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Abstract

We propose a semi-parametric and dynamic rank factor model for topic model-
ing, capable of (i) discovering topic prevalence over time, and (ii) learning con-
temporary multi-scale dependence structures, providing topic and word correla-
tions as a byproduct. The high-dimensional and time-evolving ordinal/rank ob-
servations (such as word counts), after an arbitrary monotone transformation, are
well accommodated through an underlying dynamic sparse factor model. The
framework naturally admits heavy-tailed innovations, capable of inferring abrupt
temporal jumps in the importance of topics. Posterior inference is performed
through straightforward Gibbs sampling, based on the forward-filtering backward-
sampling algorithm. Moreover, an efficient data subsampling scheme is leveraged
to speed up inference on massive datasets. The modeling framework is illustrated
on two real datasets: the US State of the Union Address and the JSTOR collection
from Science.

1 Introduction
Multivariate longitudinal ordinal/count data arise in many areas, including economics, opinion polls,
text mining, and social science research. Due to the lack of discrete multivariate distributions sup-
porting a rich enough correlation structure, one popular choice in modeling correlated categorical
data employs the multivariate normal mixture of independent exponential family distributions, after
appropriate transformations. Examples include the logistic-normal model for compositional data
[1], the Poisson log-normal model for correlated count data [2], and the ordered probit model for
multivariate ordinal data [3]. Moreover, a dynamic Bayesian extension of the generalized linear
model [4] may be considered, for capturing the temporal dependencies of non-Gaussian data (such
as ordinal data). In this general framework, the observations are assumed to follow an exponen-
tial family distribution, with natural parameter related to a conditionally Gaussian dynamic model
[5], via a nonlinear transformation. However, these model specifications may still be too restrictive
in practice, for the following reasons: (i) Observations are usually discrete, non-negative and with
a massive number of zero values and, unfortunately, far from any standard parametric distributions
(e.g., multinomial, Poisson, negative binomial and even their zero-inflated variants). (ii) The number
of contemporaneous series can be large, bringing difficulties in sharing/learning statistical strength
and in performing efficient computations. (iii) The linear state evolution is not truly manifested after
a nonlinear transformation, where positive shocks (such as outliers and jumps) are magnified and
negative shocks are suppressed; hence, handling temporal jumps (up and down) is a challenge for
the above models.

We present a flexible semi-parametric Bayesian model, termed dynamic rank factor model (DRFM),
that does not suffer these drawbacks. We first reduce the effect of model misspecification by mod-
eling the sampling distribution non-parametrically. To do so, we fit the observed data only after
some implicit monotone transformation, learned automatically via the extended rank likelihood [6].
Second, instead of treating panels of time series as independent collections of variables, we analyze
them jointly, with the high-dimensional cross-sectional dependencies estimated via a latent factor
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model. Finally, by avoiding nonlinear transformations, both smooth transitions and sudden changes
(“jumps”) are better preserved in the state-space model, using heavy-tailed innovations.

The proposed model offers an alternative to both dynamic and correlated topic models [7, 8, 9],
with additional modeling facility of word dependencies, and improved ability to handle jumps. It
also provides a semi-parametric Bayesian treatment of dynamic sparse factor model. Further, our
proposed framework is applicable in the analysis of multiple ordinal time series, where the innova-
tions follow either stationary Gaussian or heavy-tailed distributions.

2 Dynamic Rank Factor Model
We perform analysis of multivariate ordinal time series. In the most general sense, such ordinal
variables indicate a ranking of responses in the sample space, rather than a cardinal measure [10].
Examples include real continuous variables, discrete ordered variables with or without numerical
scales or, more specially, counts, which can be viewed as discrete variables with integer numeric
scales. Our goal is twofold: (i) discover the common trends that govern variations in observations,
and (ii) extract interpretable patterns from the cross-sectional dependencies.

Dependencies among multivariate non-normal variables may be induced through normally dis-
tributed latent variables. Suppose we have P ordinal-valued time series yp,t, p = 1, . . . , P ,
t = 1, . . . , T . The general framework contains three components:

yp,t ∼ g(zp,t), zp,t ∼ p(θt), θt ∼ q(θt−1), (1)
where g(·) is the sampling distribution, or marginal likelihood for the observations, the latent vari-
able zp,t is modeled by p(·) (assumed to be Gaussian) with underlying system parameters θt, and
q(·) is the system equation representing Markovian dynamics for the time-evolving parameter θt.

In order to gain more model flexibility and robustness against misspecification, we propose a semi-
parametric Bayesian dynamic factor model for multiple ordinal time series analysis. The model is
based on the extended rank likelihood [6], allowing the transformation from the latent conditionally
Gaussian dynamic model to the multivariate observations, treated non-parametrically.

Extended rank likelihood (ERL): There exist many approaches for dealing with ordinal data, how-
ever, they all have some restrictions. For continuous variables, the underlying normality assumption
could be easily violated without a carefully chosen deterministic transformation. For discrete ordi-
nal variables, an ordered probit model, with cut points, becomes computationally expensive if the
number of categories is large. For count variables, a multinomial model requires finite support on
the integer values. Poisson and negative binomial models lack flexibility from a practical viewpoint,
and often lead to non-conjugacy when employing log-normal priors.

Being aware of these issues, a natural candidate for consideration is the ERL [6]. With appropriate
monotone transformations learned automatically from data, it offers a unified framework for han-
dling both continuous [11] and discrete ordinal variables. The ERL depends only on the ranks of the
observations (zero values in observations are further restricted to have negative latent variables),

zp,t ∈ D(Y ) ≡ {zp,t ∈ R : yp,t < yp′,t′ ⇒ zp,t < zp′,t′ , and zp,t ≤ 0 if yp,t = 0}. (2)
In particular, this offers a distribution-free approach, with relaxed assumptions compared to para-
metric models, such as Poisson log-normal [12]. It also avoids the burden of computing nuisance
parameters in the ordered probit model (cut points). The ERL has been utilized in Bayesian Gaussian
copula modeling, to characterize the dependence of mixed data [6]. In [13] a low-rank decompo-
sition of the covariance matrix is further employed and efficient posterior sampling is developed in
[14]. The proposed work herein can be viewed as a dynamic extension of that framework.

2.1 Latent sparse dynamic factor model
In the forthcoming text, G(α, β) denotes a gamma distribution with shape parameter α and rate
parameter β, TN(l,u)(µ, σ

2) denotes a univariate truncated normal distribution within the interval
(l, u), and N+(0, σ2) is the half-normal distribution that only has non-negative support.

Assume zt ∼ N (0,Ωt), where Ωt is usually a high-dimensional (P × P ) covariance matrix.
To reduce the number of parameters, we assume a low rank factor model decomposition of the
covariance matrix Ωt = ΛV tΛ

T +R such that
zt = Λst + εt, εt ∼ N (0,R), R = IP . (3)
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Common trends (importance of topics) are captured by a low-dimensional factor score parameter
st. We assume autoregressive dynamics on sk,t ← AR(1|(ρk, δk,t)) with heavy-tailed innovations,

sk,t = ρksk,t−1 + δk,t, 0 < ρk < 1, δk,t ∼ TPBN(e, f, ν), ν1/2 ∼ C+(0, h), (4)
where δk,t follows the three-parameter beta mixture of normal TPBN(e, f, ν) distribution [15]. Pa-
rameter e controls the peak around zero, f controls the heaviness on the tails, and ν controls the
global sparsity with a half-Cauchy prior [16]. This prior encourages smooth transitions in general,
while jumps are captured by the heavy tails. The conjugate hierarchy may be equivalently repre-
sented as

δk,t ∼ N (0, τk,t), τk,t ∼ G(e, ηk,t), ηk,t ∼ G(f, ν) ν ∼ G(1/2, ζ), ζ ∼ G(1/2, h2).

Truncated normal priors are employed on ρk, ρk ∼ TN(0,1)(µ0, σ
2
0), and assume s0,k ∼ N (0, σ2

s).
Note that the extended rank likelihood is scale-free; therefore, we do not need to include a redundant
intercept parameter in (3). For the same reason, we setR = IP .

Model identifiability issues: Although the covariance matrix Ωt is not identifiable [10], the related
correlation matrix Ct = Ω[i,j],t/

√
Ω[i,i],tΩ[j,j],t, (i, j = 1, . . . , P ) may be identified, using the

parameter expansion technique [3, 13]. Further, the rank K in the low-rank decomposition of Ωt is
also not unique. For the purpose of brevity, we do not explore this uncertainty here, but the tools
developed in the Bayesian factor analysis literature [17, 18, 19] can be easily adopted.

Identifiability is a key concern for factor analysis. Conventionally, for fixed K, a full-rank, lower-
triangular structure in Λ ensures identifiability [20]. Unfortunately, this assumption depends on the
ordering of variables. As a solution, we add nonnegative and sparseness constraints on the factor
loadings, to alleviate the inherit ambiguity, while also improving interpretability. Also, we add a
Procrustes post-processing step [21] on the posterior samples, to reduce this indeterminacy.

The nonnegative and (near) sparseness constraints are imposed by the following hierarchy,

λp,k ∼ N+(0, lp,k) lp,k ∼ G(a, up,k), up,k ∼ G(b, φk), φ
1/2
k ∼ C+(0, d). (5)

Integrating out lp,k and up,k, we obtain a half-TPBN prior λp,k ∼ TPBN+(a, b, φk). The column-
wise shrinkage parameters φk enable factors to be of different sparsity levels [22]. We set hyperpa-
rameters a = b = e = f = 0.5, d = P , h = 1, σ2

s = 1. For weakly informative priors, we set
α = β = 0.01; µ0 = 0.5, σ2

0 = 10.

2.2 Extension to handle multiple documents

At each time point t we may have a corpus of documents {ynt
t }

Nt
nt=1, where ynt

t is a P -dimensional
observation vector, and Nt denotes the number of documents at time t. The model presented in
Section 2.1 is readily extended to handle this situation. Specifically, at each time point t, for each
document nt, the ERL representation for word count p, denoted by ynt

p,t, is

ynt
p,t = g

(
znt
p,t

)
, p = 1, . . . , P, t = 1, . . . , T, nt = 1, . . . , Nt,

where znt
t ∈ RP and P is the vocabulary size. We assume a latent factor model for znt

t such that
znt
t = Λbnt

t + εnt
t , εnt

t ∼ N (0, IP ), bnt
t ∼ N (st,Γ), Γ = diag(γ), γ−1k ∼ G(α, β),

where Λ ∈ RP×K
+ is the topic-word loading matrix, representing the K topics as columns of Λ.

The factor score vector bnt
t ∈ RK is the topic usage for each document ynt

t , corresponding to loca-
tions in a low-dimensional RK space. The other parts of the model remain unchanged. The latent
trajectory s1:T represents the common trends for the K topics. Moreover, through the forward fil-
tering backward sampling (FFBS) algorithm [23, 24], we also obtain time-evolving topic correlation
matrices Φt ∈ RK×K and word dependencies matrices Ct ∈ RP×P , offering a multi-scale graph
representation, a useful tool for document visualization.

2.3 Comparison with admixture topic models
Many topic models are unified in the admixture framework [25],

P
Admix

(yn|w,Φ) = P
Base

(
yn

∣∣∣∣∣φn =

K∑
k=1

wk,nφk

)
, (6)

where yn is the P -dimensional observation vector of word counts in the n th document, and P de-
notes the vocabulary size. Traditionally, yn is generated from an admixture of base distributions,wn

is the admixture weight (topic proportion for document n), and φk is the canonical parameter (word
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distribution for topic k), which denotes the location of the kth topic on the P -1 dimensional simplex.
For example, latent Dirichlet allocation (LDA) [26] assumes the base distribution to be multinomial,
with φk ∼ Dir(α0), wn ∼ Dir(β0). The correlated topic model (CTM) [8] modifies the topic dis-
tribution, withwn ∼ Logistic Normal(µ,Σ). The dynamic topic model (DTM) [7] analyzes docu-
ment collections in a known chronological order. In order to incorporate the state space model, both
the topic proportion and the word distribution are changed to logistic normal, with isotropic covari-
ance matrices wt ∼ Logistic Normal(wt−1, σ

2IK) and φk,t ∼ Logistic Normal(φk,t−1, vIP ),
respectively. To overcome the drawbacks of multinomial base, spherical topic models [27] assume
the von Mises-Fisher (vMF) distribution as its base distribution, with φk ∼ vMF(µ, ξ) lying on a
unit P -1 dimensional sphere. Recently in [25] the base and word distribution are both replaced with
Poisson Markov random fields (MRFs), which characterizes word dependencies.

We present here a semi-parametric factor model formulation,

P(yn|s,Λ) , P

(
zn ∈ D(Y )

∣∣∣∣∣λn =

K∑
k=1

sk,nλk

)
, (7)

with yn defined as above, λk ∈ RP
+ is a vector of nonnegative weights, indicating the P vocab-

ulary usage in each individual topics k, and sn ∈ RK is the topic usage. Note that the extended
rank likelihood does not depend on any assumptions about the data marginal distribution, making it
appropriate for a broad class of ordinal-valued observations, e.g., term frequency-inverse document
frequency (tf-idf) or rankings, beyond word counts. However, the proposed model here is not an
admixture model, as the topic usage is allowed to be either positive or negative.

The DRFM framework has some appealing advantages: (i) It is more natural and convenient to in-
corporate with sparsity, rank selection, and state-space model; (ii) it provides topic-correlations and
word-dependences as a byproduct; and (iii) computationally, this model is tractable and often leads
to locally conjugate posterior inference. DRFM has limitations. Since the marginal distributions
are of unspecified types, objective criteria (e.g. perplexity) is not directly computable. This makes
quantitative comparisons to other parametric baselines developed in the literature very difficult.

3 Conjugate Posterior Inference
Let Θ = {Λ,S,L,U ,φ,ω,ρ, τ ,η, ν, ζ} denote the set of parameters in basic model, and let Z be
the augmented data (from the ERL). We use Gibbs sampling to approximate the joint posterior dis-
tribution p(Z,Θ|Z ∈ R(Y )). The algorithm alternates between sampling p(Z|Θ,Z ∈ R(Y )) and
p(Θ|Z,Z ∈ R(Y )) (reduced to p(Θ|Z)). The derivation of the Gibbs sampler is straightforward,
and for brevity here we only highlight the sampling steps for Z, and the forward filtering backward
sampling (FFBS) steps for the trajectory s1:T . The Supplementary Material contains further details
for the inference.
• Sampling zp,t: p(zp,t|Θ,Z ∈ R(Y ),Z−p,−t) ∼ TN[zp,t,zp,t](

∑K
k=1 λp,ksk,t, 1), where zp,t =

max{zp′,t′ : yp′,t′ < yp,t} and zp,t = min{zp′,t′ : yp′,t′ > yp,t}.
This conditional sampling scheme is widely used in [6, 10, 13]. In [14] a novel Hamiltonian Monte
Carlo (HMC) approach has been developed recently, for a Gaussian copula extended rank likelihood
model, where ranking is only within each row of Z. This method simultaneously samples a column
vector of zi conditioned on other columns Z−i, with higher computation but better mixing.

• Sampling st: we have the state model st|st−1 ∼ N (Ast−1,Qt), and the observation model
zt|st ∼ N (Λst,R),1 whereA = diag(ρ),Qt = diag(τ t),R = IP . for t = 1, . . . , T

1. Forward Filtering: beginning at t = 0 with s0 ∼ N (0, σ2
sIK), for all t = 1, . . . , T , we

find the on-line posteriors at t, p(st|z1:t) = N (mt,V t), where mt = V t{ΛTR−1zt +

H−1t Amt−1}, V t = [H−1t + ΛTR−1Λ]−1, andHt = Qt +AV t−1A
T .

2. Backward Sampling: starting from N (m̃t, Ṽ t), the backward smoothing density, i.e., the
conditional distribution of st−1 given st, is p(st−1|st, z1:(t−1)) = N (µ̃t−1, Σ̃t−1), where
µ̃t−1 = Σ̃t−1{ATQ−1t st + V −1t−1mt−1}, Σ̃t−1 = (V −1t−1 +ATQ−1t A)−1.

There exist different variants of FFBS schemes (see [28] for a detailed comparison); the method we
choose here enjoys fast decay in autocorrelation and reduced computation time.

1For brevity, we omit the dependencies on Θ in notation
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3.1 Time-evolving topic and word dependencies

We also have the backward recursion density at t − 1, p(st−1|z1:T ) = N (m̃t−1, Ṽ t−1), where
m̃t−1 = Σ̃t−1(ATQ−1t m̃t + V −1t−1mt−1) and Ṽ t−1 = Σ̃t−1 + Σ̃t−1A

TQ−1t Ṽ tQ
−1
t AΣ̃t−1.

We perform inference on the K ×K time-evolving topic dependences in s1:T , using the posterior
covariances {Ṽ 1:T } (with topic correlation matrices Φ1:T , Φ[r,s],t = V[r,s],t/

√
V[r,r],tV[s,s],t, r, s =

1, . . . ,K), and further obtain the P × P time-evolving word dependencies capsuled in {Ω1:T }
with Ωt = ΛṼ tΛ

T + IP . Essentially, this can be viewed as a dynamic Gaussian copula model,
yp,t = g(z̃p,t), z̃t ∼ N (0,Ct), where g(·) is a non-decreasing function of a univariate marginal
likelihood and Ct (t = 1, . . . , T ) is the correlation matrix capturing the multivariate dependence.
We obtain a posterior distribution for C1:T as a byproduct, without having to estimate the nuisance
parameters in marginal likelihoods g(·). This decoupling strategy resembles the idea of copula
models.

3.2 Accelerated MCMC via document subsampling
For large-scale datasets, recent approaches efficiently reduce the computational load of Monte Carlo
Markov chain (MCMC) by data subsampling [29, 30]. We borrow this idea of subsampling docu-
ments when considering a large corpora (e.g., in our experiments, we consider analysis of articles
in the magazine Science, composed of 139379 articles from years 1880 to 2002, and a vocabulary
size 5855). In our model, the augmented data znt

t (nt = 1, . . . , Nt) for each document is relatively
expensive to sample. One simple method is random document sampling without replacement. How-
ever, by treating all likelihood contributions symmetrically, this method leads to a highly inefficient
MCMC chain with poor mixing [29].

Alternatively, we adopt the probability proportional-to-size (PSS) sampling scheme in [30], i.e.,
sampling the documents with inclusion probability proportional to the likelihood contributions. For
each MCMC iteration, the sub-sampling procedure for documents at time t is designed as follows:

• Step 1: Given a small subset Vt ⊂ {1, . . . , Nt} of chosen documents, only sample {zdt } for all
d ∈ Vt and compute the augment log-likelihood contributions (withBt integrated out) `Vt(z

d
t ) =

N (Λst, R̃), where R̃ = ΛΓΛT + IP . Note that, only a K-dimensional matrix inversion is

required, by using the Woodbury matrix inversion formula R̃
−1

= IP −Λ(Γ−1 + ΛTΛ)TΛT .
• Step 2: Similar to [30], we use a Gaussian process [31] to predict the log-likelihood for

the remaining documents `Vc
t
(zdt ) = K(Vc

t ,Vt)K(Vt,Vt)−1`Vt(zdt ), where K is a Nt ×
Nt squared-exponential kernel, which denotes the similarity of documents: K(yi

t,y
j
t ) =

σ2
f exp

(
−||yi

t − y
j
t ||2/(2s2)

)
, i, j = 1, . . . , Nt, σ2

f = 1, s = 1.

• Step 3: Calculate the inclusion probabilitywd ∝ exp [`(zdt )], d = 1, . . . , Nt, w̃d = wd/
∑

d′ wd′ .
• Step 4: Sampling the next subset Vt of pre-specified size |Vt| with inclusion probability w̃d, and

store it for the use of the next MCMC iteration.

In practice, this adaptive design allows MCMC to run more efficiently on a full dataset of large
scale, often mitigating the need to do parallel MCMC implementation. Future work could also con-
sider nonparametric function estimation subject to monotonicity constraint, e.g. Gaussian process
projections recently developed in [32].

4 Experiments
Different from DTM [7] , the proposed model has the jumps directly at the level of the factor scores
(no exponentiation or normalization needed), and therefore it proved more effective in uncovering
jumps in factor scores over time. Demonstrations of this phenomenon in a synthetic experiment are
detailed in the Supplementary Material. In the following, we present exploratory data analysis on
two real examples, demonstrating the ability of the proposed model to infer temporal jumps in topic
importance, and to infer correlations across topics and words.

4.1 Case Study I: State of the Union dataset
The State of the Union dataset contains the transcripts of T = 225 US State of the Union addresses,
from 1790 to 2014. We take each transcript as a document, i.e., we have one document per year.
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After removing stop words, and removing terms that occur fewer than 3 times in one document and
less than 10 times overall, we have P = 7518 unique words. The observation yp,t corresponds to
the frequency of word p of the State of the Union transcript from year t.

We apply the proposed DRFM setting and learnedK = 25 topics. To better understand the temporal
dynamic per topic, six topics are selected and the posterior mean of their latent trajectories sk,1:T
are shown in Figure 1 (with also the top 12 most probable words associated with each of the topics).
A complete table with all 25 learned topics and top 12 words is provided in the Supplementary
Material. The learned trajectory associated with every topic indicates different temporal patterns
across all the topics. Clearly, we can identify jumps associated with some key historical events. For
instance, for Topic 10, we observe a positive jump in 1846 associated with the Mexican-American
war. Topic 13 is related with the Spanish-American war of 1898, with a positive jump in that year.
In Topic 24, we observe a positive jump in 1914, when the Panama Canal was officially opened
(words Panana and canal are included). In Topic 18, the positive jumps observed from 1997 to
1999 seem to be associated with the creation of the State Children’s Health Insurance Program in
1997. We note that the words for this topic are explicitly related with this issue. Topic 25 appears to
be related to banking; the significant spike around 1836 appears to correspond to the Second Bank
of the United States, which was allowed to go out of existence, and end national banking that year.
In 1863 Congress passed the National Banking Act, which ended the “free-banking” period from
1836-1863; note the spike around 1863 in Topic 25.
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Topic 25

Topic#10 Topic#13 Topic#24 Topic#17 Topic#18 Topic#25
Mexico Government United Jobs Children Government
Government United Treaty Country America Public
Texas Islands Isthmus Tax Americans Banks
United Commission Public American Care Bank
War Island Panama Economy Tonight Currency
Mexican Cuba Law Deficit Support Money
Army Spain Territory Americans Century United
Territory Act America Energy Health Federal
Country General Canal Businesses Working American
Peace Military Service Health Challenge National
Policy International Banks Plan Security Duty
Lands Officiers Colombia Care Families Institutions

Figure 1: (State of the Union dataset) Above: Time evolving from 1790 to 2014 for six selected
topics. The plotted values represent the posterior means. Below: Top 12 most probable words
associated with the above topics.

Our modeling framework is able to capture dynamic patterns of topics and word correlations. To
illustrate this, we select three years (associated with some meaningful historical events) and analyze
their corresponding topic and word correlations. Figure 2 (first row) shows graphs of the topic
correlation matrices, in which the nodes represent topics and the edges indicate positive (green) and
negative (red) correlations (we show correlations with absolute value larger than 0.01). We notice
that Topics 11 and 22 are positively correlated with those years. Some of the most probable words
associated with each of them are: increase, united, law and legislation (for Topic 11) and war,
Mexico, peace, army, enemy and military (for Topic 22). We also are interested in understanding
the time-varying correlation between words. To do so, and for the same years as before, in Figure 2
(second row) we plot the dendrogram associated with the learned correlation matrix for words. In
the plots, different colors indicate highly correlated word clusters defined by cutting the branches off
the dendrogram. Those figures reveal different sets of highly correlated words for different years. By
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Figure 2: (State of the Union dataset) First row: Inferred correlations between topics for some
specific years associated with some meaningful historical events. Green edges indicate positive
correlations and red edges indicate negative correlations. Second row: Learned dendrogram based
upon the correlation matrix between the top 10 words associated with each topic (we display 80
unique words in total).

inspecting all the words correlation, we noticed that the set of words {government, federal, public,
power, authority, general, country} are highly correlated across the whole period.

4.2 Case Study II: Analysis of Science dataset
We analyze a collection of scientific documents from the JSTOR Science journal [7]. This dataset
contains a collection of 139379 documents from 1880 to 2002 (T = 123), with approximately 1100
documents per year. After removing terms that occurred fewer than 25 times, the total vocabulary
size is P = 5855. We learn K = 50 topics from the inferred posterior distribution, for brevity and
simplicity, we only show 20 of them. We handle about 2700 documents per iteration (subsampling
rate: 2%). Table 1 shows the 20 selected topics and the top 10 most probable words associated with
each of them. By inspection, we notice that those topics are related with specific fields in science.
For instance, Topic 2 is more related to “scientific research”, Topic 10 to “natural resources”, and
Topic 15 to “genetics”. Figure 3 shows the time-varying trend for some specific words, ẑp,1:T , which
reveals the importance of those words across time. Finally, Figure 4 shows the correlation between
the selected 20 topics. For instance, in 1950 and 2000, topic 9 (related to mouse, cells, human,
transgenic) and topic 17 (related to virus, rna, tumor, infection) are highly correlated.
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Figure 3: (Science dataset) the inferred latent trend for variable ẑp,1:T associated with words.
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Figure 4: (Science dataset) Inferred correlations between topics for some specific years. Green
edges indicate positive correlations and red edges indicate negative correlations.

Table 1: Selected 20 topics associated with the analysis of the Science dataset and top 10 most
probable words.

Topic#1 Topic#2 Topic#3 Topic#4 Topic#5 Topic#6 Topic#7 Topic#8 Topic#9 Topic#10
cells research field animals energy university science work mice water
cell national magnetic brain oil professor scientific research mouse surface
normal government solar neurons percent college new scientific type temperature
two support energy activity production president scientists laboratory wild soil
growth federal spin response fuel department human made fig pressure
development development state rats total research men university cells sea
tissue new electron control growth institute sciences results human plants
body program quantum fig states director knowledge science transgenic solution
egg scientific temperature effects electricity society meeting survey animals plant
blood basic current days coal school work department mutant air
Topic#11 Topic#12 Topic#13 Topic#14 Topic#15 Topic#16 Topic#17 Topic#18 Topic#19 Topic#20
system energy association protein human professor virus energy stars rna
nuclear theory science proteins genome university rna electron mass fig
new temperature meeting cell sequence society viruses state star mrna
systems radiation university membrane chromosome department particles fig temperature protein
power atoms american amino gene college tumor two solar site
cost surface society sequence genes president mice structure gas sequence
computer atomic section binding map director disease reaction data splicing
fuel mass president acid data american viral laser density synthesis
coal atom committee residues sequences appointed human high surface trna
plant time secretary sequences genetic medical infection temperature galaxies rnas

5 Discussion

We have proposed a DRFM framework that could be applied to a broad class of applications such
as: (i) dynamic topic model for the analysis of time-stamped document collections; (ii) joint analy-
sis of multiple time series, with ordinal valued observations; and (iii) multivariate ordinal dynamic
factor analysis or dynamic copula analysis for mixed type of data. The proposed model is a semi-
parametric methodology, which offers modeling flexibilities and reduces the effect of model mis-
specification. However, as the marginal likelihood is distribution-free, we could not calculate the
model evidence or other evaluation metrics based on it (e.g. held-out likelihood). As a consequence,
we are lack of objective evaluation criteria, which allow us to perform formal model comparisons.
In our proposed setting, we are able to perform either retrospective analysis or multi-step ahead
forecasting (using the recursive equations derived in the FFBS algorithm). Finally, our inference
framework is easily adaptable for using sequential Monte Carlo (SMC) methods [33] allowing on-
line learning.
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