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1 Details of Maximizing the Margin

We now turn to the question of maximizing the margin. We show the step-by-step derivation a
smoothed but non-convex optimization problem for maximizing the total margin.
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Introducing one additional variable (j, per classifier, problem (1) is equivalent to:
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Considering the unnormalized rows Wy, /(j, we obtain the following equivalent formulation:
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When y = —1, z(x?) satisfying the margin constraint (@) implies that the constraint holds for every
sub-classifier k since y*Wx" is minimal at k = z(x"). Thus, when y = —1, we can enforce the

constraint for all k£ yielding the following equivalent problem:
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Finally, we can relax the objective into a convex one by minimizing the sum of the inverse squares of
the terms instead of maximizing the sum of the terms. We obtain the following smoothed problem:
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The objective @ is now the familiar convex Lo regularization term |[W||2. The negative samples
constraints (7) are convex (linear functions), but the positive terms (8) result in non-convex con-
straints because of the instance-dependent assignment z. As for the Support Vector Machine, we
can introduce n slack variables ¢; and a regularization factor C' > 0 for the common case of noisy,
non-separable data. Hence, the practical problem becomes:
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Following the same steps, we obtain the following problem for maximizing the worst-case margin.
The only difference is the regularization term in the objective function which becomes max;, |[W]|?
instead of |[W||%.

2 Proof of Theorem 1

The Rademacher complexity of F'x g is defined as

R, (Fk.B) = ExE. l sup

feFK,B

%Zﬁif(xi)

|

Where the ¢; are £1 i.i.d. Bernoulli with probability 1/2. It is also possible to define the Gaussian
Rademacher complexity of Fi p is as:

By Lemma 4 in [1l], there exists an absolute constant c¢ such that for every Fx p and n we
have R, (F K, B) < ¢Gn(Fg ). Thus, we can provide a bound on the Gaussian Rademacher
complexity. In our case, this can be directly done by invoking Theorem 14 of [1]. Indeed,
ai,...,ar — max(ay,...,ax) is a Lipchitz with constant 1, thus Fx p can be viewed as the
composition of the max function with the real valued classes of linear separators F; that are such
that
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where the g;s are i.i.d. standard normal variables.

F = {x = (W,x)[[W]| < B;}

So we have that G,,(Fk g) < 2 Zle G, (F}). The Gaussian Rademacher complexities of each of
these Fys is bounded by By /+/n by a standard argument as follows:



B n

k

:EXEQWHZXigiH
=1

By =
< Ex ]Eg||zxigiH2
i=1

By | & )
=B — | > IIxll
i=1
B
< 2k
NG
Hence, there exists a universal constant A > 0 such that
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Finally, we apply Theorem 7 [1]] where ¢ is taken to be the hinge loss, and obtain the desired result.
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