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1 Preliminaries

For completeness, we state/prove some of the non-trivial results used for proving results of the paper.

1.1 Asymptotic Notations [7]

For non-negative functions f1(n) and f2(n)

• f1(n) = O(f2(n)) =⇒ ∃n0 and a constant c > 0 such that ∀n > n0, f1(n) ≤ cf2(n).

• f1(n) = Ω(f2(n)) =⇒ ∃n0 and a constant c > 0 such that ∀n > n0, f1(n) ≥ cf2(n).

• f1(n) = Θ(f2(n)) iff f1(n) = O(f2(n)) and f1(n) = Ω(f2(n)).

1.2 Properties of ϑ for a labelled graph

For a labelled graphG = (V,E,y), where nodes have binary labels +1/-1, we prove some interesting
properties of the Lovász ϑ function, which will be used to prove examples of Labelled SVM-ϑ
graphs (Definition 4). Let G+ and G− be graphs corresponding to the two classes, defined as

G+ = (V+, E+), V+ = {i ∈ V |yi = +1} and (i, j) ∈ E+ iff (i, j) ∈ E & yi = yj = +1 (1)

Similarly, we can define G− as follows

G− = (V−, E−), V− = {i ∈ V |yi = −1} and (i, j) ∈ E− iff (i, j) ∈ E & yi = yj = −1 (2)

LetG′ = (V,E′) be a pure graph, where (i, j) ∈ E′ iff (i, j) ∈ E and yi = yj . We note an alternate
definition of Lovász ϑ function
Definition 1 ([11]). For a simple, undirected graph G=(V,E),

ϑ(G) = min
c∈Sd−1, U∈Lab(G)

max
i∈V

1(
c>ui

)2 (3)

We state the following bounds on the Lovász ϑ function

Lemma 1.1. ϑ(G) ≤ ϑ(G′) = ϑ(G+) + ϑ(G−)

Proof. The first inequality follows from the Definition 1 and the fact that Lab(G′) ⊆ Lab(G).

Without loss of generality, we assume that the nodes of the graph are ordered such that the nodes
having positive labels appear first. Let n1 = {i ∈ V |yi = +1} and n2 = n − n1. Note that
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K ∈ K(G′) takes the form [K1,0n1×n2
; 0n2×n1

,K2], where K1 ∈ K(G+) and K2 ∈ K(G−).
For any K ∈ K(G′), note that

ω(K,1n) = max
α∈Rn

+

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjKij

= max
α∈Rn

+

∑
i∈V+

αi +
∑
j∈V−

αj −
1

2

∑
i,j∈V+

αiαjKij −
1

2

∑
i,j∈V−

αiαjKij

= ω(K1,1n1
) + ω(K2,1n2

)

Thus, the result follows from the definition of ϑ function Section (2).
1

2
ϑ(G′) = min

K∈K(G′)
ω(K,1n) = min

K1∈K(G+)
ω(K1,1n1

) + min
K2∈K(G−)

ω(K2,1n2
)

=
1

2

(
ϑ(G+) + ϑ(G−)

)
Lemma 1.2. ϑ(G) ≥ max

{
ϑ(G+), ϑ(G−)

}
.

Proof. Proof follows from Definition 1.

ϑ(G+) = min
U∈Lab(G+)

min
c∈Sd−1

max
i∈V+

1(
c>ui

)2
≤ min

U∈Lab(G)
min

c∈Sd−1
max
i∈V+

1(
c>ui

)2
≤ min

U∈Lab(G)
min

c∈Sd−1
max
i∈V

1(
c>ui

)2 = ϑ(G)

Similarly, can prove ϑ(G) ≥ ϑ(G−).

Note that the above results can also be extended to any partition of the vertex set V into
V1, . . . , Vk, ∪ki=1 = V, Vi ∩ Vj = φ, i 6= j.

1.3 Martingale and Concentration inequalities

To bound the difference between a random variable and its expectation, Doob’s martingale sequence
[13] is a standard tool used in statistics –
Definition 2 (Martingale). Let Xn

1 := (X1, . . . , Xn) be a sequence of random variables. The
sequence Tn0 := (T0, . . . , Tn) is called a martingale w.r.t. the underlying sequence Xn

1 , if for any
i ∈ [n], Ti is a function of Xi

1 and EXi [Ti|Xi−1
1 ] = Ti−1.

For the martingale process above, we state the following concentration inequality.
Lemma 1.3 ([13]). Let Tn0 be a martingale w.r.t. Xn

1 . Let xn1 = (x1, . . . , xn) be the vector of
possible values of the random variables X1, . . . , Xn. Let

ri(x
i−1
1 ) := sup

xi

[
Ti : Xi−1

1 = xi−1
1 , Xi = xi

]
− inf

xi

[
Ti : Xi−1

1 = xi−1
1 , Xi = xi

]
Let r̃ := supxn

1

n∑
i=1

(
ri
(
xi−1

1

))2
. Then, PrXn

1

[
Tn − T0 ≥ ε

]
≤ exp

(
− 2ε2

r̃

)
.

We note the following alternative definition of Rademacher variables, borrowed from [8]
Definition 3 (Pairwise Rademacher variables). Let τ = {τi = (τi,1, τi,2)}ni=1 be i.i.d random
variables defined as:

τi = (τi,1, τi,2) =



(
1

1−f ,
1
f

)
, w.p. f(1− f);(

− 1
f ,−

1
1−f

)
, w.p. f(1− f);(

− 1
f ,

1
f

)
, w.p. f2;(

1
1−f ,−

1
1−f

)
, w.p. (1− f)2.

2



The above tools will be used to prove graph dependent generalization error bound Theorem 5.1.

We use the tools developed in this section to prove all the results of the paper in Section 2.

2 Proof of results in paper

Section 4
We prove the following technical lemma to lower bound the expectation of square root of a non-
negative random variable, using first and second order moments.
Claim 1. For any non-negative random variable X

E
[√

X
]
≥
√

E[X]

[
1− V ar[X]

2E2[X]

]
Proof. For any x, a ≥ 0, we prove

√
x ≥

√
a+

x− a
2
√
a
− (x− a)2

2a
√
a

(4)

Note that the result follows by choosing x = X, a = E[X] and taking expectation over (4). By
simplification of (4), we get 2a

√
ax ≥ 3ax − x2. Writing b =

√
x and dividing by b gives

2a
√
a ≥ 3ab − b3. Note that for a ≥ 0, function g(b) = 3ab − b3 − 2a

√
a, b ≥ 0 is concave with

maximum is attained at b =
√
a and g(

√
a) = 0. Thus g(b) ≤ 0, ∀b ≥ 0.

Proof of Theorem 4.1. For any σ, suph∈HU

n∑
i=1

σi 〈h,ui〉 = suph∈HU

〈
h,

n∑
i=1

σiui

〉
=

tC
√
nλ1(K)

∥∥∥∥ n∑
i=1

σiui

∥∥∥∥. The last equality from optimality over supremum and the norm constraint

- maxh∈HU
‖h‖ = maxβ∈Rn,‖β‖2≤tC

√
n

√
β>Kβ = tC

√
nλ1(K). Now, taking expectation over

σ, one obtains

R(HU, p) = tC

√
λ1(K)

n
Eσ

[∥∥∥∥∥
n∑
i=1

σiui

∥∥∥∥∥
]

= tC

√
λ1(K)

n
Eσ
[√

σ>Kσ
]

(5)

Using Jensen’s inequality, Eσ[
√
σ>Kσ] can now be upper bounded by

√
Eσ[σ>Kσ]. Fur-

ther, using the independence of σ, the expectation evaluates to 2p
∑n
i=1Kii = 2pn. Thus,

R(HU, p) ≤ tC
√

2pλ1(K). For any non-negative random variable X, note that E
[√

X
]
≥√

E[X]
[
1− V ar[X]

2E2[X]

]
(Claim 1, Suppl.) Thus, for the random variable σ>Kσ we have

E
[√

σ>Kσ
]
≥
√

2np

[
1−

2np+ (2p)2(n(n− 1) +
∑
i6=j K

2
ij − n2)

8n2p2

]
≥
√

2np

[
1− 3

4

]
The last inequality follows from the fact that

∑
i 6=j K

2
ij ≤

∑n
i=1 λ

2
i (K) ≤

[∑n
i=1 λi(K)

]2 ≤ n2

and p ∈ [1/n, 1/2]. Plugging in (5) proves R(HU, p) ≥ tC
2
√

2

√
pλ1(K), and hence the result.

Proof of Corollary 4.2. Using Theorem 4.1, R(HU, p) = O(
√
λ1(K)). From the definition of

ϑ(Ḡ) as in [11], it follows that λ1(K) ≤ ϑ(Ḡ). Finally, using Sandwich Theorem (Section 2)
proves the claim.

We prove the following bound on the spectral norm of LS labelling of a random graph

Proof of Corollary 4.3. For G(n, q) graphs, [9] showed that with probability 1 − e−nc

, c > 0,
λ1(A) = nq(1+o(1)) and |λn(A)| ≤ 2

√
nq(1− q). For q = O(1), choosing ρ =

√
n makes KLS

a positive semi-definite matrix, and clearly λ1(KLS) = Θ(
√
n). Thus, proving the result.
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We prove that the function class associated with Laplacian inverse is restrictive
Claim 2. For a complete graph Kn of size n, where every pair of nodes is connected by an edge;
Laplacian inverse (6) has class complexity of O(1).

Proof. Laplacian inverse of a graph is given by [3]

K†Lap =
∑

i:λi(KLap)>0

1

λi(KLap)
wiw

>
i (6)

where KLap = I − D−1/2AD−1/2 =
n∑
i=1

λi(KLap)wiwi
>. Let VLap = [v1, . . . ,vn] be the

feature mapping corresponding to Laplacian inverse kernel K†Lap; (K†Lap)ij = 〈vi,vj〉, ∀i, j ∈ [n].

Let H†Lap =
{
h
∣∣h =

n∑
i=1

βivi, β ∈ Rn, ‖β‖2 ≤ tC
√
n
}
, C > 0, t ∈ [0, 1]. We follow a similar

proof technique as in Theorem 4.1. For any σ,

sup
h∈H†Lap

n∑
i=1

σi 〈h,vi〉 = sup
h∈H†Lap

〈
h,

n∑
i=1

σivi

〉
= tC

√
nλ1(K)

∥∥∥∥∥
n∑
i=1

σivi

∥∥∥∥∥
The last equality from optimality over supremum and the norm constraint - maxh∈H†Lap

‖h‖ =

maxβ∈Rn,‖β‖2≤tC
√
n

√
β>K†Lapβ = tC

√
nλ1(K†Lap). Now, taking expectation over σ

R(H†Lap, p) = tC

√
λ1(K)

n
Eσ

[∥∥∥∥∥
n∑
i=1

σivi

∥∥∥∥∥
]

= tC

√
λ1(K†Lap)

n
Eσ
[√

σ>K†Lapσ
]

(7)

Using Jensen’s inequality and independence of σ as before, we can bound the expectation term

by
(

2p
n∑
i=1

K†Lapii

)1/2

. Note that the minimum eigen value of the adjacency A of a complete

graph Kn is −1. Thus, the minimum eigen value of KLap = I − A/(n − 1) is 1 + 1
n−1 . Thus,

λ1(K†Lap) = 1− 1
n ≤ 1. Plugging back in (7) gives

R(H†Lap, p) = tC

√√√√2p

n

n∑
i=1

K†Lapii ≤ tC
√

2pλ1(K†Lap) ≤ tC
√

2p

Thus, for C, t, p = O(1) as in Corollary 4.3 proves the claim.

Section 5
We prove the graph dependent transductive generalization error bound in Theorem 5.1, using con-
centration inequalities discusses in Section 1.3.

Proof of Theorem 5.1. Let π = [π1, . . . , πn] denote a permutation on [n]. For any permutation π,
let the first nf nodes be labeled. Let `i = `(yπi

, 〈h,uπi
〉), i ∈ [n]; we drop the arguments h and

π, when clear from context. Let er`S(h,y, π) = 1
nf

nf∑
i=1

`i and er`
S̄

(h,y, π) = 1
n(1−f)

n∑
i=nf+1

`i. Let

`(h,y, π) = [`1, . . . , `n]. Let π̄ = [1, 2, 3, . . . , n] denote the trivial permutation on [n]. We prove
the result in three main steps:

Step 1: We introduce a ghost permutation

er`S̄(h,y, π̄) = er`S(h,y, π̄) + er`S̄(h,y, π̄)− er`S(h,y, π̄)

≤ er`S(h,y, π̄) + sup
h′∈H̃U

[
er`S̄(h′,y, π̄)− er`S(h′,y, π̄)

]
≤ er`S(h,y, π̄) + sup

h′∈H̃U

[
er`S̄(h′,y, π̄)− Eπ

[
er`S̄(h′,y, π)

]
+ Eπ

[
er`S(h′,y, π)

]
− er`S(h′,y, π̄)

]
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The above holds, since Eπ
[
er`
S̄

(h′, y, π)
]

= Eπ
[
er`S(h′, y, π)

]
. Applying Jensen’s Inequality,

≤ er`S(h, y, π̄) + Φ(h, y, π̄) (8)

where Φ(h,y, π̄) = Eπ
{

suph′∈H̃U

[
er`
S̄

(h,y, π̄)− er`
S̄

(h′,y, π) + er`S(h′, y, π)− er`S(h,y, π̄)
]}

.
We invoke the following lemma to bound the supremum

Lemma 2.1. For any δ > 0, with probability ≥ 1− δ over the random permutation π̄,

Φ(h,y, π̄) ≤ Eπ′ [Φ(h,y, π′)] +B

√
2

nf(1− f)
log

1

δ

We obtain martingale from the function Φ(h,y, π) using Doob’s martingale process. Let Π =
[Π1, . . . ,Πn] denote a random permutation vector over [n]. Let Πi

1 := [Π1, . . . ,Πi] and

Φ(h,y,Πi
1) = Eπ′

{
sup

h′∈H̃U

[
er`S̄(h,y,Πi

1)− er`S(h′,y, π′) + er`S̄(h′,y, π′)− er`S(h,y,Πi
1)
]}

where er`
S̄

(h,y,Πi
1) = 1(i>nf)

n(1−f)

i∑
j=nf+1

`j and er`S(h,y,Πi
1) = 1

nf

min(nf,i)∑
j=1

`j . Let Π(i, j) be the

permutation vector obtained by exchanging the values of Πi and Πj . Let T0 := EΠn
1

[
`(h, y,Πn

1 )
]

and Ti := EΠn
1

[
`(h, y,Πn

1 )
∣∣Πi

1

]
, ∀ ∈ [n]. Clearly Tn0 is a martingale sequence w.r.t. Π. Note that

by definition, Tn = Φ(h, y,Πn
1 ). Thus, bounding r̃ and using Lemma 1.3 proves the result. Let

πn1 = [π1, . . . , πn] be a specific permutation. For i ≤ nf

ri(π
i−1
1 ) = sup

πi

{
Ti : Πi−1

1 = πi−1
1 ,Πi = πi

}
− inf

πi

{
Ti : Πi−1

1 = πi−1
1 ,Πi = πi

}
= sup
πi,π′i

{
EΠn

1

[
`(h,y,Πn

1 )
∣∣ Πi−1

1 = πi−1
1 ,Πi = πi

]
− EΠn

1

[
`(h,y,Πn

1 )
∣∣ Πi−1

1 = πi−1
1 ,Πi = π′i

] }
= sup
πi,π′i

{
Ej∼[i+1,n]EΠn

1

[
`(h,y,Πn

1 )
∣∣ Πi−1

1 = πi−1
1 ,Πi = πi,Πj = π′i

]
− Ej∼[i+1,n]EΠn

1

[
`(h,y,Πn

1 (i, j))
∣∣ Πi−1

1 = πi−1
1 ,Πi = πi,Πj = π′i

] }
= sup
πi,π′i

{
Ej∼[i+1,n]EΠn

1

[
`(h,y,Πn

1 )− `(h,y,Πn
1 (i, j))

∣∣ Πi−1
1 = πi−1

1 ,Πi = πi,Πj = π′i
] }

= sup
πi,π′i

{
Prj∼[i+1,n]

{
j ∈ [1, nf ]

}
EΠn

1 ,j∼[i+1,nf ]

[
`(h,y,Πn

1 )

− `(h,y,Πn
1 (i, j))

∣∣∣ Πi−1
1 = πi−1

1 ,Πi = πi,Πj = π′i

]
+ Prj∼[i+1,n]

{
j ∈ [nf + 1, n]

}
EΠn

1 ,j∼[nf+1,n]

[
`(h,y,Πn

1 )

− `(h,y,Πn
1 (i, j))

∣∣∣ Πi−1
1 = πi−1

1 ,Πi = πi,Πj = π′i

]}
Since i ≤ nf , `(h,y,Πn

1 ) = `(h,y,Πn
1 (i, j)) for j ∈ [1, nf ], thus the first term is zero. Therefore,

ri(π
i−1
1 ) ≤ Prj∼[i+1,n](j ∈ [nf + 1, n])

B

nf(1− f)
=

B

f(n− i)
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Also, note that ri(πi−1
1 ) = 0, for i > nf . Thus,

r̃ = sup
πn
1

n∑
i=1

(ri(π
i−1
1 ))2 ≤

nf∑
i=1

(
B

f(n− i)

)2

=

(
B

f

)2 n−1∑
j=n(1−f)

1

j2
≤
(
B

f

)2 ∫ n−1/2

n(1−f)−1/2

1

j2
dj

=

(
B

f

)2
nf

(n(1− f)− 1/2)(n− 1/2)
≤ 4B2

nf(1− f)

For 1− f > 0 and large n, 1
n−1/2 ≤

2
n and 1

n(1−f)−1/2 ≤
2

n(1−f) . Plugging this in Lemma 1.3 and

setting ε = B
√

2
nf(1−f) log 1

δ completes the proof of Lemma 2.1.

Step 2: Now we concentrate on bounding Eπ′ [Φ(h,y, π′)]. For L`(H̃U) =
{
`(h,y, π̄) | h ∈ H̃U

}
,

we introduce Rademacher variables to prove

Lemma 2.2.

Eπ′ [Φ(h,y, π′)] ≤ RT (L`(H̃U), f) +O

(
B

(1− f)
√
nf

)
where RT (L`(H̃U), f) = 1

nf(1−f)Eσ
[
suph∈H̃U

n∑
i=1

`iσi

]
, with σ as in 2 with p = f(1− f).

Following notations as in Definition 3, let P =
∑
i∈[n] 1

[
τi,1 = − 1

f

]
and Q =∑

i∈[n] 1
[
τi,2 = 1

f

]
. We prove Lemma 2.2 in four steps:

Step a: Relating to Pairwise Rademacher variables

RT (L`(H̃U), f) =
1

n
Eτ

[
sup
h∈H̃U

g`(τ,U, h,y)

]

where g`(τ,U, h,y) =
n∑
i=1

(τi,1 + τi,2) `i. Proof follows from the definition of τ (Definition 3).

Step b: Split the Expectation

Eτ

[
sup
h∈H̃U

g`(τ,U, h,y)

]
= EP,Q Eτ |P,Q

[
sup
h∈H̃U

g`(τ,U, h,y)

]

Step c: Relating to loss function

Eπ′ [Φ(h,y, π′)] = Eτ |P=E[P ],Q=E[Q]

[
sup
h∈H̃U

g`(τ,U, h,y)

]

For Φ′(p′, q′,U, h, h′,y, π, π′) = 1
1−f

n∑
i=p′+1

`(yπi
,
〈
h,uπi

〉
) − 1

1−f

n∑
i=q′+1

`(yπ′i ,
〈
h′,uπ′i

〉
) +

1
f

q′∑
i=1

`(yπ′i ,
〈
h′,uπ′i

〉
)− 1

f

p′∑
i=1

`(yπi
,
〈
h,uπi

〉
), we will prove that for any p′, q′ ∈ [n],

Eπ,π′ [Φ′(p′, q′,U, h, h′,y, π, π′)] = Eτ |P=q′,Q=q′

[
sup
h∈H̃U

g`(τ,U, h,y)

]
thus proving the claim for p′ = E[P ] and q′ = E[Q] as a special case.
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Let ι := (ι1, . . . , ιn), where ιi := (ιi,1, ιi,2) be a random variable taking values of the coefficients

of `(yi, 〈h, ui〉) and `(yi, 〈h′, ui〉). Let P ′ =
∑
i∈[n] 1

[
ιi,1 = − 1

f

]
and Q′ =

∑
i∈[n] 1

[
ιi,2 = 1

f

]
.

Thus, we can write

Eπ,π′ [Φ′(p′, q′,U, h, h′,y, π, π′)] = Eι|P ′=p′,Q′=Q′

[
sup
h∈H̃U

g`(ι,U, h,y)

]
Note that the distributions ι|P ′ = p′, Q′ = q′ and τ |P = p′, Q = q′ are identical, thus proving the
claim.

Step d:

Eτ |E[P ],E[Q]

[
sup
h∈H̃U

g`(τ,U, h, y)

]
− EP,Q Eτ |P,Q

[
sup
h∈H̃U

g`(τ,U, h, y)

]
= O

(
B

1− f

√
n

f

)

We use the result from Step c to derive the result. Note that for a fized q

Eπ,π′ [Φ′(p1, q,U, h, h
′,y, π, π′)]− Eπ,π′ [Φ′(p2, q,U, h, h

′,y, π, π′)] ≤ B

f(1− f)

∣∣p1 − p2

∣∣
Similar argument holds for q1 and q2, for a fixed p. Now, for any ε ≥ 0,

PrP,Q

{∣∣∣∣Eτ |P,Q[ sup
h∈H̃U

g`(τ,U, h,y)

]
− Eτ |E[P ],E[Q]

[
sup
h∈H̃U

g`(τ,U, h,y)

]∣∣∣∣ ≥ ε
}

= PrP,Q

{∣∣∣Eπ,π′ [Φ′(P,Q,U, h, h′,y, π, π′)]− Eπ,π′ [Φ′(E[P ],E[Q],U, h, h′,y, π, π′)]
∣∣∣ ≥ ε}

≤ PrP,Q

{∣∣∣Eπ,π′ [Φ′(P,Q,U, h, h′,y, π, π′)]− Eπ,π′ [Φ′(P,E[Q],U, h, h′,y, π, π′)]
∣∣∣

+
∣∣∣Eπ,π′ [Φ′(P,E[Q],U, h, h′,y, π, π′)]− Eπ,π′ [Φ′(E[P ],E[Q],U, h, h′,y, π, π′)]

∣∣∣ ≥ ε}
≤ PrP,Q

{∣∣∣Eπ,π′ [Φ′(P,Q,U, h, h′,y, π, π′)]− Eπ,π′ [Φ′(P,E[Q],U, h, h′,y, π, π′)]
∣∣∣ ≥ ε/2}

+ PrP,Q

{∣∣∣Eπ,π′ [Φ′(P,E[Q],U, h, h′,y, π, π′)]− Eπ,π′ [Φ′(E[P ],E[Q],U, h, h′,y, π, π′)]
∣∣∣ ≥ ε/2}

= PrP

{∣∣P − E[P ]
∣∣ ≥ f(1− f)ε

2B

}
+ PrQ

{∣∣Q− E[Q]
∣∣ ≥ f(1− f)ε

2B

}
≤ 4 exp

(
−3f(1− f)2ε2

32B2n

)
The last inequality follows from Bernstein’s concentration inequality

X ∼ Bin(n, p) =⇒ Pr
{
|X− E[X]| ≥ ε

}
≤ 2 exp(−3ε2/8np)

and noting that P,Q are binomial random variables ∼ Bin(n, f). Note that for any non-negative
random variable Y

Pr
{
Y > ε

}
≤ c0 exp(−c1ε2) =⇒ E[Y] ≤

√
ln(c0e)/c1

Applying this for our setting, for c0 = 4, c1 = 3f(1−f)2

32B2n gives

∣∣∣∣∣Eτ |E[P ],E[Q]

[
sup
h∈H̃U

g`(τ,U, h,y)

]
− EP,Q Eτ |P,Q

[
sup
h∈H̃U

g`(τ,U, h,y)

]∣∣∣∣∣
≤ EP,Q

∣∣∣∣∣Eτ |E[P ],E[Q]

[
sup
h∈H̃U

g`(τ,U, h,y)

]
− Eτ |P,Q

[
sup
h∈H̃U

g`(τ,U, h,y)

]∣∣∣∣∣ = O

(
B

1− f

√
n

f

)
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If f > 1/2, then by a symmetric argument, we get the bound O
(
B
f

√
n

1−f

)
. Thus we can relax the

constraint f ∈ (0, 1/2]; but for simplicity future derivations, we assume f ≤ 1/2.

Note that combining the above four steps, proves Lemma 2.2.

Step 3: From the contraction property of Rademacher complexity, we relate to the function class,
and using Theorem 4.1, we prove

Lemma 2.3. Given the loss function ` to be L-Lipschitz,

RT (L`(H̃U), f) ≤ LC

√
2λ1(K)

f(1− f)

We prove RT (L`(H̃U), f) ≤ L
f(1−f)R(H̃U, f) and the result follows from Theorem 4.1, for t = 1

and p = f(1 − f). We prove the claim by induction. For h ∈ H̃U, we denote the predictions by
ŷ := U>h. Thus, `i = `(yi, ŷi), ∀i ∈ [n]. We prove a more general result, for any ψ : H̃U → R,
we prove

Eσ

[
sup
h∈H̃U

n∑
i=1

σi`i + ψ(h)

]
≤ Eσ

[
sup
h∈H̃U

L

n∑
i=1

σiŷi + ψ(h)

]

The proof is by induction on k, such that 0 ≤ k ≤ n. For base condition k = 0, the proof is trivial.
We assume that the inequality holds for k − 1 i.e.,

Eσ1,...,σk−1

[
sup
h∈H̃U

k−1∑
i=1

σi`i + ψ(h)

]
≤ Eσ1,...,σk−1

[
sup
h∈H̃U

k−1∑
i=1

Lσiŷi + ψ(h)

]

Now to prove the induction step, consider

Eσk
Eσ1,...,σk−1

[
sup
h∈H̃U

k∑
i=1

σi`i + ψ(h)

]
= pEσ1,...,σk−1

[
sup
h∈H̃U

k−1∑
i=1

σi`i + `k + ψ(h)

]

+ pEσ1,...,σk−1

[
sup
h∈H̃U

k−1∑
i=1

σi`i − `k + ψ(h)

]
+ (1− 2p)Eσ1,...,σk−1

[
sup
h∈H̃U

k−1∑
i=1

σi`i + ψ(h)

]
(9)

where p = f(1 − f). We consider bounding the first two terms, since the last term can be easily
bounded by the induction assumption. We define functions ψ′ and ψ′′ as follows

Eσ1,...,σk−1

[
sup
h∈H̃U

k−1∑
i=1

σi`i + `i + ψ(h)︸ ︷︷ ︸
ψ′(h)

]
+ Eσ1,...,σk−1

[
sup
h∈H̃U

k−1∑
i=1

σi`i − `k + ψ(h)︸ ︷︷ ︸
ψ′′(h)

]

Now, by induction assumption, we get

= Eσ1,...,σk−1

[
sup
h∈H̃U

{
L

k−1∑
i=1

σiŷi + `k + ψ(h)

}
+ sup
h∈H̃U

{
L

k−1∑
i=1

σiŷi − `k + ψ(h)

}]

= Eσ1,...,σk−1

[
sup

h,h′∈H̃U

{
L

k−1∑
i=1

σi(ŷi + ŷ′i) + `(yk, ŷk)− `(yk, ŷ′k)︸ ︷︷ ︸+ψ(h) + ψ(h′)

}]

where ŷ′ = U>h′. Using L-Lipschitz property of the loss function,

≤ Eσ1,...,σk−1

[
sup

h,h′∈H̃U

{ k−1∑
i=1

Lσi(ŷi + ŷ′i) + L|ŷk − ŷ′k|+ ψ(h) + ψ(h′)

}]
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Without loss of generality, we assume ŷk ≥ ŷ′k. Suppose ŷk ≤ ŷ′k, then we can swap h and h′, so
that the value of expression increases

= Eσ1,...,σk−1

[
sup

h,h′∈H̃U

{ k−1∑
i=1

Lσi(ŷi + ŷ′i) + L(ŷk − ŷ′k) + ψ(h) + ψ(h′)

}]

= Eσ1,...,σk−1

[
sup
h∈H̃U

{ k−1∑
i=1

Lσiŷi + Lŷk + ψ(h)

}]

+ Eσ1,...,σk−1

[
sup
h∈H̃U

{ k−1∑
i=1

Lσiŷi − Lŷk + ψ(h)

}]

Plugging this back in (9) and introducing σk random variable for RHS proves Lemma 2.3.

Combining the results from (8), Lemma 2.1, 2.2 and 2.3 proves the result.

Above in an important result connecting empirical error estimate of the unlabeled node set with that
of the labelled node set, and an additional class complexity term (Section 4) relating to structural
properties of the graph. This result bridges the two domains machine learning and graph theory,
which allows us to derive learning theory estimates of empirical unlabeled node set error conver-
gence rate and labeled sample complexity, relating to the famous Lovász ϑ function of the graph.

Section 5.1
Using a similar proof technique as in [10], we prove the following result connecting the maximum
margin induced by orthonormal representations of graph with the ϑ function of the graph.

Proof of Theorem 5.2. Given a labelled graph G = (V,E,y), V = [n]; let y ∈ Yn be any
labelling on the nodes of graph G, then note that from Definition 1

ϑ(G) = min
U∈Lab(G)

min
c∈Sd−1

max
i∈[n]

1(
yic>ui

)2
Note an interesting property of orthonormal representations that if U ∈ Lab(G), then Udiag(ε) ∈
Lab(G) for any ε> = [ε1, . . . , εn] where εi ∈ {+1,−1} ∀i ∈ [n]. Thus, it suffice to consider only
those orthonormal representations for which yic>ui ≥ 0 ∀i ∈ [n] holds. For a fixed c, we can
rewrite

max
i∈[n]

1(
yic>ui

)2 =

(
min
t
t2 s.t.

1

yic>ui
≤ t ∀i ∈ [n]

)
Using w = tc yields

min
c∈Sd−1

max
i∈[n]

1(
yic>ui

)2 =

(
min
w∈Rd

‖w‖2 s.t. yiw>ui ≥ 1 ∀i ∈ [n]

)
Applying strong duality gives

min
c∈Sd−1

max
i∈[n]

1(
yic>ui

)2 = 2 ω(K,y)

where K = U>U ∈ K(G). As there is a correspondence between each element of Lab(G) and
K(G) Section 2, minimization of 2 ω(K,y) over K(G) is equivalent to computing ϑ function.

We illustrate an example of the large class of Labelled SVM-ϑ graphs, where LS labelling approxi-
mated the optimal margin within a constant multiplicative factor.
Claim 3. Mixture of random graphs defined in Section 5.1 is Labelled SVM-ϑ graph.

We use the notations as in Section 1.2 We note the following technical lemma the margin induced
by LS labelling to structural properties of the labelled graph.
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Lemma 2.4. Let KLS = A/ρ+ I, ρ ≥ max
{
|λn(A)|, cut(A,y)

}
be the LS labelling of G. Let

A′ be the adjacency matrix of G′ and let K′LS = A′/ρ+ I. Then,

ω(KLS ,y) ≤ ω(K′LS ,1n) +
1

2
(

ρ
cut(A,y) − 1

)
where cut(A,y) is as defined in Notations, Section 1.

Such connections are interesting relating geometry and machine learning with graph properties.

Proof. First note that K′LS is a positive semi-definite matrix, since K′LS is formed by block diagonal
sub-matrices of KLS corresponding to G+ and G−, which are individually positive semi-definite.
We analysis the KKT conditions of ω(KLS ,1n) for any LS labelling KLS .

α∗i + yi

( n∑
i=1

Kijα
∗
jyj

)
= 1 + µ∗i (10)

where µ∗i is the lagrange dual variable at the optimal. From convexity, note that there exists ᾱ > 0,
such that maxi∈[n] α

∗
i ≤ ᾱ. From (10), for α∗i > 0

α∗i +
1

ρ

∑
yi=yj

Aijα
∗
j −

1

ρ

∑
yi 6=yj

Aijα
∗
j = 1 =⇒ α∗i ≤ 1 +

1

ρ

∑
yi 6=yj

Aijα
∗
j

Bounding the last inequality using ᾱ and cut(A,y) gives ᾱ ≤ 1
1−cut(A,y)/ρ . Thus,

ω(KLS ,y) = max
0≤αi≤ᾱ,i∈[n]

( n∑
i=1

αi −
1

2ρ

∑
yi=yj

αiαjAij +
1

2ρ

∑
yi 6=yj

αiαjAij

)
≤ max

0≤αi≤1,i∈[n]

( n∑
i=1

αi −
1

2

∑
yi=yj

αiαjKij

)
+

cut(A,y)

2ρ
(
1− cut(A,y)/ρ

)
Equating the first term by ω(K′LS ,1n) proves the result.

Proof of Claim 3. From Lemma 1.1, it follows that ϑ(G) ≤ 2ϑ
(
G
(
n
2 ,

1
2

))
= Θ(

√
n). The last

equality follows from [6]. Also, from Lemma 1.2, ϑ(G) ≥ ϑ(G+) = Θ(
√
n). Thus, ϑ(G) = Θ(G).

Given cut(A,y) = c
√
n, c > 1; note that for ρ = 2c

√
n, KLS = A

ρ +I is a positive semi-definite
matrix from the results of [9]. For the notations as in Lemma 1.1, we can show ω(K′LS ,1n) =
ω(K1,1n1

) + ω(K2,1n2
) = Θ(

√
n), where K1 and K2 are the block diagonal kernel matrices

corresponding to graphs G+ and G− respectively; and the last equality follows from [10]. Thus,
using Lemma 2.4 we prove ω(KLS ,y) = Θ(

√
n), and hence the result.

The above is a large class of graph family, where LS labelling approximated the optimal margin
within a constant multiplicative factor

Section 6
We derive an upper bound on the Lovász ϑ function of the power law graphs, previously unavailable.
Claim 4. For G(α1, α2) Power law graphs, where

∣∣{i ∈ V |di = x
}∣∣ = eα1/xα2 [2]. For α2 ∈

[2.1, 2.5], ϑ(Ḡ) = O(
√
n)

Proof. The regime α2 ∈ [2.1, 2.5] holds for naturally occurring graphs [1, 4]. Maximum degree of
G(α1, α2) is given by dmax = eα1/α2 [2]. Note that α1 = O(log n) and thus, dmax = O(

√
n).

Maximum degree is related to chromatic number by χ(G) ≤ dmax + 1 [15], thus χ(G) = O(
√
n).

Finally, the claim ϑ(Ḡ) = O(
√
n) follows from Sandwich Theorem (Section 2).

Claim 5. Results in Section 6 can be extended to the Inductive setting, both semi-supervised and
supervised learning models.

Proof. Let G be any graph family, and let V be an infinite sequence of labeled node set (Definition 1).
Let µ be the distribution on V . Let er`G [h] := Ei∼µ[`(h(vi), yi)], the generalization error.
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Semi-supervised setting: For any f ∈ (0, 1), let S and S̄ be any draw of labelled and unlabelled
subgraph from G respectively. Let G be a graph formed by combining S and S̄. Let ` be any loss
function, bounded in [0, B] and L-Lipschitz in its second argument. Let H̃U, C be as in Theo-
rem 5.1, for any U ∈ Lab(G). For any δ > 0, h ∈ H̃U w.p. ≥ 1− δ, a typical generalization bound
is of the form [5]

er`G [h] ≤ (1− f) · er`S̄ [h] + f · er`S [h] + 2L · EG∼G
[
R(H̃U, f(1− f))

]
+O

(
B

√
1

n
log

1

δ

)
Using Theorem 5.1, we can bound er`

S̄
[h] in-terms of er`S [h]. The complexity term can be esti-

mated reliably from empirical Rademacher complexity (Theorem 4.1) – using bounded differences
inequality [12], w.p. ≥ 1− δ/2

EG∼G
[
R(H, f(1− f))

]
≤ R(H̃U, f(1− f)) + tC

√
λ1(K)

2
log

4

δ

Thus, leading to the following generalization bound

er`G [h] ≤ er`S [h] +O

(
LC

√
λ1(K)

f
log

1

δ
+B

√
1

nf
log

1

δ

)
Using similar proof techniques as in Section 6, we can derive consistency and labeled sample com-
plexity results (similar to Theorem 6.1 and Corollary 6.2) for the semi-supervised setting.

Supervised setting: Let S and S̄ be any draw of labelled and unlabelled subgraph from G respec-
tively, for f = 1/2. Let H be any function class. For any ε > 0, note the following sandwich
theorem on the uniform convergence of generalization error bound

PrS,S̄

{
sup
h∈H

∣∣∣er`S [h]− er`S̄ [h]
∣∣∣ ≥ 2ε

}
≤ PrS

{
sup
h∈H

∣∣∣er`G [h]− er`S [h]
∣∣∣ ≥ ε}

≤ 2PrS,S̄

{
sup
h∈H

∣∣∣er`S [h]− er`S̄ [h]
∣∣∣ ≥ ε/2}

which follows from Symmetrization lemma [14]. Thus, uniform convergence of er`
S̄

to er`S in trans-
ductive setting is a necessary and sufficient condition for the uniform convergence of the training set
error to generalization error, in the supervised setting. Thus, using Theorem 5.1 (erS̄ → erS) and
Theorem 6.1 (erS → 0), we can extend our analysis to derive consistency and sample complexity
results for the inductive setting relating to structural properties of the graph.

The above gives us a way to extend the analysis present in the paper to the well known inductive
setting. As part of future work, we would also like to analyze the problem of learning on streaming
similarity matrices, where similarity information of the data instances is streaming and the task is to
accurately predict the binary labels.

Section 7
We prove generalization bound for the problem of multiple graph transduction

Proof of Theorem 7.1. Following similar steps as in Theorem.5.1 we get

1

|S̄|
∑
j∈S̄

`ramp(yj , ŷj) ≤
1

|S|
∑
i∈S

`ramp(yi, ŷi) + C

√
2λ1(Kη∗)

f(1− f)
+

c1
1− f

√
1

nf
log

1

δ

where c1 = O(1), Kη∗ =
∑m
k=1 η

∗
kK

(k). Note that Kη∗ is the orthonormal representation of G∪.
Using a result in the proof of Corollary.4.2, λ(Kη∗) ≤ ϑ(Ḡ∪) proves the complexity term.

Now, using similar proof technique as in Theorem.6.1,

Ψ(K,yS) ≤ min
k∈[m]

ΛC(K(k),yS) ≤ min
k∈[m]

ω(K(k),y)
(
= Ψ̄(K,y)

)
11



Noting that C
∑
i∈S

`ramp(yi, ŷi) ≤ Ψ(K, yS), and `ramp is an upper bound on `0-1 proves the result.

We prove statistical consistency of kernel learning style multiple graph transduction algorithms (6).
Claim 6. Similar to Section 6, we can show that if any one of the graph families G(k′) of G obey
ϑ(G

(k′)
n ) = O(nc), c ∈ [0, 1), G

(k′)
n ∼ G(k), then the Algorithm optimizing for (6) is `0-1-

consistent on G over the class of orthonormal representations.

Proof. We will use the notations as in Section 3. Let Kn = {K(1)
n , . . . ,K

(m)
n }, where K

(k)
n ∈

K(G
(k)
n ) is the max-margin orthonormal representation associated with G(k). A detailed analysis of

the complexity term in Theorem 7.1 gives

λ1(Kη∗) ≤ max
η∈Rm

+ , ‖η‖1=1
λ1

( m∑
k=1

ηkK
(k)
n

)
≤ max
η∈Rm

+ , ‖η‖1=1

m∑
k=1

ηkλ1

(
K(k)
n

)
The last inequality follows from convexity of the spectral norm. At optimality,

= max
k∈[m]

λ1(K(k)
n ) ≤ max

k∈[m]
ϑ(Ḡ(k)

n ) = n/ min
k∈[m]

ϑ(Ḡ(k)
n )

The last two inequalities follows from the results of Corollary 4.2 and the property that for any graph
G – ϑ(G)ϑ(Ḡ) = n [11]. Also note that for any k ∈ [m], Ψ̄(Kn,y) ≤ ω(K

(k)
n ,yn) = ϑ(G

(k)
n )/2,

where the last equality follows from Theorem 5.2. Thus, for k∗ = argmink∈[m] ϑ(Ḡ(k)), the anal-
ysis of multiple graphs G boils down to the analysis of a single graph family G(k∗). Plugging the
derived results in Theorem 7.1, and setting δ = 1

n and f = O(1) gives for any C > 0

er0-1
S̄ [hSn ] = O

(
ϑ(G

(k∗)
n )

Cn
+ C

√
n

ϑ(G
(k∗)
n )

+

√
log n

n

)
(11)

Optimizing forC, gives us the error convergence rateO
((ϑ(G(k∗))

n

) 1
4

)
. Thus, bounding ϑ(G(k∗)) ≤

ϑ(G(l)), which follows from the optimality of k∗ proves the claim.

Claim 7. Given G, such that ϑ(Gn) = O(nc), 0 ≤ c < 1, ∀Gn ∈ G(k)
c for atleast one of

the graph families G(k), k ∈ [m], there exists K such that for C =

(
Ψ2(K,y)(1−f)

23n2fϑ(Ḡ(k∗))

) 1
4

, where

k∗ = argmink∈[m] ϑ(Ḡ(k)); observing 1
2

(
Ψ(K,y)
n

)s
, 0 ≤ s < 1/3 fraction of labelled nodes is

sufficient for MKL algorithm optimizing for (6) to be `0-1-consistent.

Noting that for max-margin orthonormal representations, Ψ(K,y) ≤ mink∈[m] ω(K(k),y) =

ϑ(G(k))/2 and comparing with Corollary 6.2 shows that combining multiple graphs improves la-
beled sample complexity than considering individual graphs separately.

Proof. From the derivation of Theorem 7.1 and Corollary 6, forC > 0, f ∈ (0, 1/2]; w.p. ≥ 1− δ

1

|S̄|
∑
j∈S̄

`0-1(yj , ȳj) ≤
1

C|S|
Ψ(K,y) + C

√
2ϑ(Ḡ(k∗))

f(1− f)
+

c1
1− f

√
1

nf
log

1

δ

Using 1
1−f ≤ 2, setting δ = 1/n and optimizing over C gives

1

|S̄|
∑
j∈S̄

`0-1(yj , ȳj) = O


√√√√Ψ(K,y)

n

√
ϑ(Ḡ(k∗))

f3
+

√
1

nf
log n


Note that Ψ(K,y) ≤ ω(K(k∗),y) = ϑ(Gk

∗
), where the last inequality follows from The-

orem 5.2 for K being the max-margin orthonormal representations of G. Furthermore, using
ϑ(G(k∗))ϑ(Ḡ(k∗)) = n [11] proves the claim.
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Thus, as a consequence of the above result, we can argue that multiple graph transduction improves
labeled sample complexity.
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[9] Zoltán Füredi and János Komlós. The eigenvalues of random symmetric matrices. Combina-
torica, 1(3):233–241, 1981.

[10] Vinay Jethava, Anders Martinsson, Chiranjib Bhattacharyya, and Devdatt P Dubhashi. The
lovász ϑ function, svms and finding large dense subgraphs. In NIPS, pages 1169–1177, 2012.
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