordinate descent method for learning with big data. arXiv:1310.2059,
2013.

[RT15] Peter Richtrik and Martin Tak. On optimal probabilities in stochastic coordinate descent methods. Optimization Letters,
published online 2015.

[Yan13] Tianbao Yang. Trading computation for communication: Distributed stochastic dual coordinate ascent. In Advances in
Neural Information Processing Systems 26, pages 629–637. 2013.

[YZL13] Tianbao Yang, Shenghuo Zhu, and Yuanqing Lin. Analysis of distributed stochastic dual coordinate ascent.
arXiv:1312.1031, 2013.

9

	Proof of Theorem 2
	Three lemmas
	Proof of Theorem 2

	Proof of Proposition 4
	Two more samplings
	Product sampling
	Distributed sampling

	Quartz specialized to product sampling and distributed sampling
	Quartz with product sampling
	Quartz with Distributed Sampling
	Quartz vs DiSDCA

