
7 Appendix

7.1 Parameters and Settings

For DC-Pred++, LDKL, and Kmeans Nyström, we choose the parameters γ and C for Gaussian
kernel by cross validation on training data. For LDKL, we use exactly the same parameters in
their public available code for Letter, CovType, and Usps datasets, and conduct cross validation on
W,λθ, λθ′ , σ for other three datasets according to the range given in their website. To control the
prediction time of LDKL, we select different numbers of layers in the algorithm. For AESVM, we
follow the experimental setting in [19] and use P = 10000, V = 100. To control the prediction time
for AESVM, we set different thresholds ε in their algorithm. For DC-Pred++, we apply a hierarchical
clustering for 10 levels (1024 clusters on the bottom level), and use Divide-and-Conquer SVM [8]
to train the SVM classifier from bottom to up until the number of support vectors is larger than
400, and then apply MEKA with 4 clusters with the proposed Nyström expansion technique on
each subproblem (so each cluster has approximately m = 100 support vectors). We then choose
rm landmark points (by weighted kmeans) with different choices of r < 1 (ratio) to control the
prediction time. We use kernel expansion to get 2rm “pseudo landmark points”.

For the datasets: Letter, CovType, and Usps are directly downloaded from the LDKL website[10].
The Webspam and a9a datasets are downloaded from LIBSVM tools, and Kddcup is from the UCI
data repository. We use a random 80%-20% split for Webspam and Kddcup, and the default splitting
for a9a. For more details, please see the following setting.

1. For all the kmeans algorithm, we run 15 steps.
2. For AESVM, we set P = 10000, V = 1000 as suggested by their paper.
3. For Kmeans Nyström, we use dual coordinate descent solver in Liblinear.
4. Letter dataset: γ = 2−4, C = 8, AESVM ε = 1, LDKL D = 9, λW = 0.1, λθ =

0.01, λθ′ = 0.001, σ = 1; DC-Pred++ k = 64.
5. Covtype dataset: γ = 16, C = 32, DC-Pred++ k = 1024, LDKL: D = 11, λW =

0.01, λθ = 0.01, λθ′ = 0.001, σ = 1; AESVM ε = 4.
6. Usps dataset: γ = 2−7, C = 23, DC-Pred++ k = 32, AESVM ε = 1, LDKL D =

3, λW = 0.1, λθ = 0.01, λθ′ = 0.01, σ = 0.1.
7. Webspam dataset: γ = 23, C = 23, DC-Pred++ k = 128, AESVM ε = 0.1, LDKL
D = 9, λW = 0.0001, λθ = 0.001, λθ′ = 0.1, σ = 0.1.

8. Kddcup dataset: γ = 2−1, C = 28, DC-Pred++ k = 32,
9. a9a dataset: γ = 2−3, C = 1, DC-Pred++ k = 128, AESVM ε = 0.7, LDKL D =

7, λW = 0.1, λθ = 0.1, λθ′ = 0.01, σ = 0.01. AESVM ε = 0.5.
10. Cpusmall dataset: γ = 2−4, λ = 4, k = 5.
11. Cadata dataset: γ = 2−4, λ = 2−5, k = 5.
12. Census dataset: γ = 22, λ = 2−3, k = 5.
13. YearPredictionMSD dataset: γ = 0.5, λ = 2−4, k = 40.
14. minst2M dataset: γ = 2−5, λ = 5−2, k = 40.

7.2 Comparisons of Using Weighted Kmeans and Kmeans to Select Landmark Points

As discussed in Section 5, given the optimal solution α∗, the weighted kmeans can be used to
select landmark points of the Nyström approximation. Here we show an experimental comparison
between using the weighted kmeans and kmeans (which does not incorporate the information from
α∗) to select landmark points. Figure 4 clearly shows that using weighted kmeans centroids as
landmark points achieves better prediction accuracy under the same prediction time on the kernel
SVM problem.

7.3 Proof of Lemma 1

Given the columns Ĉ, the matrix Ŵ = Ĉ†G(Ĉ†)T is the optimal solution of

argmin
W

‖G− ĈWĈT ‖2F .

10

(a) USPS, prediction cost vs prediction accu-
racy.

Figure 4: A comparison between weighted kmeans landmark points and kmeans landmark points
for Nyström approximation. Using weighted kmeans, we can achieve a better prediction error using
less number of landmark points. This comparison is based on DC-Pred++ with/without using α∗-
weighted kmeans.

Therefore, it suffices to show span(C̄) ⊆ span(Ĉ) in order to prove this lemma. By definition
C̄ = [C, C ′] and C ′it = ft(ci), where ci is the i-th row of C. Since ft is a polynomial function, it
can be written as

C ′it =
|Z|∑
q=1

aqtZ
(q)(c), ∀i, t,

and this can be further rewritten as C ′ = C ′′A where A contains the coefficients aqt in the above
equation. This implies span(C̄) ⊆ span(Ĉ), which proves the lemma.

7.4 Proof of Theorem 1

Proof. We define frg(α) to be the dual objective function of kernel ridge regression with kernel G
(as defined in (2)) and f̄rg(α) to be the objective function with approximate kernel Ḡ. Let α∗ and
ᾱ be the optimal solutions for frg(α) and f̄rg(α) respectively. Taking the gradient of frg(α), we
have∇frg(α) = 2Gα+ 2λα− 2y. Thus

‖∇f̄rg(α∗)−∇f̄rg(ᾱ)‖ = ‖2Ḡα∗ + 2λα∗ − 2y‖
= ‖2Ḡα∗ − 2Gα∗ + 2Gα∗ + 2λα∗ − 2y‖
= ‖2(Ḡ−G)α∗ +∇frg(α∗)‖

≤ 2
∑
i

|α∗i |‖Ḡ·,i −G·,i‖2

= 2∆,

where we use the fact that ∇frg(α∗) = 0 and ∇f̄rg(ᾱ) = 0. Since the objective function f̄(·) is
2λ-strongly convex, we have ‖ᾱ−α∗‖ ≤ ∆

λ , where λ is the largest eigenvalue for G.

7.5 Proof of Theorem 2

Proof. Let f be the objective function of kernel SVM, f be the objective function of kernel SVM
using the approximate kernel Ḡ, we have

∇f̄(α∗) = Ḡα∗ −Gα∗ +Gα∗ − e
= (Ḡ−G)α∗ +∇f(α∗),

therefore ‖∇f̄(α∗) − ∇f(α∗)‖ ≤ ∆. Define P (α) = projΩ(α − ∇f(α)) − α be the projected
gradient where Ω is the bounded constraint in the kernel SVM problem. Since α∗ is the optimal

11

solution of the kernel SVM dual problem, from the optimality condition,

∇if(α∗)


= 0 if 0 < α∗i < C

≤ 0 if α∗i = C

≥ 0 if α∗i = 0

If α∗i = 0, α∗i − ∇if(α∗) < 0, so Pi(α∗) = 0. Similarly, we can show Pi(α∗) = 0 for the other
two cases, and thus we have P (α∗) = 0.

Similarly, we have P̄ (α) = projΩ(α−∇f̄(α))−α, and we can show

‖P̄ (α∗)‖ ≤ ‖∇f̄(α∗)‖ (11)

by the following arguments. For each i, let ti = α∗i −∇if̄(α∗). Consider three cases: C ≥ ti ≥ 0,
ti < 0, and ti > C. If C ≥ ti ≥ 0, we have P̄i(α∗) = ti − α∗i = −∇if̄(α∗). If ti < 0, we have
P̄i(α∗) = −α∗i , and thus ti < 0 implies ∇f̄(α∗) > α∗i , so we have |P̄i(α∗)| < |∇if̄(α∗)|. If
ti > 0, we can prove |P̄i(α∗)| < |∇if̄(α∗)| similarly.

From (11) we then have
‖P̄ (α∗)‖ ≤ ‖∇f̄(α∗)‖ ≤ ∆.

We then apply the global error bound proved in [25]. They consider the function f(x) =
g(Ex) + bTx, where g(·) is σ-strongly convex but f(x) may not be strongly convex. They show
that minimizing f(x) with bounded constraint Ω = {x | Ax ≤ d}, then

‖x− x̄‖ ≤ θ2 1 + ρ

σ
‖P (x)‖,

where x̄ is the closest optimal solution to x, and θ is a positive constant independent of x (see [25]
for the detailed definition).

In our case, we consider g(Cα)− eTα to be the objective function and g(z) = zTW †z is positive
definite, and applying the above lemma we can show (8).

7.6 Proof of Theorem 3

Proof. First, we decompose ∆ by

∆ =
∑
i

|αi|‖Gi· − Ḡi·‖

=
∑
i

|αi|‖Gi· − (CW †CT)i·‖

≤
∑
i

|αi|‖Gi· − Zi·‖+
∑
i

|αi|‖Zi· − (CW †CT)i·‖, (12)

where Z ∈ Rn×n is defined by Zij = K(uπ(i),xj). We then bound the first term by

‖Gi· − Zi·‖ ≤

√√√√∑
j

(
K(xi,xj)−K(uπ(i),xj)

)2

≤
√∑

j

CK‖xi − uπ(i)‖2

=
√
nCK‖xi − uπ(i)‖2.

So ∑
i

|αi|‖Gi· − Zi·‖ ≤
√
n

√∑
i

α2
i ‖Gi· − Zi·‖2

≤ n
√
CK

√∑
i

α2
i ‖xi − uπ(i)‖2)

≤ n
√
CK

√
Dα2({uj}mj=1).

12

(a) Letter (b) Covtype (c) Usps

(d) Webspam (e) Kddcup (f) a9a

Figure 5: Comparison between our proposed method and LDKL.

Next we bound the second term of (12). We first define a matrix Y ∈ Rn×m where Yij =
K(uπ(i),uj). Based on this definition, Z = YW †CT , therefore

Z − CW †CT = −(C − Y)W †CT .

Then we have ∑
i

|αi|‖(Z − CW †CT)i·‖ ≤
∑
i

|αi|‖((C − Y)W †CT)i·‖.

By definition,

(C − Y)2
ij = (K(xi,uj)−K(uπ(i),uj))2 ≤ CK‖xi − uπ(i)‖2.

Therefore,

∑
i

|αi|‖((C − Y)W †CT)i·‖ ≤
∑
i

|αi|

√√√√ n∑
j=1

(‖(C − Y)i·‖‖W †‖‖Cj·‖)2

≤
∑
i

|αi|
√
n‖W †‖2kγmaxCK‖xi − uπ(i)‖2

≤ n‖W †‖
√
kγmaxCK

√
Dα2({uj}mj=1)

7.7 More Comparisons with LDKL

Figure 5 shows comparison between DC-Pred++ with LDKL on kernel SVM problem.

7.8 Comparison with other divide-and-conquer algorithms

We show the comparison with DC-SVM and DC-Nyström in this section. We compare the following
three approaches:

• DC-SVM: the divide-and-conquer SVM proposed in [8] with the early prediction strategy.
We use kmeans clustering instead of kernel kmeans in the data division step, which gives
similar prediction accuracy but is much faster in terms of both training and prediction speed.

• DC-Nyström: In DC-SVM, each subproblem is solved exactly using LIBSVM. However,
this leads to O(dn̄) prediction time complexity where n̄ is the average number of sup-
port vectors in one cluster. To speed up the prediction, a straightforward way is to replace

13

(a) usps (b) covtype

Figure 6: Comparison of DC-SVM, DC-Nyström, and DC-Pred++ on two real-world datasets. The
results clearly show that DC-Pred++ outperforms other two algorithms in terms of prediction speed,
which indicates our proposed techniques are useful.

LIBSVM by Nyström approximation approach. More precisely, We apply Nyström ap-
proximation to compute the approximate solution of each subproblem, and then solves the
resulting linear SVM problem. The prediction time complexity is reduced toO(dm) where
m is number of landmark points in each cluster.
• DC-Pred++: Our proposed algorithm – we apply pseudo-landmark points approach and

weighted kmeans to select landmark points on top of DC-Nyström.

In Figure 6 we show that DC-Pred++ outperforms other algorithms, which indicates our two inno-
vations, adding pseudo landmark points and using weighted kmeans to select landmark points, are
useful for speeding up the prediction time of kernel machines.

7.9 Trade-off of Parameters

We study the performance of DC-Pred++ with various parameter settings on the Usps dataset. We
first vary the number of clusters k, and choose the number of landmark points for each cluster
mi = 0.1si where si is number of support vectors in that cluster. The results are presented in Table
3. When k is small, both si and mi are large, resulting in more prediction time. When k is larger,
the accuracy becomes worse because the algorithm ignores too much between-cluster information
(the same observation was shown in [8]). The prediction time cannot be reduced to 0 because we
need log(k) inner products to determine the cluster of a testing sample. We observe our method is
stable for a wide range of k.

Table 3: Performance of DC-Pred++ with different number of clusters k on Usps dataset.

Number of clusters (k) 4 16 64 256 1024
Prediction accuracy 91.2% 93.4% 95.5% 92.3% 86.7%

Prediction time 64x 20x 12x 9x 11x

Next we vary number of landmark points. Fixing k = 64, for each cluster we choose number of
landmark points mi = rsi with different ratios r. The results are presented in Table 4. We can
observe that the prediction time increases when the number of landmark points increases, and the
prediction accuracy increases as well until r is large enough.

7.10 Comparisons on kernel ridge regression.

Figure 7 shows comparison between DC-Pred++ with other kernel approximation based methods on
kernel ridge regression problem.

14

Table 4: Performance of DC-Pred++ with different number of landmark points (mi = rsi), where
mi is number of landmark points in the i-th cluster, and si is number of support vectors in that
cluster.

r 0.05 0.1 0.2
Prediction accuracy 94.3% 95.5% 95.6%

Prediction time 9x 12x 19x

(a) Cpusmall (b) Census (c) Cadata

(d) YearPredictionMSD (e) mnist2M

Figure 7: Kernel ridge regression results for various datasets. x-axis is the prediction cost and y-axis
shows the Test RMSE. All the results are averaged over five independent runs.

15

