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1 Assumptions
We use the same assumptions on the densities and the functional as in [1] and [2]. They are

e (A.0): Assume that k; = koM with 0 < 8 < 1, that My = @ faeT With 0 < @t fpqe < 1.
(A. ) Assume there exist constants €, €, such that 0 < ¢y < f;(z) < €5 < 00, V2 € S.
(A

: Assume that the densities f; have continuous partial derivatives of order d in the
1nter10r of S that are upper bounded.

(A.3): Assume that ¢ has derivatives g\) of order j = 1,..., max{\,d} where A\ > 1.

L]

e (A.4): Assume that |g(j) (f1(x)/ fa(2))], ., max{\, d} are strictly upper bounded
for eg < fi(x) < €oo-

e (A5): Lete € (0,1), 6 € (2/3,1), and C(k) = exp (—3k 1_5)) For fixed ¢, define
pri = (1 — ™7t pui = (14 e 7t @i = sz, and qus = (1 + €)ese
where D is the diameter of the support S. Let P; be a beta distributed random variable
with parameters k; and M; — k; + 1. Define p; = m L - and p, = ‘;l“; Assume that for

U(L) = g(L), g®(L), and gV (L),

- ()E {SUPLe(p, o) |U (L%)H =G < oo,
- (@) SUP ¢ (s tus) U (L)|C (k1) C (k2) = G2 < 0,

qu,2’ 41,2

- (i5)E [supLE( a1 u) |U(LP2)|C(k1)} =G5 < 00,

Pu,2’ PL2

_ (m)E[supLe(pl,l ) ‘U( )‘c kg} = Gy < 00, VM.

qu,2”’

Densities for which assumptions (.A.0) — (A.5) hold include the truncated Gaussian distribution and
the Beta distribution on the unit cube. Functions for which the assumptions hold include g(L) =
—InLand g(L) = L.

2 Proof of Theorem 2

We use the following lemma which is proved in [3]:

Lemma 1. Let the random variables {Y 1 ; } Y., belong to a zero mean, unit variance, interchange-
able process for all values of M. Assume that Cov(Y 1, Ym2) and Cov(Y3, 1, Y3, ,) are



O(1/M). Then the random variable

Sn. = = ' (1)

converges in distribution to a standard normal random variable.
For simplicity, let M; = My = M and f,k(l) = f;k(l)7k(l). Define
e w9 (L (X)) = B [ L wg (L (X))

\/V {ZzezW( (Lku )}

waE{Gw]

Then from Eq. 1, we have that

Snm =
V]G
Thus it is sufficient to show from Lemma 1 that Cov(Yas,1, Yar,2) and Cov(Y3, 1, Y3, ,) are

O(1/M). To do this, it is necessary to show that the denominator of Y ,; converges to a nonzero
constant or to zero sufficiently slowly. Note that the numerator and denominator of Y s ; are, re-
spectively,

Zw(l)g (f’k(l)(Xi)) —E Zw(l)g (i‘k(l)(Xi))

lel lel

- Zw(l) (9 (f‘k(l)(Xi)) -E [9 (Ek(l)(xi))}) , )

lel

v Z w(l)g (f‘k(l) (Xi))

lel

= DY wlw(l)Cov ( (f‘k(l)(xi>) 9 (i‘k(l’)<Xi)))- 3)
lel el
Therefore, to bound Couv(Y M1, Y A472), we require bounds on the quantity

Cov {g (i‘k(l)(Xi)) g (tk(l’)(xj))]

Some preliminary work is required before we can directly tackle this quantity. Define M(Z) :=
Z — BZ, ¥1)(Z) := Ly)(Z) - By (f‘k(l)(z>)’ and &; (1) (2) = f; 1) (Z) — Ezf; 1) (Z). By
forming a Taylor series expansion of g ( k() (Z )) around Ezﬂk(l)(Z), we get

- EzL,(Z)) )
(Lkl) ) Z <Z k(l) )F;’c(l)(Z)-l-g)\(fz) k(l)(z)

where £z € (Esz(l) ) Let W(Z) = g™ (&) /X! and
pl) = (g (Ex Ly (X ))) ;
q? = (g/ (Ex Ly (X )) Fro) (Xz—)) :
rl(_z) .y -1 g(J) Ex, L'k(l) (X )) ﬁi(l) X |,
Jj=2 .
sV = M (xp (X)) Fppy (X ))



Then

Cov [g (tk(l)(xi)) g (ﬁk(l’)(Xj))}

e [( 0 4 q® 420 4 S(l)) (p;y) +a + 2+ Sy”)} _ )

To obtain expressions for ﬁ‘i(z) (Z), we expand f;k(l)(Z) around Ezf17k(l)(Z) and Ezf’27k(1)(Z):

f y/ Ezf y/ & v (Z . é y/
Al,k(l)( ) _ ZAl,k(l)( )+ 1:k(l)( ) Egb ) (2) %,k(l)( ) i
fo.00)(Z) Ezfo k@) (Z)  Ezfsrq)(Z) (Ezf2,k(l)(z)>
& Z) & .(2)
e (Z)ér z)(2 B (2) 2:k(l) i
(Ezfzk l) Z)) (]EZfQ k(l)(z)>

5 to (ez ) (Z) + €150 ()85 1) (Z )) (5)
2 (Ezfz,km

Ezfi vy (Z) R
= ————+ (& ,u)(Z),e2,1)(Z)).
Ezfs 1) (Z) v v

N . - Ezf Z 3
Let h(Z) = h(éy 4()(Z), &350 (Z)). Thus By (Z) = #ﬁi;éz; — EzLy(Z) + h(Z). By the

binomial theorem,
q o q—J
- Ezf 1)(Z) - ;
Fil)(Z) = Z Uq,j ( Ol EzLyq) (Z) h’(Z), (6)

where a,_ ; is the binomial coefficient. Using a Taylor series expansion of % about Ezfg,kz (2),

1 1 &k &3 1
EZ = = EZ - _ 2 + 2
f2,k2 (Z) EZfQ,kz (Z) (Ezflkg (Z))Q 252,Z
1 . (Vz [fzkz(Z)D
- Ezfo 1, (Z) 2807
1 1
= —— 4+ C3’2(Z> () s (7)
Ezf27k2(Z) k2

where &2 7 € (Esz ks (Z), f'g, kg (Z)) from the mean value thoerem and we use the fact that the vari-

ance of the kernel density estimate converges to zero with rate ﬁ where 0 = O (k(l)) Sricharan

et al [4] showed that for a truncated uniform kernel density estimator with bandwidth (k/M )1/ ¢

d k) )7/ k(1
Ezfi(2) = i(Z) + Tioicann@ (B2) + o (57) = £i(@) + cra(Z k), M) =
fi(Z) + o(1). It can then be shown that the k-nn density estimator converges to a truncated uniform
kernel density estimator [5]. Thus the result holds for the k-nn density estimator as well. Combining



this with Eq. 7 gives

“ q
Ezfs 1) (Z) o
« 1 q
= (Ezfir0)(Z)e32(Z) 0] (8)
3§ q
) LAV 1
= fi1(Z)e32(Z ch,]kl) m +o Vi
1 1 1
= 1{q:1}03(Z) (kj(l)) + 1{‘122}0 (k’(l)‘]) + o <M) = bq7k(()Z> (9)
Combining Egs. 5, 6, and 9 gives
I leg>2 923
Fi(l)(Z) = bor(Z) + bq( 1 k} (Z)aq,1h(Z) + 1{q>2}bq{ 2 k(l)( )aq,2h2(z)
gz, "5 1y 2)0 (0 (2)) (10)
where
&1 v (Z Ezf, w0 (Z &1 v (Z)é Z
h(zZ) eia () zAl,km( ) oo (Z) — eLk(l)f )62,k<z>(2 )
Ezf 1) (Z) (Ezf“(l)(z)) (]EZka(l)(Z))
Ezfi vy (Z) . R
- > 565 ) (Z) + 0 (eg,k(l)(z)> ;
2 (Ezf2,k(l)(z))
“ 2
&2 (Z Ezfy k) (Z)
h*(Z) = L 3+ ( - ) 7851 (2)
(Ezf2,k(l)(z)) (Ezf2,k(l)(z))
+0 (él,k(l)(z)ézkz(z) + ég,k(l)(z)) ;
OM42) = O(&l)(2)+&40)(B) + &) (2)8,)(2)) -

We now obtain bounds on the expected value of products of the €; ;) terms:

Lemma 2. Let [,I' € [ be fixed, My = My = M, and k(I) = /M. Let (z) be an arbitrary
function with sup, |y(z)| < oo. Let Z be a realization of the density f, independent of f; ;) and
fi,k(l’)fori = 1, 2. Then,

E ’Y(Z)é?’k(l)(z)} _ {1{q—2} (CQ,i(W(z)) (ﬁ) +o (ﬁ)) + 114>3,0 (k(l)2 > , q %%)

0, q=1,

. - O 1) . gt >2
E [v(Z)eZ’k(l)(Z)ei’k(l,)(Z)] = { (k(l)2k(l/)2 q (12)
0,

otherwise

E[1(2)8] ) ()6 0 (2)8h.1) (2)85 10 ()]

0, g+¢ =lorr+r' =1
- 0 (W) , otherwise (13)
kD) k()
E [ (Z)F¢ (Z)} = 10 ) 10 [y (14)
Y k(1) - {q=1} k(l) {q>2} k(l)% .



Proof. For ¢ = 2, Eq. 11 is given and proved as Lemma 5 in [4] where the density estimator is a

truncated uniform kernel density estimator with bandwidth (k(1)/M )1/ ¢ The proof uses concen-
tration inequalities to bound Ezé] , W (Z) in terms of k(1). Then since the truncated uniform kernel

density estimator converges to the k-nn estimator, it holds for the k-nn estimator as well. For ¢ = 1,
the proof follows the same procedure but results in a different constant.
Equation 12 is proved in a similar manner. Let Si(X) =
{Y €S ||X = Y]|oo < (k(1)/M)Y? /2}, Vi(X) = fs,(X) dz, U (X) = Pr(Z € S,(X))
where Z is drawn from f;, and 1, ;(X) denote the number of samples from the ith distribution that
fall in S;(X); i.e. the number of samples from{Y1,..., Yy} if ¢ = Lor {Xny1,..., Xnsar}if
¢ = 2 that fall in S;(X). The uniform kernel density estimator is then

1,,(X)

MV,(X)'

Let f;;(X) denote the event (1 — py)) MU (X) < 1;(X) < (1 + pray)MU;1(X), where
pe@y = 1/k(1)°/2. 1t can be shown [4] using standard Chernoff inequalities that Pr(5;(X)) =

o) (e*Pi(wk(l)) and that under the event hi,z(X), éi,k(l) = 0(1/(k6/2))- Thus

firy(X) =

E{WZ)égk(z)(Z)éf,k(z/)(z)} = E[7(2)1hi,1(x)ﬁhi,zl(X)ég,k'(l)(Z)é;k(l’)(z)]

+E [V(Z)l{ni,mxm,,f<X>}Cé?,k(z>(Z)éf,w)(z)}

O(W)

where we use the fact that § can be chosen arbitrarily close to 1.

For Eq. 13, note that due to conditional independence and Eq. 12,
)(2)e] Ic(l’)(Z)ég,k(l)(Z)ég,k(l’)(z)}

1,k(l)
= E[y z[ i M(l,)(Z)} Bz (65 10)(Z)8 1) ()]

_ 0 ()
k()= k()

Equation 14 is obtained by applying Egs. 11 and 12 to Eq. 10. O

E| (2)é]

The following lemma provides bounds on the covariance between the ]?‘Z W (Z) terms:

Lemma 3. Let 1,1’ € | be fixed, My = My = M, and k(1) = Iv/M. Let 'yl( ), v2(x) be arbitrary
Sfunctions with 1 partial derivative wrt x and sup, |’y,( )| < 00,0 =1, 2. Let X, and X; be

realizations of the density fo independent of fl k(1) fl k(') f2 k(1) and f2 k(") and independent of
each other when i # j. Then

- - o(1), 1=
Co [ (X0)FL (X022 B0y ()] = { =
RO ! ’ k() ’ 1{q:l,r:l}CS (’71(1‘1)772(:6)) (]%) +o (ﬁ) y 7£ J-
Proof. Throughout the following, assume that X and Y are realizations of the density f> indepen-
dent of each other and £ 1.1, f1 k@r)» f2,x(1)> and f5 j (). First consider the case where i = j. By
Cauchy-Schwarz and Eq. 11,

& AT 1
Cov ['Yl(X)eg,k(l)(X)a72(X)ei’k(l,)(X)} =0 (W) ) (15)



By Eq. 12 and Eq. 13,

A AT ~q "7’/ ]'
Cov |:’71(X)e(ik(l)(X)e2,k(l)(X)vVQ(X)e?’k(l/)(X)eQ,k(l’)(X)} =0 (W) - (16

Applying Egs. 15 and 16 to Eq. 10 completes the proof for this case.

1
We’ll now prove the case where i # j. Define U(I,1') = {||X Y, >2 (w) d}
For a fixed pair of points {X, Y} € U(I,1'),

—[(X) fi(Y 1
Cov [é?,k(l)(X),éZW)(Y)} = lyg=r=1} <f(]&f()> +o0 <M) : (17)

This can be shown in the same way as in the proof of Lemma 6 in [4] for a truncated uniform
kernel density estimator. This is done by recognizing that for {X,Y} € ¥(I,1’), the functions
1;:(X) and 1; ;/(Y) are distributed jointly as a multinomial random variable with parameters M,
Uii(X), Ui (Y)and 1 — U, ;(X) — U, -(Y'). Equation 17 is then established by using the concen-
tration inequality for the high probability event of f; ;(X) N f; »(Y") and then relating the functions
1;;(X) and 1, /(YY) to two binomial random variables with parameters {U; ;(X), M — ¢} and
{U; 1 (Y), M — r}, respectively. Note that the relationship holds whether = I’ or [ # I. For fixed
{X,Y} € ¥(I,1")¢, Cauchy-Schwarz and Eq. 11 give

. o 1
Cov |:eg7k(l)(X),ei7k(l/)(Y)i| =0 <k(l)§k([/)’2> . (18)

From Egs. 17 and 18, we have that

Cov [ (X)&ty (X): 121600 (V)] = Lgmrmsyensn @) 22(o) (57 )0 (57 ) - 019

This is proved in the same way as in the proof of Lemma 8 in [4] by splitting the covariances into the
cases where {X,Y} € U([,I') and {X,Y} € ¥(I,I')°. For the first case, the bound falls clearly

: : — odmax(k(l),k(l"))
from Eq. 17. For the second case, the bound holds with Eq. 18 since f‘lf(l,l’)c dy = 2 ———7——.

Now let By = {s,¢,t,7 > 1}, E11 ={s=0,¢>2,t>1,r >1}U{s>1,¢>1,t =0,r > 2},
and 10 ={s>2,¢q=0,t>1,r >1}U{s>1,¢>1,t > 2,r = 0}. For fixed X, Y, we have
by Egs. 11 and 12 and conditional independence when Ejy, E; 1, or F 2 hold that

Cov {Vl(X)éi,k(z)(X)ég,k(z)(X),Vz(Y)éﬁ,k(m(Y)ég,k(z/)(Y)]

= E [’Yl(X)éik(Z)(X)ég,k(l)(X)W(Y)é ray(Y)es k(l’)(Y)]
-E {'Yl (X)éi,k(l)(X)ég k(l) } [ e1 k l')(Y)ég,k(l/)(Y)]
)

= (XY )E (& 1) (08 (V)] E [ ) (X)85 1 (V)]

1
g rst21yO | — 7 |- (20
{a.rs,t£1} (k(l) 2 (1) >

Now E &7, (X)&L (V)] = Cov |8 ) (X), 8L (V)] + E [& 4 (X)| E |81, (V)]
By Egs. 11, 17, and 18 this gives (when s,¢ > 1)

E[éf,k(z)(X)éf,k(z/)(Y)} = 1230 <(l)2k(l'))
Ljomio1) ( SHEOEOD) Lo (), (XY} ewl)

0] < ) (X, Y} ew( l’)gﬂ)
k(lﬁ k()2 ’ o



Now
E [Covx.y [11(X)&5 1) (X)&5 1) (X0, 72 (Y)&! iy (V)b 0 (V)] | = 11 +
where

I=F [1 xxpewrrer (X)va(Y)Covx v {élyk(l)s(X)ég’k(l)(X),éﬁyk(l,)(Y)ég’k(l,)(Y)H ,

IQ =K {1{X7y}eqj(l7l/)’71 (X)’YQ(Y)COUX’Y {él,k(l)s(x)ég’k(l)(x)a étl,k(l’)(y)ég,k(l’)(Y)}] .

Combining Egs. 20 and 21 gives

L = E ll{x,Y}qu(z,mwl(X)W(Y)O (11/*>1
- (o (e ) om0 ) ([ )
N M A e
()
Similarly,
L=E |:1{X7Y}€\I/(l,l’)’71(X)’YQ(Y)O (]34)} =0 (1\14> ’
and so

s ) ) . 1
Cov |11 (X)&] 1) (X)& 1y (X), 12(Y)&L 1) (V)& 0 (V)] = 0 <M) L@

Assume now that neither Ey, E; 1, nor Fy 5. If either ¢,7 = 0 or s, = 0 and the remaining
exponents are nonzero, then the left hand side of Eq. 22 reduces to Eq. 19. For the other cases,
suppose that s,q = 0 and ¢,7 > 2 as an example. Then we have that

Cov Vl(X)772(Y)é§,k(zf)(Y)é§,k(l')(Y)} = E [71(X)72(Y) tlkl(Y)ég,kz(Y)]
—E[n(X)]E [v2(Y)e] 1, (Y)és ., (Y)]
= EMm(X)]E [12(Y)é] , (Y)é5, (Y)]

B [y (X)]E [12(Y)} ., (V)& 4, (Y)]
= 0.

)
)

The same result follows for all other cases.

Finally, applying Eqgs. 19 and 22 to Eq. 10 gives

. . 1 1
Cov [’yl(X)FZ(Z)(X),’yg(Y)Fk(l,)(Y)} =0 <M) + =11} <M) X
. 71() Yo () U (it (@) Exfire () —72(@)Exfi o) (@)
’ EXfQ,k(l)(x)7 Exfy () ’ Exfy 0 (z) 7 Exfy ) ()

~ Lgmrmnyes ()20 (57) +0(57)-

Note that this holds even if | = I’. O

The following lemma is required to bound the W(Z) term.



Lemma 4. Assume that U(x) is any arbitrary functional which satisfies

(2) E [SUPLe(p,,,pu) U (L%) H =G < 0,
) supLe(qll qul) |U (L)|C (k1) C (k2) = G2 < o0,
qu,27 91,2

(iii) E {supLe( w1 1) |U(Lp2)|C(k1)} =G3 < o0,

(iv) E[supLe(p“ Put ‘U(é)‘c(k2):| = G4 < 0.
qu2’7z2

Let Z be X; for some fixed i € {1,..., N} and £z be any random variable which almost surely lies
in (L(Z)7 Lk1,k2 (Z)) Then ElU(Ez)‘ < 00.

Proof. This is a version of Lemma 9 in [4] modified to apply to functionals of the likeli-
hood ratio. Because of assumption A.1, it is sufficient to show that the conditional expectation
EJUE2)| X1, .., Xn] < o0,

First, some properties of k-NN density estimators are required. Let Sy, :(Z) =
{Y :d(Z)Y) < d(ki.)} where d( ) is the distance to the k;th nearest neighbor of Z from the cor-
responding set of samples. Then let P,( fSk x)dx which has a beta distribution with

parameters k; and M; — k; + 1 [6]. Let A;(Z) be the event that P;(Z) < ( ‘52 + 1) Eizl 1t has
been shown that Pr (A;(Z)¢) = © (C (k;)) and that under 4;(Z) [3, 5],

It has also been shown that under 4;(2)¢ [3, 5],

Qi < £ (2) < qu-

Let A(Z) = A1(Z) N A2(Z) and note that A;(Z) and A5(Z) are independent events. Thus since

Ly, 1y (Z) = t{;’;;g; , we have that under A(Z),

plijg; < Ly 1y(2) < puPQ(Z)

Now leth(Z) = Al(Z)CmAQ(Z)C, QQ(Z) = Al(Z)CﬂAQ(Z), and Qg(Z) = Al(Z)ﬂAQ(Z)C
Then due to independence and the fact that the @Q;(Z)s are disjoint,

A(2)Y = A(2)°UAZ) =Qi1(Z)UQ2(2)UQs(2),
= Pr(A(2)°) = Pr(Qi(2)+Pr(Qx2)+ Pr(Qs(2))
< C(k1)C (ka) +C (k1) +C (a).

Then under Q1 (Z), Q2(Z), and Q3(Z), respectively,

A

- qu,1P2(2)
=2 <L 7)< P22
Du,2 bba (Z) D12
b
Pl(Z)Qu,2

Pu,1

< tkl’kz (2) < Pi(Z)q2



Conditioning on X, ..., Xy gives
E(lUE)] = E[lawz UE)] +E 19,2 |UE2)I] +E [1,2) [UE2)] +E [Lgg2) U (E2)]]

v (1329

+Pr(Q:1(2))E sup U (LP2(Z))|

91,1 9u,l
L ( . . >
€ Pu,2’ PL,2

sup
Le(pi,pu)

< Pr(A(2))E

+Pr(@Qi(2))  sup  |U(L)]

q, q
LG( l,l’ u,l)
qu,2’ 41,2

+Pr(Q:(Z))E Sup >’U( i )‘

pe(me zea) | \PLZ)
Py(Z
< E| sup U<L 2( )>‘ + sup |U (L)|C (k1) C (k2)
Le(pi,pu) P1(Z) LG(«UJ’%J)
qu,2’ 4,2
+E sup U (LP2(Z2))|C (k1)
Le(pié’pié)

+E sup )‘U( L >’C(k2)

Pl,1 Pu,l
L ( 2 2
€ qu,2’ 91,2

= G1+ G2+ G5+ G4 < o0

The next lemma gives the last result necessary to bound the covariance of Y 571 and Y p ».
Lemma 5. Let I,1' € [ be fixed, My = My = M, k(1) = Iv/M, and Ly,;y = Ly (). Let X; and

X; be realizations of the density fo independent of f‘l,kl and fg)]% and independent of each other
when i # j. Then

Cov [9 (f‘k(l)(xi)) g (f‘k(l’)(Xj))}
_JE [Dgl)pgl,)} +o(1), i=j
e (g' (EXi‘k(l)(I)> g (E{M(p)(@)) (&) +o(), i#j. @

Proof. Consider the case where ¢ = j. Then applying Lemma 3 to Eq. 4 gives
Cov [9 (tk(l)(Xi)> g (tk(l')(Xj)ﬂ =E [PEZ)PEZ )} + 0(1)~
Note that E {pgl)pgl/)} = O(1) since pl(.l) =M <g <EXi£k(l)(Xi))) = M (g9 (L(X;))) + o(1).

Now let 7 # j. Since X; and X; are independent, E [pl(-l) (py/) + qg-ll) + rgll) + s;l’))} = 0.

Applying Lemma 3 gives
E [QEZ)Q§1/)] = 8 (9/ (EXi‘k(l)(x)) g (EXi‘k(l’)(x))> <]\1/[) t+o (]\1/[> )

E [qz(-l)rg»l/)} = o0 (J\l/[> )
E {rgl)ry/)} = o0 (]\14> .



We use Cauchy-Schwarz and Lemma 2 to get

E [9’ (Exii‘k(l) (Xi)> Fro) (X0) ¥ (X;) Fag (Xj)}

IN

\/]E (02 (X;)] E [(g (Ex. Ly (X)) iy (Xi))Q 2, (Xj)}

E[¥2 (X;)] \/E [(9’ (Exiflk(z) (Xi)) Fra (Xz‘))4] E {Fif\z/) (Xj)]

= L|E[W2(X,)] \/0 (,@z) 0 (k(l})”>

— R (X))o <k(z1w2> .

Lemma 4 and assumption (A.5) implies that E [¥2 (X;)] = O(1) and from assumption (A.3),
) = o( ) This implies that E [ (l)sg.l/)} =o0 (ﬁ) . Similarly, E [rg )sy )} 0 (—)

IN
-

1 1
° (k(z/)A/2 M

and E [sl(l)sgl )] =0 (M) . Combining these results with Eq. 4 completes the proof. O
Applying Lemma 5 to Egs. 2 and 3 shows that Cov(Yr,;, Yar,;) = O (7).
For the covariance of Y3, ; and Y73, ;» we only need to consider the numerator since we previously
showed that V {Zldw(l)g (I:k(l)(Xi)ﬂ = O(1) 4+ o(1). Assume WLOG thati = 1 and j = 2
andleth; = E [g (ﬂk(l) (XI))} . The numerator of the covariance is then

Z ZZZ Cov [(9 (fik(l)(xl)) - hl) (9 (f‘k(l’)(xl)) - hl/) ;

lel vel jel j'el

( (Lk(J)(X2)) h; ) ( (Lk(g (X )) - hj')}
=33 cov | (B +al” +r +51) (b1 + ol + {4 s(7)

lel el jel j'el
( O 4 o) 42§ 4 ¥ )) (p§”+q§ )+r(J)+s(j))]

Let d;(z) = (g(z) — hy)>. Then for the case where I = I’ and j = j/, we have
. . 1
Cov [d, (Lk(l)(Xl)) d; (Lk(j)(xg))} ) (M> .

This follows from Lemma 5.

For the general case, note that due to the independence of X; and Xo,
Cov [p 'p{"”, (9 (ﬁk(j>(x2)) - hj) (g (f:m/)(Xz)) = h)} = 0,
Cou [ (9 (LX) ) (9 (Eaar (X0)) = 1) 008" = 0.

To bound the remaining terms, we require the following Lemma:
Lemma 6. Let v(z), v2(z) be arbitmry functions with 1 partial derivative wrt x and

sup, |yi(z)| < oo, i = 1,2. Let I,I',5,§' € 1 be fixed, My = My = M, k(l) = IvVM. Let X
and Y be realizations of the density f5 independent offl k(1) fz}k(l/), £i k(i) and £ gy, i =1, 2. If
q,7,8,t > 0 and the cases {t = 0,7 = 0} or {q = 0, s = 0} do not hold, then

Cov [%(X)Fiu)(x)ﬂ(m(X)’W(Y)ﬁc(j)(Y)ﬁZ(ﬁ)(Y)] =0 (1\14> '
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Proof. Under certain conditions, by Cauchy-Schwarz and Eq. 13 we have
Cov {71(X)éik(z)(X)ég,k(z)(X)éf,k(zf)(X)ég,k(z')(x)a

(Y& 15y (V)85 1) ()& 15 ()& (V)]

<E [mxmm\/vx [ 1) (X088 ) (X085 ) (K05 1) (X))

1 e (08810 (O (06, )

1 1
=0 — | =0 — — | . 24
(km R RG) T R ) (M TR ) -
Note that the exponents g, s, r, t are not the same as in the statement of the lemma. The conditions
under which this expression holds are as follows: (1) There must be at least one positive exponent
on both sides of the arguments in the covariance. (2) {s+s'+t+t' #1}N{qg+¢ +r+1r" # 1}.
If neither case holds, this reduces to Eq. 19. If only one holds, then the covariance is zero.

Note that if s + ¢ + ' + ¢ +t +r +t + 1’ > 4, Eq. 24 becomes O (7). Now consider the

case where {{s+ s +t+t =3} N {s,s,t,t' <1}n{q,¢,r,r' =0} }U{{g+d +r+7+ =

3}n{q,¢,r,r" <1} {s,s,t,t' = 0}}. Assume WLOG that s, s’,t = 1. Then Eq. 24 becomes

O (Mlé ) which does not decay fast enough to use Lemma 1. However, we can use the fact that
4

k(1) = O(k(I")) to obtain a bound of O (7). By Markov’s inequality and Eqs. 11 and 12, for fixed
v >0,

E [(él,k(l)(x) - é1,k(l/)(X))4}

Pr ( & (X) — él,k(l’)(x)‘ > V) < A
1
= 0 )
(3)
Let H be the event that |é1 k() (X) — él}k(l/)(X)| < 1. This gives
Cov [11(X)é1, k1) (X)e1,k0) (X), 12(Y)e1,k() (Y)]
= [ 1(X)2(Y)er k(X )el,k(l’)(X)él,k(j)(Y)]
= E[1amn(X)(Y)ér wn (X)ér k) (X)er ki) (Y)]
+E [1HC’Y1(X)V2(Y)€1 k() (X)é1 k) (X)ér ki) (Y)]
< E [1im (X)92(Y)8 1) (X)é140) (V)] + B Ly (X)12(Y)ér i) (X)érii) (Y)]
+E [1HC’Y1(X)72(Y)€1 k(D) (X)el k) (X)er ki) (Y)]
1
= — . 25
o(4) es)
The final step for the first two terms comes from Eq. 19. The final step for
the third term comes from the fact that Pr(H®) = O(4;) and the fact that
E [v1(X)12(Y)eér k) (X)ér pw) (X)er ;) (Y)] = o(1) by Eq. 24. Applying Eqgs. 19, 22, 24,
and 25 to Eq. 10 completes the proof. O

From Lemma 6, it is clear that
Cov [( O] + q(l) + r(l) + S(l)) (pgl’) + qgl’) + rgl') + sgl’)) ’

. . . . v v 1
(b9 + a8+ +55) (p§ +af 419" +557)] = O(M)
= Cov[Y3,, Y] = o(}\b).
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G, —E[G,, e
Then by Lemma 1, Sy » = [[ ] ] converges in distribution to a standard normal random
VG
variable.
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