Supplementary Material to
Generalized Dantzig Selector:
Application to the k-support norm

1 Proof of Theorem 1

Statement of Theorem: Suppose that both design matrix X and noise w consists of i.i.d. Gaussian
entries with zero mean variance 1 and X has normalized columns, i.e. | XD |y =1, j=1,...,p.
If we solve the problem (1) with

Ap > cE[RY(XTw)] , (A.1)
where ¢ > 1 is a constant, then, with probability at least (1 — 11 exp(—nan)), we have
A 4/ R(6*)\
16 — 672 < (0")A (A.2)

(bn —w(Tr(6*) NSP~1))

where w(Tr (0%) NSP~1) is the Gaussian width of the intersection of the error cone T (0*) and the
unit spherical shell SP~1, and ¢,, is the expected length of a length n i.i.d. standard Gaussian vector

with \/:? < €y < +/n, and m1,m2 > 0 are constants.

Proof: 'We use the following lemma for the proof.

Lemma 1 Suppose we solve the minimization problem (1) with A, > R* (XTW). Then the error
vector A belongs to the set

Tr(0%) :==cone{A € RP : R(0*+ A) <R(6")} , (A3)

and the error A = 0 — * satisfies the following bound

R (XTXA) <2, (A4)

Proof: By our choice of \,, both 8* and 6 lie in the feasible set of (1) , and by optimality of 0,

R (0* + A) — R(6) < R(6%). (A.5)
Also, by triangle inequality
R* (XTXA) =R* (XTX(é - 0*)) (A.6)
<R (XT(y - X6%)) + R* (XT(y - Xé)) <2),. (A7)
n

Now, note that since R*(-) is Lipschitz continuous, choosing A, > ¢E [R*(X”w)] ensures that
Ap > R*(XTw) with high probability, by Gaussian concentration on Lipschitz functions [2]. Then,



both 6* and @ lie in the feasible set of (1), since R* (XT (y — XB*)) =R* (XTW) < Ap by the
choice of \,. Also, from Lemma 1, we have

R* (XTXA) <2)\, (A.8)
Now, note that

IXA|2 = (A, XTXA) < [(A, XTXA)| < R(A)R* (XTXA) <2,RA), (A9

where we have used Holder’s inequality, and the bound R* (XTXA) < 2), from above.

Next, we use the definition of the error set (A.3) and triangle inequality to obtain

R(A) = R(0") < R(O* + A) <R (6) , (A.10)
so that A
R(A) < 2R(6%) , (A.11)
and we obtain the bound .
IXA[3 < 4\R(6%) . (A.12)

Lastly, we use Gordon’s theorem, which states that for X with i.i.d. Gaussian (0, 1) entries,
E min |Xz|]2| > €, —w (TR(OF)NSPTY) (A.13)
zETRr (6*)NSP—1

where /,, is the expected length of an i.i.d. Gaussian random vector of length n, and
w (Tr(6%) N'SP~1) is the Gaussian width of the set 2 = (7%= (68*) N'SP~!). Now, since the function
X — mingeq || Xz||2 is Lipschitz continuous with constant 1 over the set 2, we can use Gaussian
concentration of Lipschitz functions [2] to obtain

~ 1 ~
IXAllz = 5 (6 — w(TR(OF) NSP~H)) | All2 (A.14)
with probability greater than 1 — exp (—% (ln — w(Tr(0*) N S”_l))Q) , where c1,c2 > 0 are
constants . Combining (A.14) and (A.12), we obtain

RO )X,
(6 — w(TR(67) N SP~1))

A2 < (A.15)

with probability greater than 1 — exp (—% (b — w(TR(0%) N gp—1))2) , and the statement of the

theorem follows.
[ |

2 Proof of Theorem 2

Given a vector x, we use the notation x;.; to denote its subvector (x;, Xit1,- - ., X;).

Statement of Theorem: Given \ > 0 and x € R?, if |x||i”" < A, then w* = proxy, (x) =x. If
HXHZP* > A\ define Agr = Y01 1 |X LBy =30 (1|2 inwhich 0 < s < kand k < r < p,

1’

and construct the nonlinear equation of f3,

1+p
r—s+(k—s)8

2

(k—s)AiT[ ~ A1 +p8)2+Bs=0. (A.16)

Let B, be given by

(A.17)

| nonnegative root of (A.16) if s > 0 and the root exists
T 0 otherwise



Then the proximal operator w* = prox; e (x) is given by

e Xl fl1<i<s
|+ /\2,;—3* if s*<i<r*andBs. =0
Wi = s SR : (A.18)
r*fs*Jr(Iz:s*)BS*,,* lf sT<i<r and 63*7“* >0
x|y if r*<i<p
where the indices s* and r* with computed |w*|* make the following two inequalities hold,
W > Wy (A.19)
X[y yy < [WFIy (A.20)

There might be multiple pairs of (s, r) satisfying the inequalities (A.19)-(A.20), and we choose the
pair with the smallest |||x|¥ — |w|*||2. Finally, w* is obtained by sign-changing and reordering
|w*|¥ to conform to x.

Proof:  Let w* = proxy, (x) = argmingce, 1|/x — w||3. For simplicity, we drop the constant

% in later discussion. We consider the following two cases.

Case 1: if ||x||2p* < ), it is trivial that w* = x, which is also the global minimizer of ||x — w/||3
without the constraint x € C).

Case 2: if HXHZP* > ), first we start by noting that, given x and w, =[x - 2(x,w) +
w2 > [|x]13 — 2(|x[*, |[w[*) + ||w||%, which implies that w* should achieve this lower bound by
conforming with the signs and orders of elements in x. Without loss of generality, we are simply
focused on the case where x = |x|+.

For w* to be the optimal, wj, , should be chosen such that w . = (Wi, wy, ..., wy)and wy =
X Flips where r satisfies x, > w} > X,1, otherwise either the decreasing order of w* will be
violated or the ||X.; — Wp.p||2 is not minimized. As for w7, _;, we similarly assume w}_ ., | =
(Wi, Wj,...,wy) forsome 0 < s < k— 1, then w7, should be chosen to minimize ||x1.s — W12
such that |w1.s|[3 = |w7,, I3 — Wi, .. ]I3 < A* = (k — s)(w};)?. By Cauchy-Schwarz Inequality,
we note that
Hxlzs - wl:s”% - Hxlstg - 2<X1187W1:S> + lestg
> (%113 = 2lx1sll2fwiesllo + (1w l3

where the equality holds when w7, follows the form of wj., = X1.s, and B > 0 satisfies

=22 — (k —s)(wyp)2

_1
1+Bsr

the constraint m

So far we have figured out the structure of w* = (W7, Ws 1., Wy 1.,), in which the three subvec-
tors, compared with x, are shrunk by a common factor 1 4 f,,, constant wj,, or unchanged Next

we need to determine the value of 35, and w}. By optimality, || x — w||3 = ||x1., — W1..[|3 must be
minimized at w*, so we have the following problem,
min Hxlzr - Wl:ng = ||X1:s - Wl:sH% + HXs-i-lzr - Ws-l—l:?“”g
B, Wi
Z (A.21)
( B, + - Wk
1 + B i=s+1
st (IWP)? = =22 (k= s)(wi)? = A2 (A22)
(1+p)?

AZ
Replacing wy, in (A.21) with wy, = 4/ % obtained from (A.22), we express ||X1., — W1..||3

as a function of 3,

B N — e 2
r(B) = (75 B+ > (x — ) (A23)
1=s+1



Set derivative of @, () to be zero, we have

d o d B 2 - , /\2_(15—%)2 2
50 = 5l Bt X i )] (A24)

i=s+1
23 2A4, By 2(r — s)Bs

= _B, — A25

Y e L D (42

A Vi e
2B A

=——" (k-8B — ad +(r—s)| =0 (A.26)

e = }

If s > 0, then By > 0 and (A.26) is equivalent to (A.16). And we can see that the quantity inside

the bracket of (A.26) is monotonically increasing when § > max(0, —VB/\f)‘) thus ensuring the
nonnegative root s, is unique if existing. If the nonnegative root exists, the expression for w ;...
can be obtained from (A.26), whose entries are all equal to w.

If s > 0 and a nonnegative root of (A.26) is nonexistent, the derivative is always positive when
B > 0, which means that ®,.(3) is increasing. Hence the minimizer of ®,.(3) is 85 = 0. If s = 0,
we actually do not care about the value of 5, because the problem defined by (A.21) and (A.22) is
independent of /3, and we set it to be O for simplicity. According to (A.22), both cases of S5 = 0
lead to the same expression for w, ;... in (A.18).

As we do not know beforehand which s and r to choose, we need to search for * and s* that gives
the smallest |||x[* — |w|*||2, and also to check whether the w* obtained by (A.18) is in decreasing
order, which are the conditions (A.19) and (A.20) presented in Theorem 2.

3 Proof of Theorem 3

Statement of Theorem: In search of (s*, r*) defined in Theorem 2, there can be only one T for a
given candidate $ of s*, such that the inequality (A.20) is satisfied. Moreover if such 7 exists, then
for any r < T, the associated |\7v|t violates the first part of (A.20), and forr > 7, v~v|i violates the
second part of (A.20). On the other hand, based on the T, we have following assertion of s*,

> 5 if T does not exist
s > 5 if T exists and corresponding |v~v|i satisfies (A.19) . (A.27)
< § IfT exists but corresponding |v~v|i violates (A.19)

To prove Theorem 3, we first need the following corollary from Theorem 2.
Corollary 1 When 8 > max(0, @) O, (8) defined in (A.23) is decreasing when < Bsr,

and increasing when 3 > B,.. Equivalently, ®,.(3) = ||x1., — W1.,-||3, when treated as function of
Wy, is decreasing when wy, < wj, and increasing when wi, > Wr.

Proof: The first part simply follows the monotonicity of %@Sr(ﬂ) mentioned in the proof of
Theorem 2, which implies that %QJST (B) is negative when 8 < [, and positive when 8 > B, .

The constraint (A.22) implies that wy, increases as /3 increases. So || X1., — W1..||3, as a function of
W}, has the same monotonicity w.r.t. wg.

Now we present the proof of Theorem 3.

Proof:  First we show by contradiction that for a given s, the 7 that satisfies (A.20) can be at most
one. Suppose there are two indices, say r; and ro, which satisfy that condition with a certain s.



Without loss of generality, let 7; < 75, we know that their corresponding w(!) and w(? should

minimize ||X1., —W1., ||3 and ||X1.,-, — W1.,,,||3, Tespectively. As rq < 7o, then w,(cl) > X, > W,(f)

according to (A.20). Construct

X1 Xs
1_’_6,;---7 1+6,5XT27---aXT27X7‘2+17---7X10)
—_———

w = (

T2—S
S

where 3 is chosen to satisfy the constraint (A.22) with w}, = X,,, and ||x1.p, — wﬁz || can be
decomposed as

2 2 2
%1, = WELIE = %1, — WL 12+ %10, — Wy, |2

> 1%, — Wll:rl ”% + 1%y 100, — W:’1+1:r2”§
= ||X1:7"2 - WII:T’QH%
which contradicts that wfr),z minimize ||X1.,, — W1..,||3. Note that [|x1.,, — wfr)l 13 > |Ix1.r, —

wi.,., |3 simply follows Corollary 1 as w,(cl) > Xy, = W) > w,(f), and || Xy 4105 — Wi?lrl:r2|\§ >

%5141 — Wi 1.0, ||3 i due to the fact that x,, 1 > ... > X,, = W}, > w,(cz)

Next we show by contradiction that if 7 exists for given s, then any r < 7 violates the first part of
(A.20), and any r > 7 violates second part. Let W denote the minimizer of ||x;.7 — w1.7||3. Suppose
r < 7 and the first part of (A.20) is not violated, then its second part must be violated due to the
uniqueness of 7. Then we can construct new

X1 Xs
1_'_6,7"'71_'_6,7)(?;

S

w = ( ey X7y Xig s Xp) s

T—S8

where (3’ is again chosen to satisfy the constraint (A.22) with w}, = x;. This by the same argument
for proving the uniqueness of ©* make the following inequality hold,

l|x1:7 — WI:FHg = [|x1.p — Wl:r”% + [|Xr41:7 — V~Vr+1:FH§
> %1 = Wi 13 + %17 — Wipa 13
= [x17 — wis3 -
This contradicts that W is the minimizer of ||x1.; — w1.7||3. Similar argument applies to the case

when r > 7. We construct another

X1 Xs
1_’_6,/7"'7 1+B/,;Xr+1;-"axr—',-laxr—',-l;---axp)a
—_——

Wl/:(

r—s

S
which gives smaller ||x1.,, —w1..[|2 than any w with w;, < x,.1 1 according to Corollary 1. Therefore
it is impossible for r > 7 to violate the first inequality. Note that 3" together with w} = x,41
satisfies (A.22).

Finally we show the assertion (A.27) for s*. We note that when s is fixed, finding solution to the
proximal operator can be regarded as finding the minimizer of (A.21) under the constraint wj, =
Wg_1 = ... = Wzy1. S0 for s < s, the minimization problem is equivalent to the one for s under
additional constraint w11 = Wz = ... = Wg4. Therefore if 7 does not exist or |v~v|i already
satisfies (A.19), then s* > s because s < s considers a more restricted problem and is unable to get
a better result.

For the situation in which 7 exists for 5 but associated |v~v|i violates (A.19), we show by contradiction
that for any s’ > §, (A.19) is also violated. Assume that there is a solution w’ satisfying both (A.19)
and (A.20) for s’ = § + 1 and the corresponding 7. It is not difficult to see that |w’ |i < |\7v|i and
7/ > 7. By the violation we have shown, we know that the minimizer of (A.21) for (s’, 7), denoted
by w”/, satisfies |w”|t < |w’|t (Note that w’ is the minimizer of (A.21) for (s’,7')). Combined
with |w’|t <|w t this indicates by Corollary 1 that ®,#(-) increases on the interval [|w”|t, |v~v|t].
Then we consider two sequential modifications on w,




1. Replacing the |w|1 o in [W|* with ““||w|‘¢ 'H2| |1 U

2. Shrlnk|w|g+”

s’ and |w|s,+1 = |\7v|i, .

and amplify the new |w| 1.s by some factor such that (A.22) still holds for

Note that the two modifications both decrease ||x1.7 — W1.7||2. Decrease in Modification 1 is the
result of Cauchy Schwarz Inequality, and decrease in Modification 2 is due to the monotonicity
of ®,7(-) we mentioned afront. The modified w satisfies |v~v|éJr |W|SJr2 =...=|w t thus
contradicting that the old w is the minimizer of (A.21) for (s, 7). Hence, by induction, we conclude
that for any s’ > 3, its solution also violates (A.19).

Assembling the conclusions above, we have (A.27) for s*.

4 Proof of Theorem 4

Statement of Theorem: For the k-support norm Generalized Dantzig Selection problem (20), we
obtain

E [R*(XT ep ’
[R*(XTw)] < k ( 2log () + 1) (A.28)

w(Ta(0*) NSP1)2 < <\/2klog (- {2] +2)) + \/E)Q : m +s. (A.29)

Proof: We first illustrate that the k-support norm is an atomic norm, and then prove Theorem 4.
4.1 Ek-Support norm as an Atomic Norm

Here we show that k-support norm satisfies the definition of atomic norms [1]. Consider G; to be
the set of all subsets of {1,2,...,p} of size j, so that

B=1{g}, . (A.30)
For every j, consider the set
1 , .
.Aj = {W : ||(ng)||2 =1, G]‘ € gj, wW; = %, Vi € Gj, WwW; = O,VZ ¢ G]} R (A.31)

corresponding to G;, and the union of such sets
A= {-Aj}je{l,...,k} . (A.32)

Note that since every non-zero element in a vector in A; is such an element cannot be repre-

\/7’
sented as a convex combination of elements of the set A;, [ < j, whose non-zero elements are %

Therefore none of the elements w in the set A lies in the convex hull of the other elements A\ {w}.
Further, note that
conv(A) = Cy (A.33)

and the k-support norm defines the gauge function of the A. Thus the k-support norm is an atomic
norm.

4.2 The Error set and its Gaussian width

Note that the cardinality of the set G*)

M—(§)+<kﬁl)+(ﬁ2>+-~+<f) (A9



The the error set is given by

Ta(0") =cone{A € RP : [[A+ 6" <07} . (A.35)

Note that this set is a cone, and we can define the normal cone of this set as
N4O0%) ={u : (u,A) <0, VA € T4(0%)} (A.36)
(A.37)

The following proposition, shown in [3], shows that the normal cone can be written in terms of the
dual norm of the k-support norm.

Proposition 1 The normal cone to the tangent cone defined in (A.35) can written as

Na(0*) ={u : 3t >0sz (u,0%) = |07, |ulli” <t}. (A.38)

Proof: We re-write the definition of the normal cone in terms of the estimated parameter 0 as

N4(O0)={ueR’ : (u,0—6") <0,V0 — 0" € T4(6%)}. (A.39)

Note that this means that u € N 4(0*) if and only if
(0,0 —07) <0, V|| < [167[I} (A.40)
=(u,0) < (u,07) VI[O|;" < 67" - (A4D)

Now, we claim that (u, 8*) > 0 for all such u. This can be shown as follows. Assume the contrary,
i.e. there exists a 1 € N4(6*) such that (1, 0*) < 0. Now, noting that (—8*) € T4(0*), we have

(4, —0%) = —(1,0%) >0, (A.42)
so that G ¢ N 4(0*), which is a contradiction, and the claim follows.

Therefore, we can write

(u,07) =t]o"[|;” (A.43)
for some ¢ > 0. Then, u € N 4(6*) if and only if
20, (u,67) = (|07, (u,0) <O VIOIF < 07 . (Add)
Since .
(u,0) < t[|07[}7, VB[ < 167[;" = [lully” <t, (A.45)
the statement follows.
|

The k-support norm can be thought of as a group sparse norm with overlaps, such as been dealt with
in [3]. Therefore, we can utilize some of the analysis techniques developed in [3], specialized to
the structure of the k-support norm. We begin by stating a theorem which enables us to bound the
Gaussian width of the error set.

First, we define sets that involve the support set of 8*. Let us define the set G* C G (*) to be the set
of all groups in G*) which overlap with the support of 8*, i.e.

G ={Geg® : Gnsupp(6*) #0}. (A.46)
Let S be the union of all groups in G*, i.e. S = UGEQ* G, and the size of S be |S| = s. We are

going to use three lemmas in order to prove the above bound. The first lemma, proved in [1], upper
bounds the Gaussian width by an expected distance to the normal cone as follows.

Lemma 2 ([1] Proposition 3.6) Let C be any nonempty convex in RP, and g ~ N(0,1,) be a
random gaussian vector. Then

w(CNSPh) < Egldist(g, C*)] (A.47)

where C* is the polar cone of C.

Note that V.4 is the polar cone of T4 by definition. Therefore, using Jensen’s inequality, we obtain
W(Ta NS < EB2(dist(g, Na)] < Egldist(g, Na)?) < Eglllg (@)}, (A48)

where z(g) € N4 is a (random) vector constructed to lie always in the normal cone. The construc-
tion proceeds as follows.



Constructing z(g):

Note that 8%. = 0. Let us choose a vector v € N 4 such that
[v[[$P" = 1and vge = 0. (A.49)
We can choose an appropriately scaled v so that
(v,07) = [16"11;" (A.50)
and let us write without loss of generality v = [vg Vvge].

Next, let g ~ N (0, I,,), and write g = [gs gs-]. We define the quantity

t(g)zmax{”ggﬂg : Geg(k),GgSC}:max (Zg§> c Geg®W gcse

i€G
(A51)
and let z = z(g) = [zs zse] such that
zs = t(g)vs, Zse =gse . (A.52)
Note that
(2,0%) = t(g)(vs,05) = t(g)0"|;" . (A.53)
and
ol = max { |z : G €GM} (A.54)
= max{maX{HzGHg . Geg®W G cs), max{||zgll2 : GeG® G C SC}}
(A.55)
(a) sp*
< max {t(g) IVI}*" . t(e) } (A56)
=t(g) (A.57)

where (a) follows from the definition of ¢(g) and the fact that

max{|z¢ll2 : G € GW,G C S} = t(g) max{|va|: : Geg®, G CS}=tg)v] ,
(A.58)
and since ||v||;” = 1. Therefore, z(g) € N.4(6*) by definition in (A.38) .

In order to upper bound the expectation of ¢(g), we use the following comparison inequality
from [3].

Lemma 3 ([3] Lemma 3.2) Let q1,qo, ..., qr be L, x-squared random variables with d degrees of

freedom. Then
2
E [max qz} < («/210gL+ x/E) . (A.59)

1<i<L
Last, we prove an upper bound on the expected value of ¢(g), as shown in the following lemma.

Lemma 4 Consider G* C G\®) 10 be the set of groups intersecting with the support of 0*, and let S
be the union of groups in G*, such that s = |S|. Then,

E,[t(g)?] < (\/Zklog (p k- m + 2) + \/E>2 . (A.60)

Proof: Note that
Ey[t(g)’] = Eq [(maX{HgGHz L GegM G C SC})Q] (A61)
gEg[max{HgGHg : Geg(k),GQSCH (A.62)



Each term ||gg||3 is a x-squared variable with at most k degrees of freedom. Since the set S has
size s, the set G* has to contain at least s, = [ﬂ groups of size k. Therefore,

s=1S|>k+ (s —1), (A.63)
and therefore the size of its complement is upper bounded by
S| <p—k—sp+1. (A.64)

Therefore the following inequality provides an upper bound on the number of groups involved in
computing the maximum in (A.62)

p—k—s+1 p—k—sp+1 p—k—sp+1
<
S S e G SR R (O

Geg®™ aqcse
{ }

(A.65)
<(p—k—sp+2)F (A.66)
where we have used the following inequality
h
n n
(h) Sﬁ’ VYn>h>0, (A.67)

which also provides

zk: (Z) <(n+1)*. (A.68)

h=1
Therefore, we can upper bound (A.62) using Lemma 3 as

Eg[t(g)?] < Eg[max {||gg|\§ L GegW G c SH (A.69)
2
< <\/2 log ((p k- m + z)k) n \/E) (A.70)
and the statement follows.

]

Now we are ready to prove the upper bound on the Gaussian width. First, note that
W(TA(6%) NSP~1)2 < Eg[dist(g, Na(0%))?] (A.71)
¥ Egllg — 2(e)|3 (A72)
= Ew[l|zs - gsl3] (A.73)
© Efl|zs3] + Elllgslf3] (A.74)
© E[t(g)°] - [vs]3 + 5] (A75)

@ (\/%bg ((p — k- {%] + 2)) + \/E)Q : H s, (A76)

where (a) follows from the definition of distance to a set, (b) follows from the independence of gg
and gge, (c) follows from the fact that the expected length of an |S| length random i.i.d. Gaussian

, and (d) follows since [S| = %2, and that ||vs|2 < y/[£] HVSHZP* =4/[%£]. Thus

inequality (28) follows.

vector is /]S

Next, we prove inequality (27). Let us denote t = X” w, and note that t ~ N(0, I,,)

IXT (y — X0%)[I;7" = |XTw|i?" = [|t][;*" = max{[|tc]2 : GeG®}. (A7)



Therefore, we can use Lemma 3 in order to bound the expectation E[||t||;” | as

E[|[t];”’] = Emax{||ta]> : G € gW}] (A.78)
max{||tc|> : G € g<k> G| = k} (A79)

—E

(,/zlog +—x/_> (A.80)
2

< (,/zmog () +f) (A81)

where we have used the inequality
p (ep)k
< (= A.82
()= (3 .

Therefore, inequality (27) follows, and by our choice of A,, with high probability, 8* lies in the
feasible set.

IN
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