
Parallel Double Greedy Submodular Maximization

Xinghao Pan1 Stefanie Jegelka1 Joseph Gonzalez1 Joseph Bradley1 Michael I. Jordan1,2

1Department of Electrical Engineering and Computer Science, and 2Department of Statistics
University of California, Berkeley, Berkeley, CA USA 94720

{xinghao,stefje,jegonzal,josephkb,jordan}@eecs.berkeley.edu

Abstract

Many machine learning problems can be reduced to the maximization of sub-
modular functions. Although well understood in the serial setting, the parallel
maximization of submodular functions remains an open area of research with
recent results [1] only addressing monotone functions. The optimal algorithm for
maximizing the more general class of non-monotone submodular functions was
introduced by Buchbinder et al. [2] and follows a strongly serial double-greedy
logic and program analysis. In this work, we propose two methods to parallelize
the double-greedy algorithm. The first, coordination-free approach emphasizes
speed at the cost of a weaker approximation guarantee. The second, concurrency
control approach guarantees a tight 1/2-approximation, at the quantifiable cost of
additional coordination and reduced parallelism. As a consequence we explore
the tradeoff space between guaranteed performance and objective optimality. We
implement and evaluate both algorithms on multi-core hardware and billion edge
graphs, demonstrating both the scalability and tradeoffs of each approach.

1 Introduction

Many important problems including sensor placement [3], image co-segmentation [4], MAP inference
for determinantal point processes [5], influence maximization in social networks [6], and document
summarization [7] may be expressed as the maximization of a submodular function. The submodular
formulation enables the use of targeted algorithms [2, 8] that offer theoretical worst-case guarantees
on the quality of the solution. For several maximization problems of monotone submodular functions
(satisfying F (A) ≤ F (B) for all A ⊆ B), a simple greedy algorithm [8] achieves the optimal
approximation factor of 1− 1

e . The optimal result for the wider, important class of non-monotone
functions — an approximation guarantee of 1/2 — is much more recent, and achieved by a double
greedy algorithm by Buchbinder et al. [2].

While theoretically optimal, in practice these algorithms do not scale to large real world problems,
since the inherently serial nature of the algorithms poses a challenge to leveraging advances in parallel
hardware. This limitation raises the question of parallel algorithms for submodular maximization that
ideally preserve the theoretical bounds, or weaken them gracefully, in a quantifiable manner.

In this paper, we address the challenge of parallelization of greedy algorithms, in particular the double
greedy algorithm, from the perspective of parallel transaction processing systems. This alternative
perspective allows us to apply advances in database research ranging from fast coordination-free
approaches with limited guarantees to sophisticated concurrency control techniques which ensure a
direct correspondence between parallel and serial executions at the expense of increased coordination.

We develop two parallel algorithms for the maximization of non-monotone submodular functions that
operate at different points along the coordination tradeoff curve. We propose CF-2g as a coordination-
free algorithm and characterize the effect of reduced coordination on the approximation ratio. By
bounding the possible outcomes of concurrent transactions we introduce the CC-2g algorithm which
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guarantees serializable parallel execution and retains the optimality of the double greedy algorithm at
the expense of increased coordination. The primary contributions of this paper are:

1. We propose two parallel algorithms for unconstrained non-monotone submodular maximiza-
tion, which trade off parallelism and tight approximation guarantees.

2. We provide approximation guarantees for CF-2g and analytically bound the expected loss in
objective value for set-cover with costs and max-cut as running examples.

3. We prove that CC-2g preserves the optimality of the serial double greedy algorithm and
analytically bound the additional coordination overhead for covering with costs and max-cut.

4. We demonstrate empirically using two synthetic and four real datasets that our parallel
algorithms perform well in terms of both speed and objective values.

The rest of the paper is organized as follows. Sec. 2 discusses the problem of submodular maximiza-
tion and introduces the double greedy algorithm. Sec. 3 provides background on concurrency control
mechanisms. We describe and provide intuition for our CF-2g and CC-2g algorithms in Sec. 4 and
Sec. 5, and then analyze the algorithms both theoretically (Sec. 6) and empirically (Sec. 7).

2 Submodular Maximization

A set function F : 2V → R defined over subsets of a ground set V is submodular if it satisfies
diminishing marginal returns: for all A ⊆ B ⊆ V and e /∈ B, it holds that F (A ∪ {e}) −
F (A) ≥ F (B ∪ {e}) − F (B). Throughout this paper, we will assume that F is nonnegative and
F (∅) = 0. Submodular functions have emerged in areas such as game theory [9], graph theory [10],
combinatorial optimization [11], and machine learning [12, 13]. Casting machine learning problems
as submodular optimization enables the use of algorithms for submodular maximization [2, 8] that
offer theoretical worst-case guarantees on the quality of the solution.

While those algorithms confer strong guarantees, their design is inherently serial, limiting their
usability in large-scale problems. Recent work has addressed faster [14] and parallel [1, 15, 16]
versions of the greedy algorithm by Nemhauser et al. [8] for maximizing monotone submodular
functions that satisfy F (A) ≤ F (B) for any A ⊆ B ⊆ V . However, many important applications
in machine learning lead to non-monotone submodular functions. For example, graphical model
inference [5, 17], or trading off any submodular gain maximization with costs (functions of the form
F (S) = G(S)− λM(S), where G(S) is monotone submodular and M(S) a linear (modular) cost
function), such as for utility-privacy tradeoffs [18], require maximizing non-monotone submodular
functions. For non-monotone functions, the simple greedy algorithm in [8] can perform arbitrarily
poorly (see Appendix H.1 for an example). Intuitively, the introduction of additional elements
with monotone submodular functions never decreases the objective while introducing elements with
non-monotone submodular functions can decrease the objective to its minimum. For non-monotone
functions, Buchbinder et al. [2] recently proposed an optimal double greedy algorithm that works
well in a serial setting. In this paper, we study parallelizations of this algorithm.

The serial double greedy algorithm. The serial double greedy algorithm of Buchbinder et al. [2]
(Ser-2g, in Alg. 3) maintains two sets Ai ⊆ Bi. Initially, A0 = ∅ and B0 = V . In iteration i, the
set Ai−1 contains the items selected before item/iteration i, and Bi−1 contains Ai and the items that
are so far undecided. The algorithm serially passes through the items in V and determines online
whether to keep item i (add to Ai) or discard it (remove from Bi), based on a threshold that trades
off the gain ∆+(i) = F (Ai−1 ∪ i) − F (Ai−1) of adding i to the currently selected set Ai−1, and
the gain ∆−(i) = F (Bi−1 \ i) − F (Bi−1) of removing i from the candidate set, estimating its
complementarity to other remaining elements. For any element ordering, this algorithm achieves a
tight 1/2-approximation in expectation.

3 Concurrency Patterns for Parallel Machine Learning

In this paper we adopt a transactional view of the program state and explore parallelization strategies
through the lens of parallel transaction processing systems. We recast the program state (the sets
A and B) as data, and the operations (adding elements to A and removing elements from B) as
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transactions. More precisely we reformulate the double greedy algorithm (Alg. 3) as a series of
exchangeable, Read-Write transactions of the form:

Te(A,B) ,
{

(A ∪ e,B) if ue ≤
[∆+(A,e)]+

[∆+(A,e)]++[∆−(B,e)]+

(A,B\e) otherwise.
(1)

The transaction Te is a function from the sets A and B to new sets A and B based on the element
e ∈ V and the predetermined random bits ue for that element.

By composing the transactions Tn(Tn−1(. . . T1(∅, V ))) we recover the serial double-greedy algo-
rithm defined in Alg. 3. In fact, any ordering of the serial composition of the transactions recovers
a permuted execution of Alg. 3 and therefore the optimal approximation algorithm. However, this
raises the question: is it possible to apply transactions in parallel? If we execute transactions Ti and
Tj , with i 6= j, in parallel we need a method to merge the resulting program states. In the context of
the double greedy algorithm, we could define the parallel execution of two transactions as:

Ti(A,B) + Tj(A,B) , (Ti(A,B)A ∪ Tj(A,B)A, Ti(A,B)B ∩ Tj(A,B)B) , (2)

the union of the resulting A and the intersection of the resulting B. While we can easily generalize
Eq. (2) to many parallel transactions, we cannot always guarantee that the result will correspond
to a serial composition of transactions. As a consequence, we cannot directly apply the analysis of
Buchbinder et al. [2] to derive strong approximation guarantees for the parallel execution.

Fortunately, several decades of research [19, 20] in database systems have explored efficient parallel
transaction processing. In this paper we adopt a coordinated bounds approach to parallel transaction
processing in which parallel transactions are constructed under bounds on the possible program state.
If the transaction could violate the bound then it is processed serially on the server. By adjusting the
definition of the bound we can span a space of coordination-free to serializable executions.

Algorithm 1: Generalized transactions
1 for p ∈ {1, . . . , P} do in parallel
2 while ∃ element to process do
3 e = next element to process
4 (ge, i) = requestGuarantee(e)
5 ∂i = propose(e, ge)
6 commit(e, i, ∂i) // Non-blocking

Algorithm 2: Commit transaction i
1 wait until ∀j < i, processed(j) = true
2 Atomically
3 if ∂i = FAIL then

// Deferred proposal
4 ∂i = propose(e, S)

// Advance the program state
5 S← ∂i(S)

Figure 1: Algorithm for generalized transactions. Each transaction requests its position i in the commit ordering,
as well as the bounds ge that are guaranteed to hold when it commits. Transactions are also guaranteed to be
committed according to the given ordering.

In Fig. 1 we describe the coordinated bounds transaction pattern. The clients (Alg. 1), in parallel,
construct and commit transactions under bounded assumptions about the program state S (i.e., the
sets A and B). Transactions are constructed by requesting the latest bound ge on S at logical time
i and computing a change ∂i to S (e.g., Add e to A). If the bound is insufficient to construct the
transaction then ∂i = FAIL is returned. The client then sends the proposed change ∂i to the server to
be committed atomically and proceeds to the next element without waiting for a response.

The server (Alg. 2) serially applies the transactions advancing the program state (i.e., adding elements
to A or removing elements from B). If the bounds were insufficient and the transaction failed at the
client (i.e., ∂i = FAIL) then the server serially reconstructs and applies the transaction under the true
program state. Moreover, the server is responsible for deriving bounds, processing transactions in the
logical order i, and producing the serializable output ∂n(∂n−1(. . . ∂1(S))).

This model achieves a high degree of parallelism when the cost of constructing the transaction
dominates the cost of applying the transaction. For example, in the case of submodular maximization,
the cost of constructing the transaction depends on evaluating the marginal gains with respect to
changes in A and B while the cost of applying the transaction reduces to setting a bit. It is also
essential that only a few transactions fail at the client. Indeed, the analysis of these systems focuses
on ensuring that the majority of the transactions succeed.
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Algorithm 3: Ser-2g: serial double greedy
1 A0 = ∅, B0 = V
2 for i = 1 to n do
3 ∆+(i) = F (Ai−1 ∪ i)− F (Ai−1)

4 ∆−(i) = F (Bi−1\i)− F (Bi−1)
5 Draw ui ∼ Unif(0, 1)

6 if ui <
[∆+(i)]

+

[∆+(i)]
+

+[∆−(i)]
+

then

7 Ai := Ai−1 ∪ i; Bi := Bi−1

8 else Ai := Ai−1; Bi := Bi−1\i

Algorithm 4: CF-2g: coord-free double greedy

1 Â = ∅, B̂ = V
2 for p ∈ {1, . . . , P} do in parallel
3 while ∃ element to process do
4 e = next element to process
5 Âe = Â; B̂e = B̂

6 ∆max
+ (e) = F (Âe ∪ e)− F (Âe)

7 ∆max
− (e) = F (B̂e\e)− F (B̂e)

8 Draw ue ∼ Unif(0, 1)

9 if ue <
[∆max

+ (e)]+
[∆max

+ (e)]++[∆max
− (e)]+

then

10 Â(e)← 1

11 else B̂(e)← 0

Algorithm 5: CC-2g: concurrency control

1 Â = Ã = ∅, B̂ = B̃ = V
2 for i = 1, . . . , |V | do processed(i) = false
3 ι = 0
4 for p ∈ {1, . . . , P} do in parallel
5 while ∃ element to process do
6 e = next element to process
7 (Âe, Ãe, B̂e, B̃e, i) = getGuarantee(e)
8 (result, ue) = propose(e, Âe, Ãe, B̂e, B̃e)
9 commit(e, i, ue, result)

Algorithm 6: CC-2g getGuarantee(e)

1 Ã(e)← 1; B̃(e)← 0
2 i = ι; ι← ι+ 1

3 Âe = Â; B̂e = B̂

4 Ãe = Ã; B̃e = B̃

5 return (Âe, Ãe, B̂e, B̃e, i)

Algorithm 7: CC-2g propose

1 ∆min
+ (e) = F (Ãe)− F (Ãe\e)

2 ∆max
+ (e) = F (Âe ∪ e)− F (Âe)

3 ∆min
− (e) = F (B̃e)− F (B̃e ∪ e)

4 ∆max
− (e) = F (B̂e\e)− F (B̂e)

5 Draw ue ∼ Unif(0, 1)

6 if ue <
[∆min

+ (e)]+

[∆min
+ (e)]++[∆max

− (e)]+
then

7 result ← 1

8 else if ue >
[∆max

+ (e)]+

[∆max
+ (e)]++[∆min

− (e)]+
then

9 result ← −1

10 else result ← FAIL
11 return (result, ue)

Algorithm 8: CC-2g: commit(e, i, ue, result)
1 wait until ∀j < i, processed(j) = true
2 if result = FAIL then
3 ∆exact

+ (e) = F (Â ∪ e)− F (Â)

4 ∆exact
− (e) = F (B̂\e)− F (B̂)

5 if ue <
[∆exact

+ (e)]+

[∆exact
+ (e)]++[∆exact

− (e)]+
then result ← 1

6 else result ← −1

7 if result = 1 then Â(e)← 1; B̃(e)← 1

8 else Ã(e)← 0; B̂(e)← 0
9 processed(i) = true

4 Coordination-Free Double Greedy Algorithm

The coordination-free approach attempts to reduce the need to coordinate guarantees and the logical
ordering. This is achieved by operating on potentially stale states: the transaction guarantee reduces
to requiring ge be a stale version of S, and the logical ordering is implicitly defined by the time of
commit. In using these weak guarantees, CF-2g is overly optimistically assuming that concurrent
transactions are independent, which could potentially lead to erroneous decisions.

Alg. 4 is the coordination-free parallel double greedy algorithm.1 CF-2g closely resembles the serial
Ser-2g, but the elements e ∈ V are no longer processed in a fixed order. Thus, the sets A,B are
replaced by potentially stale local estimates (bounds) Â, B̂, where Â is a subset of the true A and
B̂ is a superset of the actual B on each iteration. These bounding sets allow us to compute bounds
∆max

+ ,∆max
− which approximate ∆+,∆− from the serial algorithm. We now formalize this idea.

To analyze the CF-2g algorithm we order the elements e ∈ V according to the commit time (i.e., when
Alg. 4 line 8 is executed). Let ι(e) be the position of e in this total ordering on elements. This

1We present only the parallelized probabilistic versions of [2]. Both parallel algorithms can be easily extended
to the deterministic version of [2]; CF-2g can also be extended to the multilinear version of [2].
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Algorithm 3: Seq-2g: Sequential double greedy
1 A0 = ;, B0 = V
2 for i = 1 to n do
3 �+(i) = F (Ai�1 [ i)� F (Ai�1)

4 ��(i) = F (Bi�1\i)� F (Bi�1)
5 Draw ui ⇠ Unif(0, 1)

6 if ui <
[�+(i)]

+

[�+(i)]
+
+[��(i)]

+

then

7 Ai := Ai�1 [ i; Bi := Bi�1

8 else Ai := Ai�1; Bi := Bi�1\i

Algorithm 4: CF-2g: coord-free double greedy

1 Â = ;, B̂ = V
2 for p 2 {1, . . . , P} do in parallel
3 while 9 element to process do
4 e = next element to process
5 �max

+ (e) = F (Â [ e)� F (Â)

6 �max
� (e) = F (B̂\e)� F (B̂)

7 Draw ue ⇠ Unif(0, 1)

8 if ue <
[�max

+ (e)]+
[�max

+ (e)]++[�max
� (e)]+

then

9 Â(e) 1

10 else B̂(e) 0

Algorithm 5: CC-2g: concurrency control

1 Â = Ã = ;, B̂ = B̃ = V
2 for i = 1, . . . , |V | do processed(i) = false
3 ◆ = 0
4 for p 2 {1, . . . , P} do in parallel
5 while 9 element to process do
6 e = next element to process
7 (Âe, Ãe, B̂e, B̃e, i) = getGuarantee(e)
8 (result, ue) = propose(e, Âe, Ãe, B̂e, B̃e)
9 commit(e, i, ue, result)

Algorithm 6: CC-2g getGuarantee(e)

1 Ã(e) 1; B̃(e) 0
2 i = ◆; ◆ ◆+ 1

3 Âe = Â; B̂e = B̂

4 Ãe = Ã; B̃e = B̃

5 return (Âe, Ãe, B̂e, B̃e, i)

Algorithm 7: CC-2g propose

1 �min
+ (e) = F (Ãe)� F (Ãe\e)

2 �max
+ (e) = F (Âe [ e)� F (Âe)

3 �min
� (e) = F (B̃e)� F (B̃e [ e)

4 �max
� (e) = F (B̂e\e)� F (B̂e)

5 Draw ue ⇠ Unif(0, 1)

6 if ue <
[�min

+ (e)]+

[�min
+ (e)]++[�max

� (e)]+
then

7 result  1

8 else if ue >
[�max

+ (e)]+

[�max
+ (e)]++[�min

� (e)]+
then

9 result  �1
10 else result  fail
11 return (result, ue)

Algorithm 8: CC-2g: commit(e, i, ue, result)
1 wait until 8j < i, processed(j) = true
2 if result = fail then
3 �exact

+ (e) = F (Â [ e)� F (Â)

4 �exact
� (e) = F (B̂\e)� F (B̂)

5 if ue <
[�exact

+ (e)]+

[�exact
+ (e)]++[�exact

� (e)]+
then result  1

6 else result  �1
7 if result = 1 then Â(e) 1; B̃(e) 1

8 else Ã(e) 0; B̂(e) 0
9 processed(i) = true

(a) (b) (c)

4 Coordination Free Double Greedy Algorithm

The coordination-free approach attempts to reduce the need to coordinate guarantees and logical
ordering. This is achieved by operating on potentially stale states – the guarantee reduces to requiring
ge be a stale version of S, and logical ordering is implicitly defined by the time of commit. In using
these weak guarantees, CF-2g is overly optimistically assuming that concurrent transactions are
independent, which could potentially lead to erroneous decisions.

Alg. 4 is the coordination free parallel double greedy algorithm.1 CF-2g closely resembles the serial
Seq-2g, but the elements e 2 V are no longer processed in a fixed order. Thus, the sets A,B are
replaced by potentially stale “bounds” Â, B̂, where Â is a subset of the “true” A and B̂ is a superset

1We present only the parallelized probabilistic versions of [1]. Both parallel algorithms can be easily extended
to the deterministic version of [1]; CF-2g can also be extended to the multilinear version of [1].
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+ (e)]++[�max
� (e)]+

then
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10 else B̂(e) 0

Algorithm 5: CC-2g: concurrency control

1 Â = Ã = ;, B̂ = B̃ = V
2 for i = 1, . . . , |V | do processed(i) = false
3 ◆ = 0
4 for p 2 {1, . . . , P} do in parallel
5 while 9 element to process do
6 e = next element to process
7 (Âe, Ãe, B̂e, B̃e, i) = getGuarantee(e)
8 (result, ue) = propose(e, Âe, Ãe, B̂e, B̃e)
9 commit(e, i, ue, result)

Algorithm 6: CC-2g getGuarantee(e)

1 Ã(e) 1; B̃(e) 0
2 i = ◆; ◆ ◆+ 1

3 Âe = Â; B̂e = B̂

4 Ãe = Ã; B̃e = B̃

5 return (Âe, Ãe, B̂e, B̃e, i)

Algorithm 7: CC-2g propose

1 �min
+ (e) = F (Ãe)� F (Ãe\e)

2 �max
+ (e) = F (Âe [ e)� F (Âe)

3 �min
� (e) = F (B̃e)� F (B̃e [ e)

4 �max
� (e) = F (B̂e\e)� F (B̂e)

5 Draw ue ⇠ Unif(0, 1)

6 if ue <
[�min

+ (e)]+

[�min
+ (e)]++[�max

� (e)]+
then
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8 else if ue >
[�max

+ (e)]+

[�max
+ (e)]++[�min

� (e)]+
then

9 result  �1
10 else result  fail
11 return (result, ue)

Algorithm 8: CC-2g: commit(e, i, ue, result)
1 wait until 8j < i, processed(j) = true
2 if result = fail then
3 �exact

+ (e) = F (Â [ e)� F (Â)

4 �exact
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5 if ue <
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8 else Ã(e) 0; B̂(e) 0
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4 Coordination Free Double Greedy Algorithm

The coordination-free approach attempts to reduce the need to coordinate guarantees and logical
ordering. This is achieved by operating on potentially stale states – the guarantee reduces to requiring
ge be a stale version of S, and logical ordering is implicitly defined by the time of commit. In using
these weak guarantees, CF-2g is overly optimistically assuming that concurrent transactions are
independent, which could potentially lead to erroneous decisions.

Alg. 4 is the coordination free parallel double greedy algorithm.1 CF-2g closely resembles the serial
Seq-2g, but the elements e 2 V are no longer processed in a fixed order. Thus, the sets A,B are
replaced by potentially stale “bounds” Â, B̂, where Â is a subset of the “true” A and B̂ is a superset

1We present only the parallelized probabilistic versions of [1]. Both parallel algorithms can be easily extended
to the deterministic version of [1]; CF-2g can also be extended to the multilinear version of [1].
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Algorithm 3: Ser-2g: serial double greedy
1 A0 = ;, B0 = V
2 for i = 1 to n do
3 �+(i) = F (Ai�1 [ i)� F (Ai�1)

4 ��(i) = F (Bi�1\i)� F (Bi�1)
5 Draw ui ⇠ Unif(0, 1)

6 if ui <
[�+(e)]

+

[�+(e)]
+
+[��(e)]

+

then

7

8 Ai := Ai�1 [ i; Bi := Bi�1

9 else Ai := Ai�1; Bi := Bi�1\i

Algorithm 4: CF-2g: coord-free double greedy

1 Â = ;, B̂ = V
2 for p 2 {1, . . . , P} do in parallel
3 while 9 element to process do
4 e = next element to process
5 Âe = Â; B̂e = B̂

6 �max
+ (e) = F (Âe [ e)� F (Âe)

7 �max
� (e) = F (B̂e\e)� F (B̂e)

8 Draw ue ⇠ Unif(0, 1)

9 if ue <
[�max

+ (e)]+
[�max

+ (e)]++[�max
� (e)]+

then

10 Â(e) 1

11 else B̂(e) 0

Algorithm 5: CC-2g: concurrency control

1 Â = Ã = ;, B̂ = B̃ = V
2 for i = 1, . . . , |V | do processed(i) = false
3 ◆ = 0
4 for p 2 {1, . . . , P} do in parallel
5 while 9 element to process do
6 e = next element to process
7 (Âe, Ãe, B̂e, B̃e, i) = getGuarantee(e)
8 (result, ue) = propose(e, Âe, Ãe, B̂e, B̃e)
9 commit(e, i, ue, result)

Algorithm 6: CC-2g getGuarantee(e)

1 Ã(e) 1; B̃(e) 0
2 i = ◆; ◆ ◆+ 1

3 Âe = Â; B̂e = B̂

4 Ãe = Ã; B̃e = B̃

5 return (Âe, Ãe, B̂e, B̃e, i)

Algorithm 7: CC-2g propose

1 �min
+ (e) = F (Ãe)� F (Ãe\e)

2 �max
+ (e) = F (Âe [ e)� F (Âe)

3 �min
� (e) = F (B̃e)� F (B̃e [ e)

4 �max
� (e) = F (B̂e\e)� F (B̂e)

5 Draw ue ⇠ Unif(0, 1)

6 if ue <
[�min

+ (e)]+

[�min
+ (e)]++[�max

� (e)]+
then

7 result  1

8 else if ue >
[�max

+ (e)]+

[�max
+ (e)]++[�min

� (e)]+
then

9 result  �1
10 else result  FAIL
11 return (result, ue)

Algorithm 8: CC-2g: commit(e, i, ue, result)
1 wait until 8j < i, processed(j) = true
2 if result = FAIL then
3 �exact

+ (e) = F (Â [ e)� F (Â)

4 �exact
� (e) = F (B̂\e)� F (B̂)

5 if ue <
[�exact

+ (e)]+

[�exact
+ (e)]++[�exact

� (e)]+
then result  1

6 else result  �1
7 if result = 1 then Â(e) 1; B̃(e) 1

8 else Ã(e) 0; B̂(e) 0
9 processed(i) = true

4 Coordination-Free Double Greedy Algorithm

The coordination-free approach attempts to reduce the need to coordinate guarantees and the logical
ordering. This is achieved by operating on potentially stale states: the transaction guarantee reduces
to requiring ge be a stale version of S, and the logical ordering is implicitly defined by the time of
commit. In using these weak guarantees, CF-2g is overly optimistically assuming that concurrent
transactions are independent, which could potentially lead to erroneous decisions.

Alg. 4 is the coordination-free parallel double greedy algorithm.1 CF-2g closely resembles the serial
Ser-2g, but the elements e 2 V are no longer processed in a fixed order. Thus, the sets A,B are
replaced by potentially stale local estimates (bounds) Â, B̂, where Â is a subset of the true A and
B̂ is a superset of the actual B on each iteration. These bounding sets allow us to compute bounds
�max

+ ,�max
� which approximate �+,�� from the serial algorithm. We now formalize this idea.

1We present only the parallelized probabilistic versions of [2]. Both parallel algorithms can be easily extended
to the deterministic version of [2]; CF-2g can also be extended to the multilinear version of [2].
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Algorithm 3: Seq-2g: Sequential double greedy
1 A0 = ;, B0 = V
2 for i = 1 to n do
3 �+(i) = F (Ai�1 [ i)� F (Ai�1)

4 ��(i) = F (Bi�1\i)� F (Bi�1)
5 Draw ui ⇠ Unif(0, 1)

6 if ui <
[�+(i)]

+

[�+(i)]
+
+[��(i)]

+

then

7 Ai := Ai�1 [ i; Bi := Bi�1

8 else Ai := Ai�1; Bi := Bi�1\i

Algorithm 4: CF-2g: coord-free double greedy

1 Â = ;, B̂ = V
2 for p 2 {1, . . . , P} do in parallel
3 while 9 element to process do
4 e = next element to process
5 �max

+ (e) = F (Â [ e)� F (Â)

6 �max
� (e) = F (B̂\e)� F (B̂)

7 Draw ue ⇠ Unif(0, 1)

8 if ue <
[�max

+ (e)]+
[�max

+ (e)]++[�max
� (e)]+

then

9 Â(e) 1

10 else B̂(e) 0

Algorithm 5: CC-2g: concurrency control

1 Â = Ã = ;, B̂ = B̃ = V
2 for i = 1, . . . , |V | do processed(i) = false
3 ◆ = 0
4 for p 2 {1, . . . , P} do in parallel
5 while 9 element to process do
6 e = next element to process
7 (Âe, Ãe, B̂e, B̃e, i) = getGuarantee(e)
8 (result, ue) = propose(e, Âe, Ãe, B̂e, B̃e)
9 commit(e, i, ue, result)

Algorithm 6: CC-2g getGuarantee(e)

1 Ã(e) 1; B̃(e) 0
2 i = ◆; ◆ ◆+ 1

3 Âe = Â; B̂e = B̂

4 Ãe = Ã; B̃e = B̃

5 return (Âe, Ãe, B̂e, B̃e, i)

Algorithm 7: CC-2g propose

1 �min
+ (e) = F (Ãe)� F (Ãe\e)

2 �max
+ (e) = F (Âe [ e)� F (Âe)

3 �min
� (e) = F (B̃e)� F (B̃e [ e)

4 �max
� (e) = F (B̂e\e)� F (B̂e)

5 Draw ue ⇠ Unif(0, 1)

6 if ue <
[�min

+ (e)]+

[�min
+ (e)]++[�max

� (e)]+
then

7 result  1

8 else if ue >
[�max

+ (e)]+

[�max
+ (e)]++[�min

� (e)]+
then

9 result  �1
10 else result  fail
11 return (result, ue)

Algorithm 8: CC-2g: commit(e, i, ue, result)
1 wait until 8j < i, processed(j) = true
2 if result = fail then
3 �exact

+ (e) = F (Â [ e)� F (Â)

4 �exact
� (e) = F (B̂\e)� F (B̂)

5 if ue <
[�exact

+ (e)]+

[�exact
+ (e)]++[�exact

� (e)]+
then result  1

6 else result  �1
7 if result = 1 then Â(e) 1; B̃(e) 1

8 else Ã(e) 0; B̂(e) 0
9 processed(i) = true

(a) (b) (c)

4 Coordination Free Double Greedy Algorithm

The coordination-free approach attempts to reduce the need to coordinate guarantees and logical
ordering. This is achieved by operating on potentially stale states – the guarantee reduces to requiring
ge be a stale version of S, and logical ordering is implicitly defined by the time of commit. In using
these weak guarantees, CF-2g is overly optimistically assuming that concurrent transactions are
independent, which could potentially lead to erroneous decisions.

Alg. 4 is the coordination free parallel double greedy algorithm.1 CF-2g closely resembles the serial
Seq-2g, but the elements e 2 V are no longer processed in a fixed order. Thus, the sets A,B are
replaced by potentially stale “bounds” Â, B̂, where Â is a subset of the “true” A and B̂ is a superset

1We present only the parallelized probabilistic versions of [1]. Both parallel algorithms can be easily extended
to the deterministic version of [1]; CF-2g can also be extended to the multilinear version of [1].
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then
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8 else Ai := Ai�1; Bi := Bi�1\i

Algorithm 4: CF-2g: coord-free double greedy

1 Â = ;, B̂ = V
2 for p 2 {1, . . . , P} do in parallel
3 while 9 element to process do
4 e = next element to process
5 �max

+ (e) = F (Â [ e)� F (Â)

6 �max
� (e) = F (B̂\e)� F (B̂)

7 Draw ue ⇠ Unif(0, 1)

8 if ue <
[�max

+ (e)]+
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+ (e)]++[�max
� (e)]+

then

9 Â(e) 1

10 else B̂(e) 0

Algorithm 5: CC-2g: concurrency control

1 Â = Ã = ;, B̂ = B̃ = V
2 for i = 1, . . . , |V | do processed(i) = false
3 ◆ = 0
4 for p 2 {1, . . . , P} do in parallel
5 while 9 element to process do
6 e = next element to process
7 (Âe, Ãe, B̂e, B̃e, i) = getGuarantee(e)
8 (result, ue) = propose(e, Âe, Ãe, B̂e, B̃e)
9 commit(e, i, ue, result)

Algorithm 6: CC-2g getGuarantee(e)

1 Ã(e) 1; B̃(e) 0
2 i = ◆; ◆ ◆+ 1

3 Âe = Â; B̂e = B̂

4 Ãe = Ã; B̃e = B̃

5 return (Âe, Ãe, B̂e, B̃e, i)

Algorithm 7: CC-2g propose

1 �min
+ (e) = F (Ãe)� F (Ãe\e)

2 �max
+ (e) = F (Âe [ e)� F (Âe)

3 �min
� (e) = F (B̃e)� F (B̃e [ e)

4 �max
� (e) = F (B̂e\e)� F (B̂e)

5 Draw ue ⇠ Unif(0, 1)

6 if ue <
[�min

+ (e)]+

[�min
+ (e)]++[�max

� (e)]+
then

7 result  1

8 else if ue >
[�max

+ (e)]+

[�max
+ (e)]++[�min

� (e)]+
then

9 result  �1
10 else result  fail
11 return (result, ue)

Algorithm 8: CC-2g: commit(e, i, ue, result)
1 wait until 8j < i, processed(j) = true
2 if result = fail then
3 �exact

+ (e) = F (Â [ e)� F (Â)

4 �exact
� (e) = F (B̂\e)� F (B̂)

5 if ue <
[�exact

+ (e)]+

[�exact
+ (e)]++[�exact

� (e)]+
then result  1

6 else result  �1
7 if result = 1 then Â(e) 1; B̃(e) 1

8 else Ã(e) 0; B̂(e) 0
9 processed(i) = true
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4 Coordination Free Double Greedy Algorithm

The coordination-free approach attempts to reduce the need to coordinate guarantees and logical
ordering. This is achieved by operating on potentially stale states – the guarantee reduces to requiring
ge be a stale version of S, and logical ordering is implicitly defined by the time of commit. In using
these weak guarantees, CF-2g is overly optimistically assuming that concurrent transactions are
independent, which could potentially lead to erroneous decisions.

Alg. 4 is the coordination free parallel double greedy algorithm.1 CF-2g closely resembles the serial
Seq-2g, but the elements e 2 V are no longer processed in a fixed order. Thus, the sets A,B are
replaced by potentially stale “bounds” Â, B̂, where Â is a subset of the “true” A and B̂ is a superset

1We present only the parallelized probabilistic versions of [1]. Both parallel algorithms can be easily extended
to the deterministic version of [1]; CF-2g can also be extended to the multilinear version of [1].
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(c) CC-2g

Figure 2: Illustration of algorithms. (a) Ser-2g computes a threshold based on the true values ∆+, ∆−, and
chooses an action based by comparing a uniform random ui against the threshold. (b) CF-2g approximates
the threshold based on stale Â, B̂, possibly choosing the wrong action. (c) CC-2g computes two thresholds
based on the bounds on A, B, which defines an uncertainty region where it is not possible to choose the correct
action locally. If the random value ue falls inside the uncertainty interval than the transaction FAILS and must
be recomputed serially by the server; otherwise the transaction holds under all possible global states.

ordering allows us to define monotonically non-decreasing sets Ai = {e′ : e′ ∈ A, ι(e′) < i} where
A is the final returned set, and monotonically non-increasing sets Bi = Ai ∪ {e′ : ι(e′) ≥ i}. The
sets Ai, Bi provide a serialization against which we can compare CF-2g; in this serialization, Alg. 3
computes ∆+(e) = F (Aι(e)−1 ∪ e)− F (Aι(e)−1) and ∆−(e) = F (Bι(e)−1\e)− F (Bι(e)−1). On
the other hand, CF-2g uses stale versions2 Âe, B̂e: Alg. 4 computes ∆max

+ (e) = F (Âe ∪ e)−F (Âe)

and ∆max
− (e) = F (B̂e\e)− F (B̂e).

The next lemma shows that Âe, B̂e are bounding sets for the serialization’s sets Aι(e)−1, Bι(e)−1.
Intuitively, the bounds hold because Âe, B̂e are stale versions of Aι(e)−1, Bι(e)−1, which are
monotonically non-decreasing and non-increasing sets. Appendix A gives a detailed proof.

Lemma 4.1. In CF-2g, for any e ∈ V , Âe ⊆ Aι(e)−1, and B̂e ⊇ Bι(e)−1.

Corollary 4.2. Submodularity of F implies for CF-2g ∆+(e) ≤ ∆max
+ (e), and ∆−(e) ≤ ∆max

− (e).

The error in CF-2g depends on the tightness of the bounds in Cor. 4.2. We analyze this in Sec. 6.1.

5 Concurrency Control for the Double Greedy Algorithm

The concurrency control-based double greedy algorithm1, CC-2g, is presented in Alg. 5, and closely
follows the meta-algorithm of Alg. 1 and Alg. 2. Unlike in CF-2g, the concurrency control mecha-
nisms of CC-2g ensure that concurrent transactions are serialized when they are not independent.

Serializability is achieved by maintaining sets Â, Ã, B̂, B̃, which serve as upper and lower bounds on
the true state of A and B at commit time. Each thread can determine locally if a decision to include
or exclude an element can be taken safely. Otherwise, the proposal is deferred to the commit process
(Alg. 8) which waits until it is certain about A and B before proceeding.

The commit order is given by ι(e), which is the value of ι in line 2 of Alg. 5. We define Aι(e)−1,
Bι(e)−1 as before with CF-2g. Additionally, let Âe, B̂e, Ãe, and B̃e be the sets that are returned by
Alg. 6.2 Indeed, these sets are guaranteed to be bounds on Aι(e)−1, Bι(e)−1:

Lemma 5.1. In CC-2g, ∀e ∈ V , Âe ⊆ Aι(e)−1 ⊆ Ãe\e, and B̂e ⊇ Bι(e)−1 ⊇ B̃e ∪ e.

Intuitively, these bounds are maintained by recording potential effects of concurrent transactions in Ã,
B̃, and only recording the actual effects in Â, B̂; we leave the full proof to Appendix A. Furthermore,
by committing transactions in order ι, we have Â = Aι(e)−1 and B̂ = Bι(e)−1 during commit.

Lemma 5.2. In CC-2g, when committing element e, we have Â = Aι(e)−1 and B̂ = Bι(e)−1.

2 For clarity, we present the algorithm as creating a copy of Â, B̂, Ã, and B̃ for each element. In practice, it
is more efficient to update and access them in shared memory. Nevertheless, our theorems hold for both settings.
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Corollary 5.3. Submodularity of F implies that the ∆’s computed by CC-2g satisfy ∆min
+ (e) ≤

∆exact
+ (e) = ∆+(e) ≤ ∆max

+ (e) and ∆min
− (e) ≤ ∆exact

− (e) = ∆−(e) ≤ ∆max
− (e).

By using these bounds, CC-2g can determine when it is safe to construct the transaction locally. For
failed transactions, the server is able to construct the correct transaction using the true program state.
As a consequence we can guarantee that the parallel execution of CC-2g is serializable.

6 Analysis of Algorithms

Our two algorithms trade off performance and strong approximation guarantees. The CF-2g algo-
rithm emphasizes speed at the expense of the approximation objective. On the other hand, CC-2g
emphasizes the tight 1/2-approximation at the expense of increased coordination. In this section
we characterize the reduction in the approximation objective as well as the increased coordina-
tion. Our analysis connects the degradation in CC-2g scalability with the degradation in the CF-2g
approximation factor via the maximum inter-processor message delay τ .

6.1 Approximation of CF-2g double greedy

Theorem 6.1. Let F be a non-negative submodular function. CF-2g solves the unconstrained
problem maxA⊂V F (A) with worst-case approximation factor E[F (ACF )] ≥ 1

2F
∗− 1

4

∑N
i=1E[ρi],

where ACF is the output of the algorithm, F ∗ is the optimal value, and ρi = max{∆max
+ (e) −

∆+(e),∆max
− (e)−∆−(e)} is the maximum discrepancy in the marginal gain due to the bounds.

The proof (Appendix C) of Thm. 6.1 follows the structure in [2]. Thm. 6.1 captures the deviation from
optimality as a function of width of the bounds which we characterize for two common applications.

Example: max graph cut. For the max cut objective we bound the expected discrepancy in the
marginal gain ρi in terms of the sparsity of the graph and the maximum inter-processor message delay
τ . By applying Thm. 6.1 we obtain the approximation factor E[F (AN )] ≥ 1

2F
∗ − τ #edges

2N which
decreases linearly in both the message delays and graph density. In a complete graph, F ∗ = 1

2#edges,
so E[F (AN )] ≥ F ∗

(
1
2 − τ

N

)
, which makes it possible to scale τ linearly with N while retaining

the same approximation factor.

Example: set cover. Consider the simple set cover function, F (A) =
∑L
l=1 min(1, |A ∩ Sl|) −

λ|A| = |{l : A ∩ Sl 6= ∅}| − λ|A|, with 0 < λ ≤ 1. We assume that there is some bounded
delay τ . Suppose also the Sl’s form a partition, so each element e belongs to exactly one set. Then,∑
eE[ρe] ≥ τ + L(1− λτ ), which is linear in τ but independent of N .

6.2 Correctness of CC-2g

Theorem 6.2. CC-2g is serializable and therefore solves the unconstrained submodular maximization
problem maxA⊂V F (A) with approximation E[F (ACC)] ≥ 1

2F
∗, where ACC is the output of the

algorithm, and F ∗ is the optimal value.

The key challenge in the proof (Appendix B) of Thm. 6.2 is to demonstrate that CC-2g guarantees
a serializable execution. It suffices to show that CC-2g takes the same decision as Ser-2g for each
element – locally if it is safe to do so, and otherwise deferring the computation to the server. As an
immediate consequence of serializability, we recover the optimal approximation guarantees of the
serial Ser-2g algorithm.

6.3 Scalability of CC-2g

Whenever a transaction is reconstructed on the server, the server needs to wait for all earlier elements
to be committed, and is also blocked from committing all later elements. Each failed transaction
effectively constitutes a barrier to the parallel processing. Hence, the scalability of CC-2g is dependent
on the number of failed transactions.

We can directly bound the number of failed transactions (details in Appendix D) for both the max-cut
and set cover example problems. For the max-cut problem with a maximum inter-processor message
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delay τ we obtain the upper bound 2τ #edges
N . Similarly for set cover the expected number of failed

transactions is upper-bounded by 2τ . As a consequence, the coordination costs of CC-2g grows at
the same rate as the reduction in accuracy of CF-2g. Moreover, the CC-2g algorithm will slow down
in settings where the CF-2g algorithm produces sub-optimal solutions.

7 Evaluation

We implemented the parallel and serial double greedy algorithms in Java / Scala. Experiments were
conducted on Amazon EC2 using one cc2.8xlarge machine, up to 16 threads, for 10 repetitions. We
measured the runtime and speedup (ratio of runtime on 1 thread to runtime on p threads). For CF-2g,
we measured F (ACF )− F (ASer), the difference between the objective value on the sets returned
by CF-2g and Ser-2g. We verified the correctness of CC-2g by comparing the output of CC-2g with
Ser-2g. We also measured the fraction of transactions that fail in CC-2g. Our parallel algorithms were
tested on the max graph cut and set cover problems with two synthetic graphs and three real datasets
(Table 1). We found that vertices were typically indexed such that nearby vertices in the graph were
also close in their indices. To reduce this dependency, we randomly permuted the ordering of vertices.

Graph # vertices # edges Description

Erdos-Renyi 20,000,000 ≈ 2× 109 Each edge is included with probability 5× 10−6.

ZigZag 25,000,000 2,025,000,000 Expander graph. The 81-regular zig-zag product between the Cayley graph on
Z2500000 with generating set {±1, . . . ,±5}, and the complete graphK10.

Friendster 10,000,000 625,279,786 Subgraph of social network. [21]
Arabic-2005 22,744,080 631,153,669 2005 crawl of Arabic web sites [22, 23, 24].

UK-2005 39,459,925 921,345,078 2005 crawl of the .uk domain [22, 23, 24].
IT-2004 41,291,594 1,135,718,909 2004 crawl of the .it domain [22, 23, 24].

Table 1: Synthetic and real graphs used in the evaluation of our parallel algorithms.
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Figure 3: Experimental results. Fig. 3a – runtime of the parallel algorithms as a ratio to that of the serial
algorithm. Each curve shows the runtime of a parallel algorithm on a particular graph for a particular function
F . Fig. 3b, 3c – speedup (ratio of runtime on one thread to that on p threads). Fig. 3d, 3e – % difference
between objective values of Ser-2g and CF-2g, i.e. [F (ACF )/F (ASer)− 1]× 100%. Fig. 3f – percentage of
transactions that fail in CC-2g on the max graph cut problem.

We summarize of the key results here with more detailed experiments and discussion in Appendix G.
Runtime, Speedup: Both parallel algorithms are faster than the serial algorithm with three or more
threads, and show good speedup properties as more threads are added (∼ 10x or more for all graphs
and both functions). Objective value: The objective value of CF-2g decreases with the number of
threads, but differs from the serial objective value by less than 0.01%. Failed transactions: CC-2g
fails more transactions as threads are added, but even with 16 threads, less than 0.015% transactions
fail, which has negligible effect on the runtime / speedup.
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Figure 4: Experimental results for set cover problem on a ring expander graph demonstrating that for adversari-
ally constructed inputs we can reduce the optimality of CF-2g and increase coordination costs for CC-2g.

7.1 Adversarial ordering

To highlight the differences in approaches between the two parallel algorithms, we conducted
experiments on a ring Cayley expander graph on Z106 with generating set {±1, . . . ,±1000}. The
algorithms are presented with an adversarial ordering, without permutation, so vertices close in the
ordering are adjacent to one another, and tend to be processed concurrently. This causes CF-2g to
make more mistakes, and CC-2g to fail more transactions. While more sophisticated partitioning
schemes could improve scalability and eliminate the effect of adversarial ordering, we use the default
data partitioning in our experiments to highlight the differences between the two algorithms. As
Fig. 4 shows, CC-2g sacrifices speed to ensure a serializable execution, eventually failing on > 90%
of transactions. On the other hand, CF-2g focuses on speed, resulting in faster runtime, but achieves
an objective value that is 20% of F (ASer). We emphasize that we contrived this example to highlight
differences between CC-2g and CF-2g, and we do not expect to see such orderings in practice.

8 Related Work

Similar approach: Coordination-free solutions have been proposed for stochastic gradient descent
[25] and collapsed Gibbs sampling [26]. More generally, parameter servers [27, 28] apply the CF
approach to larger classes of problems. Pan et al. [29] applied concurrency control to parallelize some
unsupervised learning algorithms. Similar problem: Distributed and parallel greedy submodular
maximization is addressed in [1, 15, 16], but only for monotone functions.

9 Conclusion and Future Work

By adopting the transaction processing model from parallel database systems, we presented two
approaches to parallelizing the double greedy algorithm for unconstrained submodular maximization.
We quantified the weaker approximation guarantee of CF-2g and the additional coordination of
CC-2g, allowing one to trade off between performance and objective optimality. Our evaluation
on large scale data demonstrates the scalability and tradeoffs of the two approaches. Moreover, as
the approximation quality of the CF-2g algorithm decreases so does the scalability of the CC-2g
algorithm. The choice between the algorithm then reduces to a choice of guaranteed performance
and guaranteed optimality.

We believe there are a number of areas for future work. One can imagine a system that allows a
smooth interpolation between CF-2g and CC-2g. While both CF-2g and CC-2g can be immediately
implemented as distributed algorithms, higher communication costs and delays may pose additional
challenges. Finally, other problems such as constrained maximization of monotone / non-monotone
functions could potentially be parallelized with the CF and CC frameworks.
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