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1 Proof of Theorem 2.1

The proof is divided into two parts, namely, existence and uniqueness.

1.1 Existence

In this section we aim to prove

Lemma 1.1. For any f ∈ F∞(Rn) and any x0 ∈ R
n, ODE (1.2) with initial conditions X(0) =

x0, Ẋ(0) = 0 has at least one solution X in C2(0,∞) ∩ C1[0,∞). Recall C2(0,∞) is the set of
functions, taking values in R

n, defined on [0,∞) and twice continuously differentiable on (0,∞).
Similarly C1[0,∞) is the set of continuously differentiable functions from [0,∞) to R

n.

To begin with, for any δ > 0 consider the smoothed ODE

Ẍ +
3

max(δ, t)
Ẋ +∇f(X) = 0 (1)

with X(0) = x0, Ẋ(0) = 0. Denoting by Z = Ẋ , then (1) is equivalent to

d

dt

(

X
Z

)

=

(

Z
− 3

max(δ,t)Z −∇f(X)

)

.

As functions of (X,Z), both (Z and −3Z/max(δ, t) − ∇f(X)) are Lipschitz continuous with
constant at most max(1, L) + 3/δ. Hence by standard ODE theory (1) has a unique global solution

in C2[0,∞), which is denoted by Xδ . Note that Ẍδ is also well defined at t = 0. Next, introduce

Mδ(t) to be the supremum of ‖Ẋδ(u)‖/u over u ∈ (0, t]. We remark that Mδ(t) is finite because

‖Ẋδ(u)‖/u = (‖Ẋδ(u) − Ẋδ(0)‖)/u = ‖Ẍδ(0)‖ + o(1) for u = o(1). We given an upper bound
for Mδ(t) in the following lemma.

Lemma 1.2. For δ <
√

6/L one has

Mδ(δ) ≤
‖∇f(x0)‖
1− Lδ2/6

.
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The proof of Lemma 1.2 relies on a simple lemma.

Lemma 1.3. For any u > 0, the following inequality holds

‖∇f(Xδ(u))−∇f(x0)‖ ≤ 1

2
LMδ(u)u

2.

Proof of Lemma 1.3. By Lipschitz continuity,

‖∇f(Xδ(u))−∇f(x0)‖ ≤ L‖Xδ(u)−x0‖ =
∥

∥

∥

∫ u

0

Ẋδ(v)dv
∥

∥

∥
≤

∫ u

0

v
‖Ẋδ(v)‖

v
dv ≤ 1

2
LMδ(u)u

2.

Proof of Lemma 1.2. For 0 < t ≤ δ, the smoothed ODE reads

Ẍδ +
3

δ
Ẋδ +∇f(Xδ) = 0,

which yields

Ẋδe
3t/δ = −

∫ t

0

∇f(Xδ(u))e
3u/δdu = −∇f(x0)

∫ t

0

e3u/δdu−
∫ t

0

(∇f(Xδ(u))−∇f(x0))e
3u/δdu.

Hence, by Lemma 1.3

‖Ẋδ(t)‖
t

≤ 1

t
e−3t/δ‖∇f(x0)‖

∫ t

0

e3u/δdu+
1

t
e−3t/δ

∫ t

0

1

2
LMδ(u)u

2e3u/δdu

≤ ‖∇f(x0)‖+
LMδ(δ)δ

2

6
.

Taking the supremum of ‖Ẋδ(t)‖/t over 0 < t ≤ δ and rearranging the inequality give the desired
result.

Next, we give an upper bound for Mδ(t) with t > δ.

Lemma 1.4. For δ <
√

6/L and δ < t <
√

12/L, one has

Mδ(t) ≤
(5− Lδ2/6)‖∇f(x0)‖

4(1− Lδ2/6)(1− Lt2/12)
.

Proof of Lemma 1.4. When t > δ the smoothed ODE reads

Ẍδ +
3

t
Ẋδ +∇f(Xδ) = 0,

which is equivalent to

dt3Ẋδ(t)

dt
= −t3∇f(Xδ(t)).

By integration,

t3Ẋδ(t) = −
∫ t

δ

u3∇f(Xδ(u))du+δ3Ẋδ(δ) = −
∫ t

δ

u3∇f(x0)du−
∫ t

δ

u3(∇f(Xδ(u))−∇f(x0))du+δ3Ẋδ(δ).

Therefore by Lemmas 1.3 and 1.2 we have

‖Ẋδ(t)‖
t

≤ t4 − δ4

4t4
‖∇f(x0)‖+

1

t4

∫ t

δ

1

2
LMδ(u)u

5du+
δ4

t4
‖Ẋδ(δ)‖

δ

≤ 1

4
‖∇f(x0)‖+

1

12
LMδ(t)t

2 +
‖∇f(X0)‖
1− Lδ2/6

,

where the last expression is an increasing function of t. So for any δ < t′ < t, it follows that

‖Ẋδ(t
′)‖

t′
≤ 1

4
‖∇f(x0)‖+

1

12
LMδ(t)t

2 +
‖∇f(x0)‖
1− Lδ2/6

,
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which also holds for t′ ≤ δ. Taking the supremum over t′ ∈ (0, t) gives

Mδ(t) ≤
1

4
‖∇f(x0)‖+

1

12
LMδ(t)t

2 +
‖∇f(X0)‖
1− Lδ2/6

.

The desired result follows from rearranging the inequality.

Lemma 1.5. Consider the set of continuous functions F = {Xδ : [0,
√

6/L] → R
n
∣

∣δ =
√

3/L/2m,m = 0, 1, . . .} is uniformly bounded and equicontinuous.

Proof of Lemma 1.5. By Lemmas 1.2 and 1.4, for any t ∈ [0,
√

6/L], δ ∈ (0,
√

3/L) the gradient
is uniformly bounded by

‖Ẋδ(t)‖ ≤
√

6/LMδ(
√

6/L) ≤
√

6/Lmax
{‖∇f(x0)‖

1− 1
2

,
5‖∇f(x0)‖

4(1− 1
2 )(1− 1

2 )

}

= 5
√

6/L‖∇f(x0)‖.

Thus it immediately implies that F is equicontinuous. To establish the uniform boundedness, note
that

‖Xδ(t)‖ ≤ ‖Xδ(0)‖+
∫ t

0

‖Ẋδ(u)‖du ≤ ‖x0‖+ 30‖∇f(x0)‖/L.

Now it is ready to give

Proof of Lemma 1.1. By the Arzelá–Ascoli theorem and Lemma 1.5, F contains a sequence con-

verge uniformly on [0,
√

6/L]. Denote by {Xδmi
}i∈N the convergent sequence and X̆ the limit.

Above, δmi
=

√

3/L/2mi decreases as i increases. We will prove that X̆ satisfies (1.2) and the

initial conditions X̆(0) = x0,
˙̆
X(0) = 0.

Fix an arbitrary t0 ∈ (0,
√

6/L). Since ‖Ẋδmi
(t0)‖ is bounded, we can pick a subsequence of

Ẋδmi
(t0) which converges to a limit denoted by XD

t0 . Without loss of generality, assume the sub-

sequence is the original sequence. Denote by X̃ the local solution to (1.2) with X(t0) = X̆(t0)

and Ẋ(t0) = XD
t0 . On the other hand, recall Xδmi

is the solution to (1.2) with X(t0) = Xδmi
(t0)

and Ẋ(t0) = Ẋδmi
(t0) when δmi

< t0. Since both Xδmi
(t0) and Ẋδmi

(t0) go to X̆(t0) and XD
t0 ,

respectively, there exits ǫ0 > 0 such that

sup
t∈(t0−ǫ0,t0+ǫ0)

‖Xδmi
(t)− X̃(t)‖ → 0

as i → ∞. However, by definition we have

sup
t∈(t0−ǫ0,t0+ǫ0)

‖Xδmi
(t)− X̆(t)‖ → 0.

Therefore X̆ and X̃ have to be identical on (t0 − ǫ0, t0 + ǫ0). So X̆ satisfies (1.2) at t0. Since t0 is

arbitrary, we conclude that X̆ is a solution to (1.2) on (0,
√

6/L). By extension, X̆ can be a global
solution to (1.2) on (0,∞). It only leaves to verify the initial conditions to complete the proof.

The first condition X̆(0) = x0 is a direct consequence of Xδmi
(0) = x0. To check the second one,

pick a small t > 0 and note that

‖X̆(t)− X̆(0)‖
t

= lim
i→∞

‖Xδmi
(t)−Xδmi

(0)‖
t

= lim
i→∞

‖Ẋδmi
(ξi)‖ ≤ lim sup

i→∞
tMδmi

(t) ≤ 5t
√

6/L‖∇f(x0)‖,

where ξi ∈ (0, t) is by the mean value theorem. The desired result follows from taking t → 0.
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1.2 Uniqueness

In this section we prove the uniqueness of the solution to (1.2).

Lemma 1.6. For any initial point x0 ∈ R
n, ODE (1.2) with initial conditions X(0) = x0, Ẋ(0) = 0

has at most one local solution near t = 0.

Suppose on the contrary there are two solutions, namely, X and Y defined on (0, α) for some α > 0.

Define M̃(t) to be the supremum of ‖Ẋ(u) − Ẏ (u)‖ over u ∈ [0, t), where t is between ǫ and α.
To proceed, we need a simple auxiliary lemma.

Lemma 1.7. For any t ∈ (0, α) one has

‖∇f(X(t))−∇f(Y (t))‖ ≤ LtM̃(t).

Proof of Lemma 1.7. By Lipschitz continuity of the gradient, one has

‖∇f(X(t))−∇f(Y (t))‖ ≤ L‖X(t)− Y (t)‖ = L
∥

∥

∥

∫ t

0

Ẋ(u)− Ẏ (u)du+X(0)− Y (0)
∥

∥

∥

≤ L

∫ t

0

‖Ẋ(u)− Ẏ (u)‖du ≤ LtM̃(t).

Proof of Lemma 1.6. Similar to the proof of Lemma 1.4, one has

t3(Ẋ(t)− Ẏ (t)) = −
∫ t

0

u3(∇f(X(u))−∇f(Y (u)))du.

Applying Lemma 1.7 gives

t3‖Ẋ(t)− Ẏ (t)‖ ≤
∫ t

0

Lu4M̃(u)du ≤ 1

5
Lt5M̃(t),

which reads ‖Ẋ(t)− Ẏ (t)‖ ≤ Lt2M̃(t)/5. Thus for any t′ ≤ t it is true that ‖Ẋ(t′)− Ẏ (t′)‖ ≤
Lt2M̃(t)/5. Taking the supremum of ‖Ẋ(t′)− Ẏ (t′)‖ over t′ ∈ (0, t) gives M̃(t) ≤ Lt2M̃(t)/5.

Therefore M̃(t) = 0 for t < min(α,
√

5/L), which is equivalent to saying Ẋ = Ẏ on

[0,min(α,
√

5/L)). With the same initial value X(0) = Y (0) = x0 and the same gradient, we

conclude that X and Y are identical on (0,min(α,
√

5/L)), a contradiction.

Proof of Theorem 2.1. Lemma 1.1 together with Lemma 1.6 completes the proof of Theorem 2.1.

2 Proof of Theorem 4.2

Proof of Theorem 4.2. The derivative of Ẽ reads

dẼ(t)
dt

= 3t2(f(X)− f⋆) + t3〈Ẋ,∇f(X)〉+ (2r − 3)2

8

〈

X +
2t

2r − 3
Ẋ − x⋆,

4t2

2r − 3
Ẍ +

4rt

2r − 3
Ẋ +X − x⋆

〉

= 3t2(f(X)− f⋆)− (2r − 3)t2

2
〈X − x⋆,∇f(X)〉+ (2r − 3)2

8
‖X − x⋆‖2 + (2r − 3)t

4
〈Ẋ,X − x⋆〉.

(2)
By convexity and strong convexity of f , the second term of the RHS of (2) meets

(2r − 3)t2

2
〈X − x⋆,∇f(X)〉 ≥ (2r − 3)t2

2
(f(X)− f⋆) +

µ(2r − 3)t2

4
‖X − x⋆‖2.

Since r ≥ 4, substituting the above into (2) yields

dẼ(t)
dt

≤
[

3t2 − (2r − 3)t2

2

]

(f(X)− f⋆)− 2(2r − 3)µt2 − (2r − 3)2

8
‖X − x⋆‖2 + (2r − 3)t

8

d‖X − x⋆‖2
dt

≤ −2(2r − 3)µt2 − (2r − 3)2

8
‖X − x⋆‖2 + (2r − 3)t

8

d‖X − x⋆‖2
dt

.
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Hence if t ≥ t′ ,
√

(2r − 3)/(2µ), we obtain

dẼ(t)
dt

≤ (2r − 3)t

8

d‖X − x⋆‖2
dt

. (3)

For t > t′, integrating (3) over (t′, t) gives

Ẽ(t) ≤ Ẽ(t′) + 2r − 3

8
t‖X(t)− x⋆‖2 − 2r − 3

8
t′‖X(t′)− x⋆‖2 − 2r − 3

8

∫ t

t′
‖X(u)− x⋆‖2du

≤ Ẽ(t′) + 2r − 3

8
t‖X(t)− x⋆‖2 ≤ Ẽ(t′) + 2r − 3

4µ
t(f(X(t))− f⋆)

≤ Ẽ(t′) + (2r − 3)(r − 1)2‖x0 − x⋆‖2
8µt

≤ Ẽ(t′) + (2r − 3)(r − 1)2‖x0 − x⋆‖2
8µt′

,

(4)
where the second last inequality follows from Theorem 4.1. We can make use of E(t′) to bound

Ẽ(t′) in (4). Indeed we have

Ẽ(t′) = t′3(f(X(t′))− f⋆) +
(2r − 3)2t′

8
‖X(t′) +

2t′

2r − 3
Ẋ(t′)− x⋆‖2

≤ t′3(f(X(t′))− f⋆) +
(2r − 3)2t′

4

∥

∥

∥

2r − 2

2r − 3
X(t′) +

2t′

2r − 3
Ẋ(t′)− 2r − 2

2r − 3
x⋆

∥

∥

∥

2

+
(2r − 3)2t′

4

∥

∥

∥

1

2r − 3
X(t′)− 1

2r − 3
x⋆

∥

∥

∥

2

≤ (r − 1)t′E(t′) + t′

4
‖X(t′)− x⋆‖2 ≤ (r − 1)2t′‖x0 − x⋆‖2 + (r − 1)2‖x0 − x⋆‖2

4µt′
,

which combined with (4) yields

Ẽ(t) ≤ (r − 1)2t′‖x0 − x⋆‖2 + (2r − 1)(r − 1)2‖x0 − x⋆‖2
8µt′

= O(
r

5

2 ‖x0 − x⋆‖2√
µ

).

It completes the proof for t ≥
√

(2r − 3)/(2µ) by noting f(X(t)) − f⋆ ≤ Ẽ(t)/t3, whereas for

t <
√

(2r − 3)/(2µ) by Theorem 4.1 we have

f(X(t))−f⋆ ≤ (r − 1)2‖x0 − x⋆‖2
2t2

≤ (r − 1)2
√
µ
√

(2r − 3)/(2µ)

2Cr
5

2

Cr
5

2 ‖x0 − x⋆‖2
t3
√
µ

≤ Cr
5

2 ‖x0 − x⋆‖2
t3
√
µ

.

3 Proof of Theorem 4.3

Proof of Theorem 4.3. In parallel to the proof of Theorem 4.1, we propose an energy function de-
fined as

E(k) = 2(k + r − 2)2s

r − 1
(f(xk)− f⋆) + (r − 1)‖zk − x⋆‖2,

where zk = (k + r − 1)yk/(r − 1)− kxk/(r − 1). Suppose we have

E(k) + 2s[(r − 3)(k + r − 2) + 1]

r − 1
(f(xk−1)− f⋆) ≤ E(k − 1). (5)

Then it immediately yields the desired results by summing over (5). To be specific, by recursively
applying (5) we see

E(k)+
k

∑

i=1

2s[(r − 3)(i+ r − 2) + 1]

r − 1
(f(xi−1)−f⋆) ≤ E(0) = 2(r − 2)2s

r − 1
(f(x0)−f⋆)+(r−1)‖x0−x⋆‖2,

which is equivalent to

E(k) +
k−1
∑

i=1

2s[(r − 3)(i+ r − 1) + 1]

r − 1
(f(xi)− f⋆) ≤ (r − 1)‖x0 − x⋆‖2. (6)
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Noting that the LHS of (6) is lower bounded by 2s(k + r− 2)2(f(xk)− f⋆)/(r− 1) gives the first
desired inequality. With E(k) ≥ 0, the second one is obtained via taking the limit k → ∞ in (6) and
replacing (r − 3)(i+ r − 1) + 1 by (r − 3)(i+ r − 1).

To complete, we aims to establish (5) in the rest of the proof. For s ≤ 1/L it is well-known in
proximal gradient literature, for example [1], that

f(y − sGs(y)) ≤ f(x) +Gs(y)
T (y − x)− s

2
‖Gs(y)‖2 (7)

for any x and y. Note that yk−1− sGs(yk−1) actually coincides with xk. Summing of (k−1)/(k+
r − 2)× (7) with x = xk−1, y = yk−1 and (r − 1)/(k + r − 2)× (7) with x = x⋆, y = yk−1 gives

f(xk) ≤
k − 1

k + r − 2
f(xk−1) +

r − 1

k + r − 2
f⋆

+
r − 1

k + r − 2
Gs(yk−1)

T
(k + r − 2

r − 1
yk−1 −

k − 1

r − 1
xk−1 − x⋆

)

− s

2
‖Gs(yk−1)‖2

=
k − 1

k + r − 2
f(xk−1) +

r − 1

k + r − 2
f⋆ +

(r − 1)2

2s(k + r − 2)2

(

‖zk−1 − x⋆‖2 − ‖zk − x⋆‖2
)

,

where we use zk−1 − s(k + r − 2)Gs(yk−1)/(r − 1) = zk. Rearranging the above inequality with
multiplying by 2s(k + r − 2)2/(r − 1) gives the desired (5).

4 Proof of Theorem 5.2

Remark 4.1. Indeed the linear convergence of Xsr remains for generalized ODE (4.1) with r > 3.
Only minor modifications in proof such as replacing u3 with ur in the definition of I(t) in Lemma
4.1 are required to get analogous convergence rate for the speed restarting version of (4.1).

Lemma 4.1. The speed restarting time T obeys

T (x0, f) ≥
4

5
√
L
.

Proof. Denote by M(t) the supremum of ‖Ẋ(u)‖/u over u ∈ (0, t] and

I(t) ,

∫ t

0

u3(∇f(X(u))−∇f(x0))du.

By the proof of Lemma 1.5 it is guaranteed that M defined above is finite. M is useful in that it
gives a bound on the gradient of f :

‖∇f(X(t))−∇f(x0)‖ ≤ L‖X(t)− x0‖ = L
∥

∥

∥

∫ t

0

Ẋ(u)du
∥

∥

∥
≤ L

∫ t

0

u
‖Ẋ(u)‖

u
du ≤ LM(t)t2

2
.

(8)
By (8), it is easy to see that I can also be bounded via M :

‖I(t)‖ ≤
∫ t

0

u3‖∇f(X(u))−∇f(x0)‖du ≤
∫ t

0

LM(u)u5

2
du ≤ LM(t)t6

12
. (9)

To fully facilitate these bounds, we need to bound M as

M(t) ≤ ‖∇f(x0)‖
4(1− Lt2/12)

(10)

for any t <
√

12/L.

To this end, note that indeed ODE (1.2) is equivalent to d(t3Ẋ(t))/dt = −t3∇f(X(t)), which by
integration leads to

t3Ẋ(t) = − t4

4
∇f(x0)−

∫ t

0

u3(∇f(X(u))−∇f(x0))du = − t4

4
∇f(x0)− I(t). (11)
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Dividing (11) by t4 and applying (9), we obtain

‖Ẋ(t)‖
t

≤ ‖∇f(x0)‖
4

+
‖I(t)‖
t4

≤ ‖∇f(x0)‖
4

+
LM(t)t2

12
.

Note that the RHS of the above is monotonically increasing in t. Hence by taking the supremum of
the LHS over (0, t] we obtain

M(t) ≤ ‖∇f(x0)‖
4

+
LM(t)t2

12
,

which gives the desired (10) by rearranging the inequality for t <
√

12/L.

Having established (10), we proceed to lower bound T via studying 〈Ẋ(t), Ẍ(t)〉. Dividing (11) by

t3, one has an expression for Ẋ , which reads

Ẋ(t) = − t

4
∇f(x0)−

1

t3

∫ t

0

u3(∇f(X(u))−∇f(x0))du. (12)

Differentiating the above, we also obtain an expression for Ẍ:

Ẍ(t) = −∇f(X(t)) +
3

4
∇f(x0) +

3

t4

∫ t

0

u3(∇f(X(u))−∇f(x0))du. (13)

Using the two expressions for Ẋ and Ẍ we will show that d‖Ẋ‖2/dt = 2〈Ẋ(t), Ẍ(t)〉 > 0 for

0 < t < 4/(5
√
L). To this end, noting that (12) and (13) yield

〈Ẋ(t), Ẍ(t)〉 =
〈

− t

4
∇f(x0)−

1

t3
I(t), −∇f(X(t)) +

3

4
∇f(x0) +

3

t4
I(t)

〉

≥ t

4
〈∇f(x0),∇f(X(t))〉 − 3t

16
‖∇f(x0)‖2 −

1

t3
‖I(t)‖

(

‖∇f(X(t))‖+ 3

2
‖∇f(x0)‖

)

− 3

t7
‖I(t)‖2

≥ t

4
‖∇f(x0)‖2 −

t

4
‖∇f(x0)‖‖∇f(X(t))−∇f(x0)‖ −

3t

16
‖∇f(x0)‖2

− LM(t)t3

12

(

‖∇f(X(t))−∇f(x0)‖+
5

2
‖∇f(x0)‖

)

− L2M(t)2t5

48

≥ t

16
‖∇f(x0)‖2 −

LM(t)t3‖∇f(x0)‖
8

− LM(t)t3

12

(LM(t)t2

2
+

5

2
‖∇f(x0)‖

)

− L2M(t)2t5

48

=
t

16
‖∇f(x0)‖2 −

LM(t)t3

3
‖∇f(x0)‖ −

L2M(t)2t5

16
,

where we use (9) and (8). To complete the proof, applying (10) in the above inequality yields

〈Ẋ(t), Ẍ(t)〉 ≥
( 1

16
− Lt2

12(1− Lt2/12)
− L2t4

256(1− Lt2/12)2

)

‖∇f(x0)‖2t ≥ 0

for t < min{
√

12/L, 4/(5
√
L)} = 4/(5

√
L), where the positiveness follows from the fact that

1

16
− Lt2

12(1− Lt2/12)
− L2t4

256(1− Lt2/12)2
> 0

for 0 < t ≤ 4/(5
√
L).

Next we give a lemma which claims that the objective function decays by a constant through each
speed restarting.

Lemma 4.2. There is a universal constant C > 0 such that

f(X(T ))− f(x⋆) ≤
(

1− Cµ

L

)

(f(x0)− f(x⋆)).

7



Proof. By (11), (9) and (10) in Lemma 4.1, for t <
√

12/L one has

‖Ẋ(t) +
t

4
∇f(x0)‖ =

1

t3
‖I(t)‖ ≤ LM(t)t3

12
≤ L‖∇f(x0)‖t3

48(1− Lt2/12)
,

which gives

0 ≤ t

4
‖∇f(x0)‖ −

L‖∇f(x0)‖t3
48(1− Lt2/12)

≤ ‖Ẋ(t)‖ ≤ t

4
‖∇f(x0)‖+

L‖∇f(x0)‖t3
48(1− Lt2/12)

(14)

for t <
√

12/L. By Lemma 4.1 d‖Ẋ‖2/dt ≥ 0 for 0 < t < 4/(5
√
L) because T ≥ 4/(5

√
L).

Hence for 0 < t < 4/(5
√
L) it yields that

df(X(t))

dt
= −3

t
‖Ẋ‖2−1

2

d

dt
‖Ẋ‖2 ≤ −3

t
‖Ẋ‖2 ≤ −3

t

( t

4
‖∇f(x0)‖−

L‖∇f(x0)‖t3
48(1− Lt2/12)

)2

≤ −ct‖∇f(x0)‖2,

where c > 0 is an absolute constant and the second last inequality follows from (14). Therefore we
have

f(X
( 4

5
√
L

)

)− f(x0) ≤
∫ 4

5
√

L

0

−cu‖∇f(x0)‖2du

= −c′

L
‖∇f(x0)‖2 ≤ −2c′µ

L
(f(x0)− f⋆),

where the last step follows from the µ–strong convexity of f . Above c′ > 0 is an absolute constant.
Thus we have

f(X
( 4

5
√
L

)

)− f⋆ ≤
(

1− 2c′µ

L

)

(f(x0)− f⋆).

Last, recall that f(X(t)) decreases on (4/(5
√
L), T ), which finishes the proof by noting

f(X(T ))− f⋆ ≤ f(X
( 4

5
√
L

)

)− f⋆ ≤
(

1− 2c′µ

L

)

(f(x0)− f⋆).

To establish the linear convergence, we also need to ensure that T can not be too large. To this end,
we give the following lemma.

Lemma 4.3. The speed restarting time T satisfies

T ≤ 4

5
√
L
exp

C ′L

µ
.

Proof. For 4/(5
√
L) ≤ t ≤ T , we have

df(X(t))

dt
≤ −3

t
‖Ẋ(t)‖2 ≤ −3

t
‖Ẋ(4/(5

√
L))‖2,

which implies

f(X(T ))− f(x0) ≤ f(X(T ))− f(X(4/(5
√
L))) ≤ −

∫ T

4

5
√

L

3

t
‖Ẋ(4/(5

√
L))‖2dt

= −3‖Ẋ(4/(5
√
L))‖2 log 5T

√
L

4
.

Hence we get an upper bound for T which reads

T ≤ 4

5
√
L
exp

(f(x0)− f(X(T ))

3‖Ẋ(4/(5
√
L))‖2

)

≤ 4

5
√
L
exp

( f(x0)− f⋆

3‖Ẋ(4/(5
√
L))‖2

)

. (15)
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Plugging t = 4/(5
√
L) in (14) gives

‖Ẋ(4/(5
√
L))‖ ≥ c√

L
‖∇f(x0)‖ (16)

for some universal constant c > 0. Substituting (16) in (15) yields

T ≤ 4

5
√
L
exp

(L(f(x0)− f⋆)

3c2‖∇f(x0)‖2
)

≤ 4

5
√
L
exp

L

6c2µ
.

It readily gives the proof of Theorem 5.2 by combining Lemmas 4.2 and 4.3.

Proof of Theorem 5.2. According to Lemma 4.3, by time t there are at least n⋆ ,

⌊5t
√
Le−C′L/µ/4⌋ restartings for Xsr. By Lemma 4.2 and monotonically decreasing of f before

restarting, we have

f(Xsr(t))− f(x⋆) ≤ f(Xsr(

n⋆

∑

i=1

Ti))− f(x⋆)

≤ (1− Cµ

L
)(f(Xsr(

n⋆−1
∑

i=1

Ti))− f(x⋆))

≤ . . .

≤ (1− Cµ

L
)n

⋆

(f(x0)− f(x⋆))

≤ exp(−Cµn⋆

L
)(f(x0)− f(x⋆))

≤ c1(f(x0)− f(x⋆))e−c2t
√
L,

where c1 = exp(Cµ/L) and c2 = 5Cµe−C′µ/L/(4L).
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