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Here we provide details of the variational inference method for the mixPLDS model. To this end, we first
discuss variational inference for the case of a single mixture component M = 1, a model that is equivalent to
the Poisson linear dynamical system (PLDS) model defined in Macke et al. (2011).

1 Variational inference for Poisson linear dynamical system

1.1 Notation

We first introduce the “vectorized” notation for the PLDS model. The PLDS is equivalent to the mixPLDS
model for M = 1. We therefore drop the group index m when focussing on the PLDS.

x :=

x1

...
xT

 , y :=

y1

...
yT

 , b :=

b
...
b


T − times (1)

W = block-diag(C, . . . , C︸ ︷︷ ︸
T -times

) (2)

η := Wx + b (3)

p(x) = N (x|µ,Σ) (4)

p(y|x) =

KT∏
n=1

p(yn|ηn) (5)

p(yn|ηn) = Poisson(yn| exp(ηn)), (6)

where the index n = 1, . . . ,KT runs over all observations, i.e. over all observed neurons k = 1, . . . ,K for all
time steps t = 1, . . . , T . Slightly overloading the notation, we denote the corresponding observation as yn for
all n = 1, . . . ,KT . The precision Λ := Σ−1 of the LDS prior is block-tri-diagonal:

Λ = Σ−1 =

Q
−1
0 +A>Q−1A −A>Q−1
−Q−1A Q−1 +A>Q−1A −A>Q−1

. . .
. . .

. . .

 (7)

The prior mean is given by:

µ =


µ1

Aµ1

...
AT−1µ1

 . (8)
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1.2 Gaussian variational inference

We make the following Gaussian approximation to the posterior :

p(x|y) ≈ q(x) = N (x|m, V ). (9)

The variational lower bound reads:

L(m, V ) ≤ log p(y) (10)

L(m, V ) =
1

2

(
log |V | − tr[Σ−1V ]− (m− µ)>Σ−1(m− µ)

)
+
∑
n

Eq(x)[log p(yn|ηn)] (11)

−
∑
n

log(yn!)− 1

2
log |Σ|+ dT

2︸ ︷︷ ︸
constant in m,V

. (12)

For Poisson observations with exponential link function we can compute Eq(x)[log p(yn|ηn)]:

Eq(x)[log p(yn|ηn)] =: −fn(hn, ρn) (13)

fn(hn, ρn) = −ynhn + exp(hn + ρn/2) (14)

h := Wm + b (15)

ρ := diag(WVW>). (16)

The bound then reads (ignoring additive constants):

L(m, V ) =
1

2

(
log |V | − tr[Σ−1V ]− (m− µ)>Σ−1(m− µ)

)
−
∑
n

fn(hn, ρn). (17)

Variational inference can now be cast as optimizing this lower bound over the variational parameters m, V :

max
m,V

L(m, V ) (18)

subject to V � 0.

1.3 Variational inference via dual optimization

As shown in Emtiyaz Khan et al. (2013), instead of optimizing the original problem (18), we can solve following
dual problem:

min
λ

D(λ) (19)

subject to λ > 0,

where λ ∈ RKT and λ > 0 denotes the element-wise positivity constraints ∀n λn > 0. The dual cost function
is given by:

D(λ) :=
1

2
(λ− y)>WΣW>(λ− y)− (Wµ+ b)>(λ− y)− 1

2
log |Aλ|+

∑
n

f∗(λn) (20)

f∗(λn) := λn(log λn − 1) (21)

Aλ := Σ−1 +W> diag(λ)W. (22)

The dual optimization problem is strictly convex. Given the optimal value λ∗, we can express the optimal
variational parameters for q(x) = N (x|m∗, V ∗) as:

m∗ = µ− ΣW>(λ∗ − y) (23)

V ∗ = (Σ−1 +W> diag(λ∗)W )−1 = A−1λ∗ . (24)

The variational lower bound at the optimum m∗, V ∗ reads:

L∗ = D(λ∗)−
∑
n

log yn!− 1

2
log |Σ| (25)

= −1

2
log |Aλ|+

1

2
λ∗> diag(WA−1λ W>)− 1

2
(λ− y)>WΣW>(λ− y)−

∑
n

fn(h∗n, ρ
∗
n) (26)

−
∑
n

log yn!− 1

2
log |Σ|, (27)
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where h∗ = Wm∗ + b and ρ∗ = diag(WV ∗W>). The gradient of the dual reads:

∇λ = WΣW>(λ− y)−Wµ− b + log λ− 1

2
diag(WA−1λ W>).

Evaluating the dual function D and its gradient ∇λ requires computing all T blocks of size d×d on the diagonal
of Aλ. This is equivalent to Kalman smoothing and requires a forward-backward pass through the data which
costs O(Td3) operations.

2 Variational inference for mixPLDS model

The observation model of the mixPLDS is a mixture of Poisson distributions:

log p(ykt|xt, sk) =

M∑
m=1

δ(sk,m) (ykt(C
m
k:x

m
t + bk)− exp(Cmk:x

m
t + bk)) + const, (28)

where δ denotes Kronecker’s delta. We do joint inference over the latent variables x and the cluster assignments
s. We make the following factorized variational approximation:

p(x, s|y) ≈ q(x)q(s). (29)

The variational lower bound for the mixPLDS reads:

L(m, V, φ) =
1

2

(
log |V | − tr[Σ−1V ]− (m− µ)>Σ−1(m− µ)

)
(30)

−
M∑
m=1

K∑
k=1

T∑
t=1

πmk fkt(h
m
kt, ρ

m
kt) +

K∑
k=1

DKL[q(sk)‖p(sk)] (31)

where φ are the variational parameters of q(s). Here we used the following notation:

C :=

 C̃1

...

C̃M

 (32)

W := blk-diag(C, . . . , C︸ ︷︷ ︸
T -times

) (33)

hmt := C̃mmt + b (34)

ρmt := diag(C̃mVt(C̃
m)>) (35)

πmk := Eq(sk)[δ(sk,m)] ∝ exp(φmk ). (36)

In the equations above, we introduced the matrices C̃m ∈ RK×d, which are formed by taking the matrices
Cm ∈ RK×dm and adding columns of 0s corresponding to the latent dimensions which are not part system m.
Furthermore Vt ∈ Rd×d is the t-th d× d block on the diagonal of V or equivalently Vt = Covq(x)[xt].

For full variational inference over x, s we iterate updates of q(x) and q(s). We observed empirically that this
converges very quickly, often in 2-3 iterations to very high precision. Below, we give details for the individual
updates.

2.1 Update of q(x)

A simple derivation shows that we can do the update of q(x) by solving the following dual problem

min
λ

D(λ) (37)

subject to λ > 0,

where

D(λ) :=
1

2
(λ− ψ)>WΣW>(λ− ψ)− (Wµ+ b)>(λ− ψ)− 1

2
log |Aλ| (38)

+
∑
m,k,t

πmk f
∗
(
λmkt
πmk

)
(39)
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λmt :=

λm1t
...

λmKt

 , λt :=

 λ1t
...
λMt

 , λ :=

λ1...
λT

 (40)

ψmkt := πmk ykt, ψmt :=

ψm1t
...

ψmKt

 , ψt :=

 ψ1
t
...
ψMt

 , ψ :=

ψ1

...
ψT

 (41)

b = (b>, . . . ,b>︸ ︷︷ ︸
MT -times

)>. (42)

Hence, the dual variational inference step for a mixPLDS corresponds to the one for a normal PLDS with
M · T ·K “pseudo-observations” ψmkt = πmk ykt.

2.2 Update of q(s)

It is straightforward to see that q(s) factorizes further due to the independence assumption of s1, . . . , sK under
the prior:

q(s) =

K∏
k=1

q(sk) (43)

log q(sk) =

M∑
m=1

δ(sk,m)φmk + const. (44)

The updates for the variational parameters are given by:

φmk = φm0 −
T∑
t=1

fkt(h
m
kt, ρ

m
kt), (45)

where φm0 are the parameters of the prior p(sk):

log p(sk) =

M∑
m=1

δ(sk,m)φm0 . (46)
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