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Microfinance Economies

A Causality

Causality is one of the most natural quests of the human mind. Not only that
it appears in abundance in our daily life, it also has a long history of scientific
expedition, often embroiled in debates among statisticians, philosophers,
economists, and computer scientists [38, 47, 30]. Such a level of contention
among researchers of diverse backgrounds on one single topic is rare and
at the same time indicative of its scientific import and wide applicability.
This paper presents a comprehensive framework for studying causality in
strategic scenarios that often appear in economic settings.

One beautiful example of causality being a contested ground is a book
edited by Daniel Little [38]. The chapters of the book pave the way for an en-
lightening back and forth debate between philosophers and economists. For
example, in Chapter 2, philosopher James Woodward presents a causal inter-
pretation of the structural equation models frequently used by economists.
Woodward promotes the manipulability theory of causation as opposed to
other alternatives, such as Granger’s notion of causation [28]. The manip-
ulability theory resonates with our intuitive perception of causation. That
is, if one variable causes another in a relationship, then changing or inter-
vening the first variable (or other related variables) would provide a way
of manipulating the latter. Now, an important question is: does the re-
lationship remain stable while these interventions are being made? In the
case of an autonomous relationship, the answer is yes. One example of an
autonomous relationship is a law of the physics, such as the law of gravita-
tion, which remains valid under a wide range of interventions. In contrast,
non-autonomous relationships would break down easily under slight changes.

However, instead of thinking of relationships as simply autonomous ver-
sus non-autonomous, Woodward suggests the notion of the degree of au-
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tonomy, which corresponds to the range of interventions (perhaps limited)
under which a relationship would remain stable. Woodward argues that this
notion is particularly well suited for interpreting structural equation models.
One significance of this is that it gives these models an explanatory power,
as Woodward says, “autonomous relationships are causal in character and
can be used to provide explanations.”

Later on, in Chapter 4 of the book, economist Kevin Hoover presents
his view of causality in econometrics while contesting various points made
by the authors of the earlier two chapters, including Woodward [38]. To a
large degree, Hoover’s view concurs with that of Woodward. However, the
two disagree on some of the fundamental issues, such as the explanatory
power of a causal relationship. Hoover contends that “econometric models
do not explain.” Hoover also contests many of the finer constructs, such as
the meanings of “law” and “theory” implied by Woodward, in contrast to
an econometrician’s interpretation of these terms.

The reason we brought up the debate between philosophers and economists
is two-fold. First, it gives a snapshot of the ever-contested topic of causality,
which only highlights its importance across various disciplines. Second, it
exposes a key component of the causality study in general—interventions
or changes made to a system. We will illustrate how we incorporate inter-
ventions in strategic settings, but first, we will take a detour to some recent
happenings in order to further signify the notion of interventions in causality
studies.

A.1 Causal Probabilistic Inference

In recent times, one of the most celebrated success stories in the study
of causality is the development of causal probabilistic inference during the
1990s [48, 49, 45, 50, 46, 47]. Applications of causal probabilistic inference
can now be seen in very diverse disciplines, such as economics, public policy,
sociology, computer science, and various branches of life sciences, to name
just a few. Given its emergence in wide-ranging application domains, it may
at first be surprising to learn that the issue of causation has been swept under
the rug for decades in classical statistics until 1935 when Sir Ronald Fisher’s
seminal work on randomized experiments [24, 25] was published [47, p. 339–
342]. Correlation, rather than causation, had been the prescriptive concept
in statistics all those years. However, correlation alone does not directly
answer questions such as: Does smoking cause cancer? Or, will increasing
taxes cause the national debt to go down?

Judea Pearl, the recipient of the ACM Turing award in 2012 and one of
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the forerunners in the pursuit of studying causality in probabilistic settings,
notes that the reason for this apparent neglect of causation in classical statis-
tics is deeply rooted in the inability of probability theory to express causal
statements [47, p. 342]. In particular, the language of probability theory
is geared toward expressing observational inferences, as opposed to causal
ones. In an observational inference, we may seek the probability of some
events happening given that some other events have happened. Probability
theory lays out a clear set of rules on how to express and manipulate such an
inference question in order to give an answer to this question. In contrast to
observational inferences where some events are observed (or given), causal
inferences are accompanied by the mechanism of intervention. An example
of an intervention is to set a random variable X (over which we have con-
trol) to a specific value x, which Pearl denotes by do(X = x) [47, p. 23].
An inference question in connection with this intervention would be to ask
what would the probability of some events happening be once we perform
this do operation.

On the surface, the causal inference question having a do(X = x) op-
eration may seem to be very similar to an observational inference question
where X = x is given. However, there are two notable differences. First,
the do operation has the power to change the dependency structure among
the random variables. Therefore, it can potentially change the joint prob-
ability distribution of the random variables. Second and as alluded above,
probability theory, in its originality, cannot express this do operation math-
ematically. The study of causality in probabilistic settings has provided us
with a mathematical framework that extends probability theory to express
and process interventions.

In fact, Judea Pearl takes a broader view of causality than just the do
operation. According to him, the study of causality can be hierarchically or-
ganized in three natural types of queries with increasing levels of difficulty:
predictions, interventions, and counterfactuals [47, p. 38]. First, predic-
tion is the type of query where we observe something about the “system,”
and taking that observational knowledge into account, we are asked to infer
something else that we did not observe. The important aspect in prediction
is that we are not allowed to change anything in the system. Changing
something in the system, which Judea Pearl often refers to as surgery, is
permitted in the second type of causal query—interventions. An example is
the the do operation in probabilistic settings, as outlined above. Counter-
factuals, the third type of causal queries, are the most challenging ones in
the sense that we are given some observation about the system and asked to
infer the outcome of the system if the opposite of that observation, in some
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sense, were to take place.
The goal of this paper is to study causal inferences in game-theoretic

settings at the second level of queries, interventions. Since game theory
reliably encodes strategic interactions among a set of players, we will call
this type of inference causal strategic inference.

A.2 Causal Strategic Inference

As mentioned above, our goal is to study interventions, the second type
of causal queries, in game-theoretic settings. Since interventions are per-
formed using surgeries, we now explore different types of surgeries that can
be done in a game-theoretic setting. First, recall from the main body of
the paper that a game in non-cooperative game theory can be described
by a set of players, a set of actions for each player, and a payoff function
for each player that maps each joint-action to a real number [44]. Here, a
joint-action is specified by an action for each player. A central solution con-
cept in non-cooperative game theory is Nash equilibrium. A pure-strategy
Nash equilibrium (PSNE) can be defined as a joint-action of the players
such that every player plays its best response to the other players’ actions
simultaneously. Here, a best-response of a player to the the other players’
actions is defined by an action that maximizes its payoff with respect to the
corresponding joint-action.

Although game theory explicitly represents the actions of the players, it
is different from actions (e.g., the do operation) or interventions in the con-
text of causal probabilistic inference. In game theory, actions are adopted
or played by the players of the game, who are integral parts of the system.
However, in causal probabilistic inference, interventions are performed by
someone outside the system, such as an experiment designer. Notably, an
intervention involving a set of random variables can be performed if one has
control over them. One implication of such an intervention is that it makes
changes to the original system (and hence the name surgery). Therefore,
causal probabilistic inference is a query concerning the changed system, al-
though the given input is with respect to the system before the changes were
made. We will formulate causal strategic inference in an analogous way,
but first, we will answer the question regarding the types of surgeries we
perform. We will consider the following two possibilities.
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Surgery 1: Setting the Actions of Some of the Players

One way of doing a surgery on a game is to restrict the actions of some of
the players. For example, we can set the actions of some of the players to
particular ones. Now, the question is: how should we interpret this surgery?
For example, suppose that player i’s action has been set to ai. Should we
modify the game in a way that player i’s best response is always ai, no matter
what the other players play? Or, should we keep the game unchanged and
rather focus only on those equilibria (if any) where player i plays ai as its
best response? Let us consider these two different interpretations.

First, once we set the actions of some of the players, we can modify the
original game in the following way. Consider any player i whose action has
been fixed to ai. The payoff function of player i is changed so that i’s payoff
is 1 for any joint-action in which i plays ai and 0 for all other joint-actions.
This change makes sure that the preset actions are indeed best responses of
the corresponding players in the modified game (with respect to any action
that the other players play). Note that a Nash equilibrium of the modified
game may not be a Nash equilibrium of the original game. In particular, the
players whose actions have been set may not be playing their best response
with respect to the original game. Therefore, the outcome of the modified
game is not guaranteed to be stable with respect to the original game. Such
an approach has been used in a line of work on finding the most influential
nodes in a social network [35], where the goal is to maximize the spread of a
“new” behavior (e.g., buying a new product) by selecting a small “seed” set
of initial adopters. The underlying mechanism is to set the actions of the
seed players to the one denoting the adoption of the new behavior and then
let the diffusion process set off. At the end of the diffusion process, however,
the seed players may not be playing their best response with respect to the
original game.

Controlling the actions of some of the players has also been used in other
settings. For example, in the setting of network routing games, Sharma and
Williamson study the minimum number of users that need to be controlled
by a central authority to improve the social welfare of a Nash equilibrium
[57]. This is motivated by the case where there are two types of users of a
network application: premium users with the privilege of choosing their own
route of traffic and ordinary users, who must go by whatever the network
administrator has chosen for them [52]. The general problem is to find the
minimum fraction of users to be controlled by the network administrator
to achieve a desirable objective. Here, being controlled by the network
administrator, the ordinary users might be forced to adopt an action that
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they would not have adopted otherwise.
Second and in contrast to the above point, we can also do interventions by

“controlling” the actions of some of the players without changing the game.
For example, after setting the actions of some of the players, we can ask
questions regarding the stable outcomes (e.g., Nash equilibria) where these
players play according to the preset actions. An example of an inference
question in this approach is to ask how many stable outcomes could possibly
result from setting the actions of a subset of the players.

Surgery 2: Changing the Structure of the Game

In this type of surgery, we change the game without setting the action of
any of the players. Note that the notion of “changing the game” is very
much open ended. It can potentially mean changing the payoff function
of a player, removing a player from the game, adding a new player to the
game, changing the set of actions of a player, as well as any combination of
these. Here, we narrow our focus to the structure of a special type of games,
namely graphical games in parametric forms (as opposed to normal forms).
We use the term structure in this context to refer to the underlying topology
of the game. One example of an intervention by changing the structure of
a game is to remove a player from the game. A causal strategic inference
question under this type of intervention is to infer how the outcome of the
game would change due to the intervention.

We study such interventions in this paper, where we model a microfi-
nance market in a game-theoretic way in order to ask causal strategic in-
ference questions, such as what would happen if some of the loss-making
government-owned banks are shut down? To answer such a question, we
first learn the parameters of the model from real-world data and compute
an equilibrium point, which reflects the outcome before the removal of any
bank. We then do an intervention by changing the structure of the game
(i.e., removing the loss-making government-owned banks). After that, we
compute an equilibrium point of the resulting game (note that after remov-
ing the banks, we do not go back and learn the parameters of the model
again). The difference in equilibrium outcomes before and after the removal
of the banks gives us the desired answer.
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B Comparison and Contrast with Econometrics
Literature

We should first clarify that the idea of interventions in strategic settings is
not new. Some of the surgeries we have mentioned above have been studied
before in the context of various application scenarios. However, our main
objective here is to build a comprehensive framework that wraps around
this idea of interventions in strategic settings.

B.1 Causal Strategic Inference in Econometrics

Modeling strategic scenarios and estimating the parameters of the model
are active research topics in econometrics. Here, we will conduct a brief
review of the literature with the goal of illustrating the difference between
our approach and the general approach in econometrics. Since we will not
give any detailed specification of our model, the discussion will be at a high
level.

In econometrics literature, the flagship application scenario for studying
strategic decision-making is the setting where two or more firms simultane-
ously decide whether to enter a market or not. This decision is strategic,
because a firm’s decision and hence its expected profit depend on the deci-
sions of the other firms. As a result, game theory has been the prescriptive
tool for modeling entry decisions in econometrics.

Within the general game-theoretic framework, there is a variety of entry-
decision models in econometrics capturing homogeneous versus heteroge-
neous firms, complete information versus private information settings, and
static versus dynamic games. The literature also shows different ways of
addressing some of the inherent issues like the multiplicity of equilibria and
equilibrium selection. There is, however, one unifying theme in the litera-
ture: almost all of the models are based on the discrete choice model [39, 40].
The discrete choice model in its originality does not allow the utility of an
entity to depend on the actions of the other entities. However, the main
ingredient of a game-theoretic model is this interdependence of actions. To
account for this, the econometrics models that we will review indeed extend
the original discrete choice model to what the literature commonly refers to
as the discrete game model.
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B.1.1 Bjorn and Vuong’s Model of Labor Force Participation

The first discrete game model is attributed to Bjorn and Vuong, who stud-
ied the case of simultaneous decision-making by a husband and a wife on
whether to enter the labor force or not [12]. This is a two-player game,
where each player has two actions. Denoting the action of player i ∈ {1, 2}
by xi ∈ {0, 1} (0 denotes not entering and 1 entering the labor force) and
that of the other player by x−i, the payoff of i is defined using McFadden’s
random utility model [39] as follows.

ũi(xi, x−i) = ui(xi, x−i) + ηi(xi, x−i). (1)

The above payoff function consists of an observed, deterministic part ui
and an unobserved (to the researcher), random part ηi. The first accounts
for observed attributes of the players, such as age, education level, assets,
number of kids, etc. The latter part accounts for factors that the researcher
could not observe or did not model, and as a result, it appears as a random
shock. Every player i observes its own random part ηi, but depending on
whether it also observes the other player’s random part, the game becomes
either a complete information or an incomplete information game, respec-
tively. The model of Bjorn and Vuong is a complete information one. Here,
the best response x∗i of player i can be written as follows.

x∗i = 1 ⇐⇒ ũi(1, x−i)− ũi(0, x−i) > 0. (2)

In other words, player i’s best response is to choose the action that
maximizes its payoff with respect to the other player’s action. A pure-
strategy Nash equilibrium (PSNE) is given by (x∗1, x

∗
2) such that both of

players are best responding to each other simultaneously. 1 Obviously, there
could be three possible types of outcomes in this game: a unique PSNE,
multiple PSNE, and no PSNE at all. Bjorn and Vuong view the data as a
unique equilibrium. However, if the latter two possibilities of multiplicity
and non-existence are ruled out, then they show that the model no longer
remains strategic (that is, the best response of one of the two players does
not depend on the other player’s action). It rather becomes equivalent to a

1Equation (2) shows that the best response of a player depends on the difference
between payoff functions and hence on the difference between the corresponding random
parts of Equation (1). Along with other simplifying assumptions, Bjorn and Vuong’s
main assumption is that this difference between the random parts is a standard normal
distribution with a correlation between the two players.
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previously studied simultaneous equations model with structural shift where
a certain “logical consistency condition” must hold [29, 55]. Now, if the
option of the multiplicity of PSNE is kept on table and if the data is viewed
as a unique PSNE, an important question is: which one of the multiple
possible PSNE is “played” in the data? This is typically known as the
equilibrium selection problem.

Bjorn and Vuong take a randomized approach to this problem of equilib-
rium selection. They assign probabilities to all possible pairs of the reaction
functions 2 of the two players and express the probability of each PSNE in
terms of these probabilities. They then use the maximum likelihood tech-
nique to estimate the probability of observing any particular PSNE, along
with the other parameters of the model that are not detailed here. They
also give a necessary and sufficient condition for these parameters to be
identifiable, which means that if that condition holds, then for any outcome
of the model, the estimated parameters are unique. In other words, differ-
ent instantiations of the parameters cannot generate the same outcome. In
general, identifiability of the parameters is a major focus in econometrics
literature.

Being the first of its kind, Bjorn and Vuong’s model is simplistic and
does not scale well if the number of players is increased. For instance, if
there is a large number of players, then assigning a probability to each
possible combination of the reaction functions of all the players would be
computationally expensive. As we will see, much of the later literature
actually avoids combining the reaction functions of the players.

B.1.2 Entry Models of Bresnahan and Reiss

Bresnahan and Reiss investigate entry in monopoly markets using two types
of models: a simultaneous, game-theoretic model and a sequential decision
making model [14]. Their empirical study is based on the markets of auto-
mobile dealers with a focus on how market sizes influence entry decisions and
whether the second entrant faces entry barrier (i.e., whether the fixed cost
and market opportunities for the second entrant are less favorable compared
to the first entrant).

This is again a two-player, two-action setting. We will first give a brief
overview of the simultaneous-move model of Bresnahan and Reiss. Suppose
that ũMi and ũDi are the payoffs of firm i in a monopoly and a duopoly

2For example, the husband’s reaction function could be one of the followings: choosing
action 1 all the time (no matter what the wife has chosen), choosing 0 all the time, choosing
whatever the wife has chosen, and choosing the opposite of what the wife has chosen.
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market, respectively. We will not go into the details of these payoff func-
tions, but as in the Bjorn-Vuong model, they also comprise of two parts:
an observable part and an unobserved, random part. The random part is
observed by both the players, although not by the researcher. The entry
decision (x∗1, x

∗
2) would be a pure-strategy Nash equilibrium (PSNE) if and

only if the following best response condition holds for all firms i = 1, 2.

x∗i = 1 ⇐⇒ (1− x∗−i)ũMi + x∗−iũ
D
i > 0.

Given a particular model, a PSNE outcome could be one of the following
five types: monopoly by firm 1, monopoly by firm 2, duopoly, no entrant,
and finally, monopoly by either firm 1 or firm 2 (but not duopoly). Once
again, the multiplicity of PSNE is deemed challenging, as the authors say,
“The presence of non-unique equilibria in game-theoretic models makes it
impossible to use standard qualitative choice models to model entrants’ prof-
its.” This is so, because the data is viewed as a unique PSNE. As Bjorn
and Vuong showed earlier, restricting the model to rule out the multiplicity
of PSNE results in a model that is not strategic any more. Therefore, the
equilibrium selection problem arises inevitably.

Regarding the problem of equilibrium selection, Bresnahan and Reiss
observe that if the model is reinterpreted to predict the number of entrants
instead of the identity of the entrants, then the PSNE outcome is always
unique. Another approach to avoid the multiplicity of PSNE is to consider a
sequential-move version of the model. It is easy to show that if the firms do
not make their decisions simultaneously, then the outcome is unique. The
estimation of the model parameters using spatially isolated rural automobile
dealership markets shows that the second entrant is not subjected to entry
barrier and that its entry does not cause the first entrant’s profits by much.
In many cases, this is due to the market size being already very big when
the second firm enters the market.

In a related paper, Bresnahan and Reiss discuss the issues of the existence
and the uniqueness of PSNE in discrete game models [15]. They also discuss
how one could deal with mixed-strategy Nash equilibria (MSNE) in discrete
game models and how these models can be extended to the cooperative
games setting. Although they motivated the issues of MSNE and cooperative
games using real world examples, they did not actually apply their ideas
to any empirical setting. For instance, they say that “the researcher must
exercise care when selecting [certain probability] distributions,” which needs
to be done on a case by case basis if we would like to consider MSNE.
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B.1.3 Berry’s Model of Entry in Airline Markets

Airline markets, each consisting of a source-destination pair of cities, have
been studied by economists from different points of view. A common ex-
ample is various explanations of an airline’s profit due to its hub and spoke
network [37]. Berry took a different approach to studying an airline market,
by investigating the effects of strategic entry decisions of an airline on the
profitability of the flights in a market [11]. To model the entry decision of
an airline in a market, Berry presents a discrete game model that allows
for a large number of heterogeneous airlines. Apart from the specifics of the
model, this is one of the key differences with the previous entry models, such
as the ones by Bresnahan and Reiss. Heterogeneity among the airlines can
be observed in terms of their flight networks, fleets of aircrafts, etc. Hetero-
geneity can also be due to unobserved factors. In Berry’s model, the payoff
of an airline i in a market k is defined as follows.

uik(xk) = vk(f(xk)) + φik.

Here, xk is the vector of the entry decisions of each airline i in a mar-
ket k, xik ∈ 0, 1 denotes an airlines entry decision. The first term in the
payoff function is market specific and captures the competitive effect due
to the entry decisions of the airlines, and the second term is specific to the
airline-market pair and is treated as a single index of profitability. In order
to guarantee the existence of a PSNE and the uniqueness of the number of
PSNE (to deal with the equilibrium selection problem as mentioned above),
Berry imposes several assumptions. First, the airlines in a market k can
be sorted according to the profitability index φik, and this ordering is in-
dependent of the entry decisions. Second, the function f(xk) in the first
term is defined as the count of entrants, i.e., f(xk) =

∑
i xik. Third, the

market-specific function vk is decreasing in the number of entrants.
As before, each of the two terms in the above payoff function is further

decomposed into two parts: one observable part and one unobserved, ran-
dom part. Again, the setting here is a complete information game. The main
challenge in analytically characterizing the probability of a certain number
of entrants is due to the large number of airlines, which contributes to an
exponential number of integrations over the random parts. Berry proposes
two directions to address this. The first one is to impose additional restric-
tions on the model, such as removing the part of strategic interaction from
the payoff function (i.e., an airline’s profit is not affected by the number of
entrants). The other direction is to apply simulation estimators [41]. The
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estimated model shows a strong negative influence of competition on an air-
line’s profit, which can limit the effectiveness of a policy encouraging the
potential entrants.

As Berry points out, his entry model is guided by a “partial equilibrium
approach,” where instead of considering an airline’s network of flight routes,
the analysis focuses on a pair of source-destination cities. However, we
know that the network structure of an airline’s flight routes is one of the
most important ingredients of its operation and profitability. In our view,
the major challenge in accounting for this network structure is due to the
analytical approach to the problem. An alternative to deal with this would
be an algorithmic approach, which we pursue in this paper (although not on
the same problem).

Berry’s model has been subsequently extended by others. Ciliberto and
Tamer allow a general form of heterogeneity among the airlines that no
longer guarantees a unique number of entrants in all the PSNE of the (com-
plete information) game [17]. Without assuming a particular equilibrium
selection rule, they bound the choice probabilities between an upper and a
lower limit. They estimate the parameters of the model by minimizing the
distance between the set of choice probabilities between these two bounds
and the probabilities estimated from the data. Apart from modeling the
airline industry, a different work by Berry et al. presents techniques to esti-
mate the parameters of an oligopolistic market with a wide range of product
differentiation with applications to the U.S. automobile market [10].

B.1.4 Other Models

The three early models that we reviewed above exhibit some of the key as-
pects of the general econometrics approach to modeling strategic scenarios,
such as the adoption of a random utility model [39, 40], analytical char-
acterizations of some of the quantities of interest, a way of dealing with
the multiplicity of PSNE (for example, a randomized equilibrium selection
mechanism) or a way of avoiding the multiplicity issue altogether (for ex-
ample, by imposing additional assumptions that would lead to a unique
equilibrium or by reinterpreting the model to predict a common property of
all PSNE, such as the number of players playing a particular action), and the
identifiability of the parameters of the model. The literature has since been
enriched with a number of interesting pieces of work extending the previous
research as well as injecting new ideas to deal with these challenging tasks.
Here, we will briefly review a sample of some of the widely cited research
along this line.
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B.1.5 Seim’s Model of Product Differentiation

The early game-theoretic entry models, such as the one by Berry [11], focus
mostly on firm-specific profits and the competitive effects of multiple en-
trants, but do not model product differentiation by the firms. Seim proposes
a discrete game model of entry decisions that allows the firms to spatially
differentiate their products by choosing, for example, a location of operation
[56]. Her empirical study is based on the location choice of video retailers.
In contrast to much of the earlier work, she models entry decisions as a game
of incomplete information, which accounts for a firm’s lack of information
about many of the characteristics of another firm, such as that firm’s man-
agerial talent. Interestingly, the reason why many of the earlier models were
games of complete information is that the incomplete information version
was thought to be more challenging. For example, Bresnahan and Reiss
say, “Games of private information pose much more complicated estimation
issues” [15, p. 60]. However, it later turned out that an equilibrium in an
incomplete information game (also known as the Bayes-Nash equilibrium)
can be characterized more easily [53] and that the estimation can also be
done in a straightforward two-step method [7]. As a result, modeling a
scenario as an incomplete information game often serves the dual purpose
of modeling various unobserved idiosyncrasies as well as dealing with that
model in a tractable fashion.

Going back to the model of Seim, a market consists of multiple locations,
and each firm chooses an entry location if it decides to enter the market.
The choices of the firms are made simultaneously. The payoff function of
a firm consists of the following terms: an observable location-specific char-
acteristics (such as the population and the income level of the potential
customers), an unobserved market-specific random term, a competitive ef-
fect term that accounts for the decisions of all the firms, and an unobserved
firm and location-specific term that captures the firm’s private information
about its profitability in that location. The last term is assumed to be in-
dependently and identically distributed (iid) draws from a type-1 extreme
value distribution, which leads to closed form expressions for a firm’s choice
probabilities. The goal of the model is to predict the unique number of en-
trants in a PSNE, although Seim also shows that the PSNE itself is unique
under certain additional assumptions. The estimated model shows that
video retailers use location choice to their competitive advantage. Also, as
the market size increases, the local demand decreases due to the spreading
out of the population density. As a result, the number of entrants does not
increase by much.
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B.1.6 Augereau et al.’s Model of Technology Adoption

Beyond entry decisions, discrete game models have been designed for many
other interesting phenomena, such as adoption of a particular technology.
Augereau et al. study the adoption of the 56K modem technology by the
ISPs in a market during the late 1990s [3]. At that time, there were two
competing and incompatible implementations of the 56K standard, one by
the U.S. Robotics and the other by Rockwell. If an ISP adopts the U.S.
Robotics technology, for example, then its customers must also buy the
U.S. Robotics modems to enjoy a high-speed connection. Augereau et al.
model the choice of the ISPs as a discrete game of incomplete information,
which accounts for the characteristics of the market as well as the ISPs and
the simultaneous decision of the ISPs. They show that the ISPs in a market
want their choice to be different from their competitors (so that they do not
lose their customers to their competitors).

B.1.7 Sweeting’s Model of the Timing of Radio Commercials

Whereas Augereau et al.’s result on technology adoption among ISPs can
be interpreted as a coordination failure, Sweeting’s model of radio stations’
choice of timings for playing commercials tells us the opposite story of co-
ordination and synchronization. In Sweeting’s model, the radio stations in
a market choose timings for advertisement strategically with their payoff
function capturing market and station specific factors, a competitive factor
that takes the form of the proportion of the other stations that choose the
same time, and a private information term modeled as a random shock.
Sweeting shows how the multiplicity of equilibria can help the identification
of the parameters of the model. Estimation is done by the two-step method
of Bajari et al. mentioned above [7]. The finding of coordination among the
radio stations signifies that the interests of the radio stations are somewhat
aligned with the interests of the advertisers. During drivetime hours, the
coordination incentive is very strong. Multiplicity of equilibria is also more
common during that time.

B.1.8 Discrete Game Models of the Banking Sector: ATM Net-
works

Game-theoretic models have also been developed to capture decision mak-
ing in the banking sector. Consider the case of ATM networks for example.
From our daily experience, the ATM networks of different banks are incom-
patible unless we pay a surcharge. This surcharge never covers the cost of
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the ATM service of a bank. It is rather intended to attract customers to
open deposit accounts at the bank. As a result, larger banks often charge
more surcharge than smaller banks and credit unions.

Ishii models banks and customers as strategic decision makers in a two-
sided market to understand the effects of this surcharge [31]. In brief, the
payoff function of a customer for choosing a bank (i.e., having a deposit ac-
count in that bank) in a market accounts for the customer’s observable char-
acteristics, the bank’s observable characteristics (e.g., its number of ATMs),
the bank’s interest rate (which is determined by the bank strategically), and
the unobservables corresponding to the customer and the bank. The banks,
on the other hand, maximize their profits in two stages. In the first stage,
each bank strategically chooses the number of ATMs to be deployed. In
the second stage, it chooses an interest rate to maximize its profit given
a PSNE from the previous stage. We will not go into the details of these
two stages. The estimation is done by the generalized method of moments
(GMM) method. The estimated model captures the phenomenon that when
choosing a bank, customers are influenced by the bank’s ATM network size
and its surcharge. It also shows that the revenue from the ATM service does
not cover its cost. Rather, the incentive for a bank to invest in an ATM
network lies in securing a share of the deposit market.

An interesting feature of Ishii’s work is her study of various counterfac-
tuals. For example, what would happen if the surcharges are eliminated by
law? In that case, the model predicts that the market becomes less concen-
trated. That is, the market share of customer deposits is reallocated from
the larger banks to the smaller ones. In response, the larger banks raise the
interest rates on deposit, which decreases their profit. In fact, the overall
profit of the industry decreases due to the elimination of surcharges. To
the contrary, the presence of surcharges encourages banks to expand their
ATM networks, although it makes the market share of customer deposits
concentrated at the larger banks.

B.1.9 Discrete Game Models of the Banking Sector: Adoption
of ACH

Game-theoretic models of decision making have also been developed to study
other phenomena in the banking industry, such as the adoption of automated
clearinghouse (ACH) technology, which provides an electronic equivalent of
paper checks and is commonly used in direct deposits and automated bill
payments. Ackerberg and Gowrisankaran estimate the magnitude of net-
work effects in ACH adoption [1]. The model has two sides: banks and
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customers (e.g., small businesses), where the customers are treated as ho-
mogeneous. Two banks can do an ACH transaction if both have already
adopted this technology. On the other hand, there are two alternatives for a
customer. In a one-way transaction, a customer may receive ACH payment
without adopting the technology, provided that her bank has adopted it. In
a two-way transaction, a customer must also adopt the ACH technology in
addition to her bank.

Ackerberg and Gowrisankaran define a two-stage game. In the first stage,
the banks simultaneously decide whether to adopt ACH or not, and in the
second stage, the customers decide on the adoption of ACH, given the de-
cision of the banks. This model does not rule out the multiplicity of equi-
libria. The way the authors approach equilibrium selection is by estimating
the probability of seeing one of the two extreme equilibria (Pareto-best and
Pareto-worst), which is obviously a simplification compared to consider-
ing all possible equilibria. The estimation of the parameters is done by a
simulation method. The estimated model is used for counterfactual policy
experiments. The model suggests that government subsidy directed toward
the customers is more effective for ACH adoption than that directed toward
the banks.

B.1.10 Recent Developments

The subject of discrete game models is an active area of research in econo-
metrics. Recently, Bajari, Hong, and Ryan presented methods for identi-
fication and estimation of discrete game models of complete information,
which are also applicable to general normal-form games [8]. A key feature
of their work is that they estimate both the parameters of the model and
the equilibrium selection mechanism. For the latter, they compute all the
equilibria of a game using the algorithm of McKelvey and McLennan [42].
This is certainly a computationally expensive step for large games. In a
separate work, Bajari et al. address estimation of discrete game models
of incomplete information [6]. Finally, an excellent survey of some of the
recent results on the variants of discrete game models (e.g., complete vs.
incomplete information, static vs. dynamic games) and their identification,
estimation, and equilibrium selection has been presented by Bajar, Hong,
and Nekipelov [7].
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B.2 Causal Strategic Inference: Our Approach

Even though we study a completely different set of problems than the ones
reviewed above, we share the most important ingredient of strategic deci-
sion making with all these problem. However, there are some fundamental
differences between our approach to studying strategic settings and that of
econometricians in general. Once again, since we have not formally defined
any of our models, this discussion will not focus on any detail. It will rather
highlight these key differences in the context of causal strategic inference.

B.2.1 Analytic vs. Algorithmic Approaches

First, an econometrics approach to dealing with strategic settings is in large
part analytic. True, econometricians do provide algorithms (e.g., algorithms
for estimating parameters), but for the most part, those algorithms are
primarily driven by analytic techniques. See, for example, the two-step
estimator for discrete games of incomplete information [7]. In contrast, the
main focus of this paper is an algorithmic approach to problems.

Note that we do not claim that an algorithmic approach is better than
an analytic approach. However, in certain situations, an algorithmic ap-
proach might provide a good alternative to an analytic approach. This is
particularly the case when we have large, complex systems with an under-
lying structure. For example, the network structures of an airline’s flight
routes are not often exploited in the econometrics models of airline mar-
kets [11]. This could be due to the challenge posed by dealing with a large,
heterogeneous system in an analytic manner. As mentioned above, such
complex systems are exactly the focus of this paper. We show that looking
through an algorithmic lens helps us solve problems that would otherwise
be impossible to manage analytically.

B.2.2 Modeling

A common modeling approach in the econometrics literature that we re-
viewed is to adopt of the random utility model [39, 40]. Besides giving
a reasonable way of modeling unobservables, this approach sometimes also
leads to simple closed form expressions that are easy to deal with. For exam-
ple, the choice probabilities in a discrete game model can be expressed that
way when the random parts of the payoff functions are iid type-1 extreme
value distributed.

In contrast, the modeling approach in this paper is completely different.
We model two-sided microfinance markets using the well-studied concept of
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abstract economies in classical economics [19, 2]. Our model of microfinance
markets is network-structured, and a very special case of it can be shown
to be one type of Fisher market [23], which has been a subject of intense
algorithmic study by computer scientists in recent years.

Again, we do not claim that our models are “superior” to the random
utility model in any sense. Rather, with the specific applications that we
would like to address here, our modeling approach serves the purpose best
while having its root in the relevant social science literature. The key aspects
of our models are heterogeneity, network-structure, compact representation,
and the ability to capture the strategic interactions among a large number
of entities.

B.2.3 Estimation

Econometrics and computer science (machine learning, in particular) have
diverging views on the issue of the estimation of parameters. As we saw in
the literature review above, the identification of the parameters of a model
(or some function of the parameters) is a major concern in econometrics lit-
erature. The reason is that if the parameters are not identified (i.e., different
instantiations of the parameters lead to the same outcome), then the esti-
mated model may be very different from the actual system that generates
the data, even though the estimated model produces almost the same out-
come as the actual system. To ensure identification, additional restrictions
are sometimes imposed on the model. Identification with infinite sample is
also very common [8, 6].

In contrast, one of the most primitive principles of machine learning is
Occam’s razor, which says that if multiple models explain the same obser-
vation reasonably well, then we should choose the “simplest” model. Com-
pared to a complex model, a simpler model usually also shows more gener-
alization power in terms of predicting something that has not been observed
before. However, too much simplicity might not capture the observed data
well. Therefore, researchers often strike a balance between simplicity and
complexity, which is usually guided by the well-known bias-variance tradeoff
(a high bias corresponds to too much simplicity and a high variance corre-
sponds to complexity). One technique often employed for this is to estimate
the parameters of a model using a portion of the data, not the whole, and
then to test its predictive power using the rest of the data. At the end, the
best predictive model is chosen.

Estimation in econometrics, on the other hand, is very different from
that in machine learning. In econometrics, all the available data is used
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for the purpose of estimation, and a high variance is a desirable objective.
The anxiety about whether the estimated model would perform well in an
unforeseen environment is eased with the assurance that the parameters
have been identified. However, as we mentioned above, identification often
necessitates making strong assumptions.

There are many other contested issues between these two disciplines,
which are out of scope for this paper. It is not that one of the approaches is
good and the other is bad. It is just that they are different. In this paper,
we have taken a machine learning approach to estimation. The estimation
is done using a bi-level optimization program. In our work, the predictive
power of a model with respect to unforeseen events has been the prime focus.

The objective of our estimation is also different from that of the fast
growing literature on causal estimation in computer science and statistics.
For example, a common technique for understanding the effects of new prod-
uct features on consumers is known as bucket testing, which basically ex-
poses the feature to a random sample of the population and measures its
effect on them. With the advent of online social networks like Facebook,
bucket testing can no longer focus on a disconnected random sample of
users. It also needs to consider the network structure, because in the con-
text of online social networks, the effect of a new feature is more meaningful
when a user as well as some of her friends are exposed to it, compared to
only the user being exposed in isolation.

To extend bucket testing to networked settings, Backstrom and Klein-
berg propose a graph-theoretic sampling technique that addresses these two
competing requirements: samples need to be uniformly random and they
also need to be well-connected [5]. Along the same line, Ugander et al. pro-
pose graph cluster randomization techniques to give an efficient algorithm to
compute the probability of the exposure of a user [59]. They also show that
their techniques can lower the estimator variance. In another notable work,
Toulis and Kao propose two techniques for estimating causal peer influence
effects—a frequentist approach that can deal with more complex response
functions and a Baysian approach that provides more accurate estimates
under network uncertainties [58]. In contrast to this line of work, our goal
is not causal estimation. We rather want to estimate models that capture
strategic interactions.

B.2.4 Equilibrium Selection

Almost all of the models we reviewed above exhibit multiplicity of equi-
libria. Therefore, the question of equilibrium selection naturally arises as
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the data is often viewed as a single equilibrium. Econometrics literature
suggests three main ways of dealing with the equilibrium selection problem
[8, 7]. First, the probability that an equilibrium, which is generated by the
model, is observed in the data is estimated [12, 8]. Sometimes, instead of
considering all possible equilibria, only a few equilibria are considered in
this probabilistic approach [1]. Second, the model can sometimes be rein-
terpreted to give a unique outcome, even if there are multiple equilibria. A
typical example is considering the number of entrants instead of the identity
of entrants in an equilibrium of an entry market [14, 11]. Third, the choice
probabilities can sometimes be bounded between two limits, which guides
the selection of an equilibrium [17].

In our study of microfinance markets, our model can potentially gen-
erate multiple equilibria. We select one of these equilibria that is geomet-
rically closest to the observed data. This equilibrium selection mechanism
is embedded in the parameter estimation procedure. We also test for the
robustness of this mechanism. We find that even if we introduce consider-
ably large magnitudes of noise in the data, this mechanism selects the same
equilibrium.

B.2.5 Interventions

A key component of causal strategic inference as well as causality in general
is interventions. All of the econometrics studies reviewed above concern two
of the components of causal strategic inference that we mentioned earlier:
modeling a strategic scenario and estimating the parameters of the model.
However, many of these studies do not perform interventions. There are,
of course, exceptions. For example, Isii studies the effect of removing the
ATM surcharges [31]. Ackerberg and Gowrisankaran show the comparative
effects of subsides to customers and banks on ACH adoption [1].

The main focus of this work is a wide range of interventions. We perform
various interventions in a microfinance market, such as setting an interest
rate cap, removing a bank from the system, providing subsidies to certain
banks to make loans more affordable, etc. It should be mentioned here that
interventions by removing players is not a new concept. Ballester et al., for
example, performed interventions in a criminal network by removing players
from it [9].
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B.3 Connection to Existing Models of Networked Economies

Our model is essentially one of networked economy. In recent times, there
has been an intense, inter-disciplinary research effort in the area of networked
economies, primarily undertaken by the economics and the computer science
communities and in many instances jointly by researchers from these two
communities. Subjects of investigation have ranged from generalizing ab-
stract economies in a graphical setting [33], modeling networked markets,
such as labor markets and trades (see, for example, Chapter 10 of [32]), de-
signing mechanisms with desirable properties for such markets [4], analyzing
how properties such as competition [13] and price variation [34] are influ-
enced by the underlying network structure, to the most fundamental algo-
rithmic question of computing an equilibrium point in such settings [54, 33].
Although we postpone a formal description of our model, we will now place
our model in the context of the existing ones at a very high level.

Let us begin with the Fisher model [23], which consists of a set of buyers
and a set of divisible goods sold by one central seller (i.e., a fully connected
network). The buyers come to the market with some initial endowments of
money, and each has a utility function over bundles of goods. Given the
prices of the goods, their objective is to use their endowment to purchase a
bundle of goods that maximizes their utility. An equilibrium point consists
of the unit prices and the allocations of goods such that each buyer fulfills his
objective and in addition, there is no excess demand or excess supply (i.e.,
the market clears). A graphical Fisher model with one good [34] consists
of a set of buyers and a set of sellers. All the sellers sell the same good,
but the important aspect of this model is that each buyer has access to a
subset of the sellers, not necessarily all the sellers. An equilibrium point in
this graphical setting is defined similar to the original one. An important
distinction between our model and graphical Fisher model is that our model
allows buyers (i.e., villages) to invest the goods (i.e., loans) in productive
projects, thereby generating revenue that can be used to pay for the goods
(i.e., repay the loans). In other words, the crucial modeling parameter of
“endowment” is no longer a constant in our case. Furthermore, in our
model, the villages have a very different objective function than the one in a
Fisher model [34, 60]. There is, however, an interesting connection between
our model and that of Fisher through an Eisenberg-Gale convex program
formulation, which we showed in the main body of the paper.

Arrow and Debreu gave a very generalized model of economy in their
seminal work on competitive economies [2]. In fact, a Fisher economy is a
special case of an Arrow-Debreu economy (see, for example, [60]). Arrow
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and Debreu’s proof of the existence of an equilibrium point uses Debreu’s
concept of abstract economy [19], which interestingly generalizes Nash’s non-
cooperative games [43] in the following way. In an abstract economy, not
only a player’s payoff but also her domain of actions are affected by another
player’s choice of action. Putting our model in the context of an abstract
economy, a village’s set of possible demands for loan from an MFI depends
on the MFI’s interest rate. For example, in the simplest setting of one MFI
operating in one village, the village cannot ask for unlimited amount of loan
from the MFI if the MFI’s interest rate is above a certain bound. How-
ever, for the same reasons cited in the previous paragraph (i.e., variable
endowment), the classical Arrow-Debreu model or more specifically, a re-
cently developed graphical extension to the Arrow-Debreu model [33], does
not capture our setting.

Our work is different from various other works on networked economies [36,
4, 54, 26, 22, 13] from the perspectives of modeling, problem specification,
and application. For example, Kranton and Minehart model buyer-seller ex-
change economies as networks with an emphasis on the emergence of links in
such networks [36]. They show that although buyers and sellers are modeled
as self-interested non-cooperative agents, “efficient” network structures are
necessarily equilibrium outcomes and that for a restricted case, equilibrium
outcomes are necessarily efficient. In a related work of significant impli-
cations, Even-Dar et al. completely characterize the set of all buyer-seller
network structures that are equilibrium outcomes in their model of exchange
economies [22]. In contrast to these works, we do not study network forma-
tion here, i.e., we treat the spatial structure of the branch-banking MFIs as
exogenous.

C Complete Proofs

We use the following two optimization programs throughout this section.
MFI-side optimization problem.
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max
ri

1

subject to ri

Ti −∑
j∈Vi

xj,i

 = 0

∑
j∈Vi

xj,i ≤ Ti (PM )

ri ≥ 0

Village-side optimization problem.

max
xj=(xj,i)i∈Bj

∑
i∈Bj

xj,i + λ
∑
i∈Bj

xj,i log
1

xj,i

subject to
∑
i∈Bj

xj,i(1 + ri − ej) ≤ dj (PV )

xj ≥ 0

C.1 Special Case: No Diversification of Loan Portfolios

Property C.1. At any equilibrium point (x∗, r∗), every MFI i’s supply must
match the demand for its loan, i.e.,

∑
j∈Vi x

∗
j,i = Ti. Furthermore, every

village j borrows only from those MFIs i ∈ Bj that offer the lowest interest
rate. That is,

∑
i∈Bj ,r∗i =r

∗
mj
x∗j,i(1 + r∗i − ej) = dj for mj ∈ argmini∈Bj

r∗i ,

and x∗j,k = 0 for any MFI k /∈ mj.

Proof. Suppose that there is an MFI i such that at an equilibrium point
we have

∑
j∈Vi x

∗
j,i < Ti. Clearly, in this situation, MFI i’s constraint of

r∗i

(
Ti −

∑
j∈Vi x

∗
j,i

)
= 0 can only be satisfied if r∗i = 0. However, if r∗i = 0

then for any village j ∈ Vi, the optimal demand x∗j,i will be unbounded.
This happens because each village j wants to maximize

∑
i∈Bj

xj,i, and

with r∗i = 0 and ej ≥ 1, the term (1 + r∗i − ej) in the first constraint of (PV )
becomes ≤ 0. Since dj > 0, that constraint is satisfied for x∗j,i = +∞. But
x∗j,i = +∞ contradicts the constraint

∑
j∈Vi x

∗
j,i ≤ Ti in the MFI side (PM ).

Therefore, for every MFI i,
∑

j∈Vi x
∗
j,i = Ti must hold at any equilibrium

point. 3

3It is important to note that in the above argument, the village side has been allowed
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For the second claim, in order to maximize its objective function
∑

i∈Bj
x∗j,i,

every village j will be interested to borrow only from those MFIs that have
the minimum interest rate r∗mj

, where mj ∈ argmini∈Bj
r∗i . Furthermore, at

any equilibrium point, each village’s budget constraint, i.e., the first con-
straint in (PV ), must hold with equality. Otherwise, suppose that the fol-
lowing strict inequality holds for some village j at an equilibrium point:∑

i∈Bj ,r∗i =r
∗
mj
x∗j,i(1 + r∗i − ej) < dj . Since this is a strict inequality, village j

can still increase its objective function
∑

i∈Bj
x∗j,i. Therefore, village j is not

maximizing its objective function, contradicting our assumption that this is
an equilibrium point.

Property C.2. At any equilibrium point (x∗, r∗), for every MFI i, r∗i >
maxj∈Vi ej − 1.

Proof. Consider any MFI i. Let k ∈ arg maxj∈Viej . Suppose that r∗i ≤ ek−1.
Then we get (1+r∗i −ek) ≤ 0. This allows x∗j,i to go to +∞, and that violates
the constraint

∑
j∈Vi x

∗
j,i ≤ Ti, contradicting the assumption that this is an

equilibrium point. 4

Following are two related results that preclude certain trivial allocations
at an equilibrium point.

Property C.3. At any equilibrium point (x∗, r∗), for any village j, there
exists an MFI i ∈ Bj such that x∗j,i > 0.

Proof. Suppose that for some village j, and for all i ∈ Bj we have x∗j,i = 0.
Since dj > 0, the constraint

∑
i∈Bj

x∗j,i(1 + r∗i − ej) ≤ dj of (PV ) is satisfied,

but village j is not maximizing
∑

i∈Bj
x∗j,i. This contradicts that (x∗, r∗) is

an equilibrium point.

Property C.4. At any equilibrium point (x∗, r∗), for any MFI i, there exists
a village j ∈ Vi such that x∗j,i > 0.

to demand x∗j,i = +∞ even though Ti is finite for MFI i. As mentioned earlier, the reason
is that the MFI-side optimization problem (PM ) treats x∗j,i as exogenous and does not
have a direct control over it inside (PM ). Moreover, the village-side optimization problem
(PV ) for village j selects (x∗j,i)i∈Bj in order to maximize its objective function

∑
i∈Bj

x∗j,i,

without considering the MFI-side constraint
∑

j∈Vi
x∗j,i ≤ Ti. The contradiction is due to

the necessary condition that at any equilibrium point (x∗, r∗), all the constraints of both
(PM ) and (PV ) must be satisfied.

4Once again, village j’s demand x∗j,i is determined in (PV ) without trying to satisfy
the constraints of (PM ). However, at an equilibrium point (x∗, r∗), both the village-side
and the MFI-side problems must be optimized simultaneously.
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Proof. If there exists an MFI i such that for all villages j ∈ Vi, x
∗
j,i = 0,

then this violates the first constraint of (PM ) in the following way. By
Property C.2, r∗i > 0, and by our modeling assumption, Ti > 0. Therefore,

r∗i

(
Ti −

∑
j∈Vi x

∗
j,i

)
> 0.

C.2 Eisenberg-Gale Formulation

We now present an Eisenberg-Gale convex program formulation of a re-
stricted case of our model where the diversification parameter λ = 0 and
all the villages j, 1 ≤ j ≤ m, have the same revenue generation func-
tion gj(l) := d + el, where d > 0 and e ≥ 1 are constants. We will first
prove that this case is equivalent to the following Eisenberg-Gale convex
program [21, 60], which will give us the existence of an equilibrium point
and the uniqueness of the equilibrium interest rates as a corollary.

Let us explain our overall plan here. We will first write down the
Eisenberg-Gale convex program (PE) below. We will then make a con-
nection between an equilibrium point (x∗, r∗) of a microfinance market and
the variables of program (PE). In particular, we will define x∗j,i ≡ z∗j,i and
express r∗i in terms of certain dual variables of (PE). Once we do that, we
will show that the equilibrium conditions of (PM ) and (PV ) for the above
mentioned special case are equivalent to the Karush-Kuhn-Tucker (KKT)
conditions of (PE). Let us begin by writing down the Eisenberg-Gale pro-
gram (PE). 5

min
z

m∑
j=1

− log
∑
i∈Bj

zj,i

subject to
∑
j∈Vi

zj,i − Ti ≤ 0, 1 ≤ i ≤ n (PE)

zj,i ≥ 0, 1 ≤ i ≤ n, j ∈ Vi

Following are the Karush-Kuhn-Tucker (KKT) conditions for (PE).

Stationary condition:

∇z

 m∑
j=1

− log
∑
i∈Bj

zj,i

+
n∑
i=1

γi∇z

∑
j∈Vi

zj,i − Ti

+
n∑
i=1

∑
j∈Vi

µj,i∇z (−zj,i) = 0

5This is not exactly the convex program that Eisenberg and Gale defined [21, p. 166],
but rather a simple variant of that.
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Evaluating this at z∗j,i for any i ∈ {1, ..., n} and any j ∈ Vi, we obtain

the following. 6

− 1∑
k∈Bj

z∗j,k
+ γ∗i − µ∗j,i = 0 (3)

Primal feasibility:∑
j∈Vi

z∗j,i − Ti ≤ 0, 1 ≤ i ≤ n

z∗j,i ≥ 0, 1 ≤ i ≤ n j ∈ Vi

Dual feasibility:

γ∗i ≥ 0, 1 ≤ i ≤ n
µ∗j,i ≥ 0, 1 ≤ i ≤ n, j ∈ Vi

Complementary slackness:

γ∗i

∑
j∈Vi

z∗j,i − Ti

 = 0, 1 ≤ i ≤ n (4)

µ∗j,i
(
−z∗j,i

)
= 0, 1 ≤ i ≤ n, j ∈ Vi (5)

Note that if γ∗i > 0, then (4) gives us the following.∑
j∈Vi

z∗j,i − Ti = 0, 1 ≤ i ≤ n (6)

2
Furthermore, if z∗j,i > 0 then (5) implies µ∗j,i = 0. In that case, we obtain

the following from the stationary condition (3).

γ∗i =
1∑

k∈Bj
z∗j,k

(7)

The following properties are obtained from the optimality condition of
the above Eisenberg-Gale convex program (PE).

Lemma C.5. For any i, there exists a j ∈ Vi such that z∗j,i > 0.

6The quantities at an optimal solution are denoted by ∗.
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Proof. Suppose that for some i, and for all j ∈ Vi, z∗j,i = 0. This contra-
dicts the optimality condition, because Ti > 0, and

∑
j∈Vi z

∗
j,i = 0. Thus,∑

j∈Vi z
∗
j,i − Ti < 0, and

∑m
j=1− log

∑
i∈Bj

z∗j,i can be further decreased by
increasing the value of z∗j,i for some j.

Let us define I∗(j) ≡ {i | z∗j,i > 0}. We will later see that this represents
the set of MFIs from which a village j borrows at an equilibrium point.

Lemma C.6. For any j, |I∗(j)| > 0.

Proof. Suppose that z∗j,i = 0 for some j and for all i ∈ Bj . Rearranging the
terms of (3), we have for any i ∈ Bj :

γ∗i =
1∑

k∈Bj
z∗j,k

+ µ∗j,i.

Since µ∗j,i ≥ 0 by the dual feasibility condition, we have γ∗i = +∞ from the
above expression. This contradicts the complementary slackness condition
(4), because Ti > 0 by our modeling assumption. Therefore, for any j and
some i ∈ Bj , z∗j,i > 0, which completes the proof.

Another way of proving Lemma C.6 is to note that if z∗j,i = 0 for some
j and for all i ∈ Bj , then the objective function of the Eisenberg-Gale
program (PE) goes to +∞. This cannot happen, because (PE) is minimizing
the objective function, and the program is guaranteed to have a bounded
optimal solution (for example, one bounded feasible solution is achieved by
zj,i = Ti

|Vi| for all i ∈ {1, ..., n} and all j ∈ Vi).
We can use Lemma C.6 to rewrite (7) in terms of I∗(j). For any j and

any i∗(j) ∈ I∗(j), the following holds.

γ∗i∗(j) =
1∑

k∈Bj
z∗j,k

(8)

To present an Eisenberg-Gale formulation of our market model given by
(PM ) and (PV ), we define the following terms.

x∗j,i ≡ z∗j,i, for all i ∈ {1, ..., n} and all j ∈ Vi (9)

r∗i∗(j) ≡ γ
∗
i∗(j)d+ e− 1, for all j ∈ {1, ...,m} and all i∗(j) ∈ I∗(j) (10)

Note that in (10) above, r∗i has not been explicitly defined for all i ∈
1, ..., n. We first prove that ∪j∈{1,...,m}I∗(j) = {1, ..., n} (that is, for all i
we have defined r∗i above). We then prove that if i∗(j) = i∗(j′), where
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i∗(j) ∈ I∗(j) and i∗(j′) ∈ I∗(j′) for j 6= j′, then r∗i∗(j) = r∗i∗(j′) (that is, if the

same i appears in two different I∗(.), then the definition of r∗i is consistent
with respect to these two cases).

For the first claim, suppose that for some i, r∗i has not been defined.
This implies that for all j, i /∈ I∗(j). That is, for all j, z∗j,i = 0, which
violates Lemma C.5.

For the second claim, consider the definition of r∗i∗(j).

r∗i∗(j) = γ∗i∗(j)d+ e− 1

= γ∗i∗(j′)d+ e− 1 [Since i∗(j) = i∗(j′)]

= r∗i∗(j′) [By definition]

Next, we use the definitions (9) and (10) above to show that none of the
villages has any left-over money.

d =
1 + r∗i∗(j) − e

γ∗i∗
(
j)

[Rearranging (10)]

= (1 + r∗i∗(j) − e)
∑
k∈Bj

z∗j,k [Using (8)] (11)

Next, we show that for any i∗(j) ∈ I∗(j),

γ∗i∗(j) = min
k∈Bj

γ∗k .

By Equation (8), for any i∗(j) ∈ I∗(j),

γ∗i∗(j) =
1∑

k∈Bj
z∗j,k

.

For any l ∈ Bj , we obtain from the stationary condition,

γ∗l ≥
1∑

k∈Bj
z∗j,k

, since µ∗j,l ≥ 0.

Therefore, for any i∗(j) ∈ I∗(j),

γ∗i∗(j) = min
k∈Bj

γ∗k .
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Thus, using the definition of r, r∗i∗(j) = mink∈Bj
r∗k. Furthermore, for

any l ∈ Bj − I∗(j), z∗j,l = 0. We obtain from (11),

d = (1 + min
l∈Bj

r∗l − e)
∑
k∈Bj

z∗j,k

=
∑
k∈Bj

z∗j,k(1 + r∗k − e).

Using the definition of x∗j,k from (9),

d =
∑
k∈Bj

x∗j,k(1 + r∗k − e).

Furthermore, by Lemma C.5, for any MFI i, there exists a village j ∈ Vi
such that z∗j,i > 0. Thus, we get µ∗j,i = 0. The stationary condition gives us

γ∗i =
1∑

k∈Bj
z∗j,k

> 0.

That is, for each MFI i, γ∗i > 0. Therefore, r∗i > 0 by (10). Also, (6)
holds for γ∗i > 0. Again, using the definition of x∗j,i from (9), the other
equilibrium condition for our model can be obtained from (6):

Ti −
∑
j∈Vi

x∗j,i = 0.

Thus, we have the following theorem and corollary.

Theorem C.7. The special case of microfinance markets with identical vil-
lages and no loan portfolio diversification, has an equivalent Eisenberg-Gale
formulation.

Corollary C.8. For the above special case, there exists an equilibrium point
with unique interest rates [21] and a combinatorial polynomial-time algo-
rithm to compute it [60].

C.3 Equilibrium Properties of General Case

Assumption C.1.

0 ≤ λ ≤ 1

2 + log Tmax

where Tmax ≡ maxi Ti and w.l.o.g., Ti > 1 for all i.
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Property C.9. The first constraint of the village-side optimization program
(PV ) must be tight at any equilibrium point.

Proof. Suppose that this is not the case, i.e., at an optimal solution x∗j for
some village j,

∑
i∈Bj

x∗j,i(1 + ri − ej) < dj . We will show that village j
can improve its objective function by slightly increasing x∗j,i for any i ∈ Bj
while maintaining the constraint. The derivative of the village-side objective
function w.r.t. xj,i is

1− λ log x∗j,i − λ

which is positive (by Assumption C.1 and equilibrium condition x∗j,i ≤ Ti).

We define eimax ≡ maxj∈Vi ej and dimax ≡ maxj∈Vi dj and obtain the
following bounds on interest rates.

Property C.10. At any equilibrium point, for each MFI i, eimax−1 < r∗i ≤
|Vi|dimax

Ti
+ eimax − 1.

Proof. Proof of eimax − 1 < r∗i is similar to the proof of Property C.2. Al-
though compared to Property C.2, we have a different objective function
here, the proof of Property C.9 shows that increasing xj,i also increases the
village objective function.

For the proof of the upper bound, the total amount of loan that villages
in Vi can seek from MFI i is at most

∑
j∈Vi

dj
1+ri−ej (this bound is obtained

using the first constraint in the village-side optimization program (PV ), when
each village in Vi seeks loan only from MFI i). We have the following at an
equilibrium point.

Ti ≤
∑
j∈Vi

dj
1 + r∗i − ej

≤ dimax
∑
j∈Vi

1

1 + r∗i − ej

≤ dimax
|Vi|

1 + r∗i − eimax

Rewriting this, we obtain r∗i ≤
|Vi|dimax

Ti
+ eimax − 1.
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D Computational Scheme

D.1 Computing an Equilibrium Point

Algorithm 1 Outline of Equilibrium Computation

1: For each MFI i, initialize ri to eimax − 1.
2: For each village j, compute its best response xj .
3: repeat
4: for all MFI i do
5: while Ti 6=

∑
j∈Vi xj,i do

6: Change ri as described later.
7: For each village j ∈ Vi, update its best response xj reflect-

ing the change in ri.
8: end while
9: end for

10: until no change in ri occurs for any i

Lemma D.1. (Village’s Best Response) Given the interest rates of all
the MFIs, the following is the unique best response of any village j to any
MFI i ∈ Bj:

x∗j,i = exp

(
1− λ− α∗j (1 + ri − ej)

λ

)
(12)

where α∗j ≥ 0 is the unique solution to

∑
i∈Bj

exp

(
1− λ− α∗j (1 + ri − ej)

λ

)
(1 + ri − ej) = dj . (13)

Proof. Following is the Lagrangian of the village-side optimization program
(PV ) for village j:

L(xj , αj) =−
∑
i∈Bj

xj,i − λ
∑
i∈Bj

xj,i log
1

xj,i

+ αj

∑
i∈Bj

xj,i(1 + ri − ej)− dj

 .
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At an optimal solution, we have δL
δxj,i

= 0 for any i ∈ Bj . This is

expanded below:

−1− λ log
1

x∗j,i
+ λx∗j,i

1

x∗j,i
+ αj(1 + ri − ej) = 0

⇔ x∗j,i = exp

(
1− λ− αj(1 + ri − ej)

λ

)
.

By Property C.9,
∑

i∈Bj
x∗j,i(1 + ri − ej) = dj . Substituting the expression

for x∗j,i we obtain the second equation claimed in the statement. Moreover,
α∗j must be unique; otherwise, by the above expression for x∗j,i, we would
have multiplicity in the best response of village j, which is precluded by the
convex optimization (PV ).

In the above characterization of the village best response, as soon as
the interest rate ri of some MFI i changes in Line 6 of Algorithm 1, both
the best response allocation x∗j,i and the Lagrange multiplier α∗j change in
Line 7, for any village j ∈ Vi. Next, we show the direction of these changes.

Lemma D.2. Whenever ri increases (decreases) in Line 6, xj,i must de-
crease (increase) for every village j ∈ Vi in Line 7 of Algorithm 1.

Proof. We prove the case of ri increasing. The other case can be proved in
the same way. First, observe that we cannot simply invoke Equation (12) to
prove the statement, because α∗j has also changed once ri has changed and
the direction of change of α∗j is not immediately clear from Equation (13).

Here, we treat the terms ri, x
∗
j,i, and α∗j as names of variables instanti-

ated with specific values at each iteration of Lines 6 and 7 of Algorithm 1.
Suppose that the value of ri has been increased in Line 6. Suppose, for a
contradiction, that in response to this increase, some village j ∈ Vi has either
increased its value of x∗j,i or kept it unchanged in Line 7. By Property C.9,
the first constraint of the village-side program (PV ) is tight at any optimal
solution, including village j’s previous best response in Line 7 (i.e., the old
values of xj just before the current update in Line 7). Therefore, in the cur-
rent best response, village j must decrease the value of x∗j,k for some k ∈ Bj
(otherwise that constraint cannot be satisfied, because ri has increased).
Rewriting the expression of x∗j,i given in Lemma D.1 in terms of α∗j , we
obtain the first equation below. The second equation follows similarly.
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α∗j =
1− λ− λ log x∗j,i

1 + ri − ej
(14)

α∗j =
1− λ− λ log x∗j,k

1 + rk − ej
(15)

By Equation (14), our assumption that x∗j,i has increased in response to
the increase of ri implies that the value of α∗j has decreased from its previous
one. Therefore, by Equation (15), the value of x∗j,k must increase, which gives
us a contradiction (note that rk has not been changed, i.e., its value remains
the same as the one during village j’s previous best response). Therefore,
whenever ri increases in Line 6, x∗j,i must decrease, for all j ∈ Vi.

The next lemma is a cornerstone of our theoretical results. Here, we
use the term turn of an MFI to refer to the iterative execution of Line 6,
wherein an MFI tries to set its interest rate to make supply equal demand.
At the end of its turn, an MFI has successfully set its interest rate to achieve
this objective.

Lemma D.3. (Strategic Complementarity) Suppose that an MFI i has
increased its interest rate at the end of its turn. Thereafter, it cannot be
the best response of any other MFI k to lower its interest rate when its turn
comes in the algorithm.

Proof. Consider a village j ∈ Vi. By Lemma D.2, when an MFI i increases
its interest rate in Line 6, village j must decrease x∗j,i in Line 7. Consid-
ering Equation (14), it may at first seem possible that the value of α∗j can
increase, decrease, or even remain the same, depending on how much x∗j,i
has decreased. However, we will next show that α∗j cannot increase. For

this, we define β∗j ≡
α∗j
λ and ρj,i ≡ 1 + ri − ej and rewrite Equation (13) as

follows.

∑
i∈Bj

exp

(
1− λ
λ

)
exp

(
−β∗j ρj,i

)
ρj,i = dj

⇔
∑
i∈Bj

ρj,i

exp
(
β∗j ρj,i

) = dj exp

(
−1 + λ

λ

)

Here, the right hand side is constant, since λ and dj are both constants.
Consider the left hand side. It suffices to show that if we increase ρj,i (i.e.,
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increase ri) by any amount, but keep β∗j unchanged, then the left hand side

must decrease. 7 In this case, only one term of the sum on the left hand side
changes:

ρj,i
exp(β∗j ρj,i)

. We show that the derivative of this term w.r.t. ρj,i is

non-positive.

1

exp(β∗j ρj,i)
−

β∗j ρj,i

exp(β∗j ρj,i)
≤ 0

⇔ ρj,iβ
∗
j ≥ 1

⇔ (1 + ri − ej)
α∗j
λ
≥ 1

⇔ 1− λ− λ log x∗j,i ≥ λ, by Equation (14)

⇔ λ ≤ 1

2 + log x∗j,i

which holds by Assumption C.1. Therefore, αj cannot increase when ri
increases.

Since αj can only decrease when ri increases, using Equation (15) we
obtain that in Line 7 of the algorithm, village j cannot decrease x∗j,k for
any k 6= i ∈ Bj . Thus, when its next turn comes, MFI k can only find a
rise in demand for its loans, which can only exceed Tk, since at the end of
every turn, an MFI successfully sets its interest rate so that the demand for
its loan equals its supply. Therefore, by Lemma D.2, decreasing its interest
rate cannot be MFI k’s best response.

In essence, Lemma D.2 is a result of strategic substitutability [20] between
the MFI and the village sides, while Lemma D.3 is a result of strategic
complementarity [16] among the MFIs. We will see that our algorithm
exploits these two properties as we fill in the details of Lines 6 and 7 next.

D.1.1 Line 6: MFI’s Best Response

By Lemma D.2, the total demand for MFI i’s loan monotonically decreases
with the increase of ri. Therefore, a simple search, such as a binary search,
between the upper and the lower bounds of ri as stated in Property C.10,
can efficiently find the “right” value of ri that makes supply equal demand
for i. For example, in the first iteration of the while loop, in Line 6, ri

is set to the midpoint rmi =
rli+r

h
i

2 between its lower bound rli and upper
bounds rhi . Then the best response of the villages are computed in the next

7Note that increasing β∗j will only further decrease the left hand side.
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line. If still Ti 6=
∑

j∈Vi xj,i then in the next iteration, in Line 6, ri is set to

either
rli+r

m
i

2 or
rmi +rhi

2 depending on whether Ti >
∑

j∈Vi xj,i or the opposite,
respectively. The search progresses in this way until Ti =

∑
j∈Vi xj,i. As an

implementation note, to circumvent issues of numerical precision, we can
adopt the notion of ε-equilibrium point, where the market ε-clears (i.e., the
absolute value of the difference between supply and demand for each MFI i
is below ε) and each village plays its ε-best response (i.e., it cannot improve
its objective function more than ε by changing its current response). Having
said that, all of our results hold for ε = 0.

D.1.2 Line 7: Village’s Best Response

We use Lemma D.1 to compute each village j’s best response x∗j,i to MFIs
i ∈ Bj . However, Equation (12) requires computation of α∗j , the solution
to Equation (13). We can exploit the convexity of the left hand side of
Equation (13) to design a simple search algorithm to find α∗j up to a desired
numerical accuracy.

Next, we make the following statement about our constructive proof of
the existence of an equilibrium point.

Theorem D.4. There always exists an equilibrium point in a microfinance
market specified by programs (PM ) and (PV ).

Proof. Algorithm 1 begins with initial values of interest rates arbitrarily
close to their lower bound established in Property C.10. Thereafter, by
Lemma D.3, these interest rates can only increase, and by Lemma D.1, every
village has a unique best response to these interest rates. Now, the interest
rates are upper bounded by Property C.10. Therefore, by the well-known
monotone convergence theorem, the process of incrementing the interest
rates must come to an end. And that point of termination must be an
equilibrium point.
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D.2 More on Parameter Learning

min
e,d,r

∑
i

∑
j∈Vi

(x∗j,i − x̃j,i)2 + C
∑
i

(r∗i − r̃i)2

such that

for all j,

x∗j ∈ arg maxxj

∑
i∈Bj

xj,i + λ
∑
i∈Bj

xj,i log
1

xj,i

s. t.
∑
i∈Bj

xj,i(1 + r∗i − ej) ≤ dj

xj ≥ 0 (16)

ej ≥ 1, dj ≥ 0∑
j∈Vi

x∗j,i = Ti, for all i

ri ≥ ej − 1, for all i and all j ∈ Vi

Initialization plays a big role in solving this problem fast, especially
in large instances (e.g., the instance with data from Bangladesh that has
thousands of constraints and variables). If we initialize the parameters ar-
bitrarily, then the interior point algorithm spends an enormous amount of
time searching for a feasible solution. Fortunately, we can avoid this issue by
computing a feasible solution first. For this, with arbitrary values of e and
d as inputs, we run Algorithm 1 and compute an initial equilibrium point
with respect to the inputs of e and d. Subsequently, the learning procedure
updates e and d compute an optimal solution. Using such an initial feasi-
ble solution to the above optimization problem, we observed a much faster
convergence.

In the next section, we will show that the above learning procedure does
not overfit the real-world data. We will also highlight the issue of equilibrium
selection for parameter estimation.

E Empirical Study

Our empirical study is based on microfinance data of Bangladesh and Bo-
livia. The reason we have chosen these two countries is that over time,
microfinance programs in these two countries have behaved very much dif-
ferently with respect to competition and interest rates [51].
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E.1 Case Study: Bolivia

E.1.1 Data

We have obtained microfinance data of Bolivia from several sources, such
as ASOFIN, 8 the apex body of MFIs in Bolivia, and the Central Bank
of Bolivia. 9 We were only able to collect somewhat coarse, region-level
data. The data, dated June 2011, consists of eight MFIs operating in 10
regions. These MFIs (and their interest rates) are: Bancosol (21.54%),
Banco Los Andes (19.39%), Banco FIE (20.49%), Prodem (23.55%), Eco
Futuro (29.25%), Fortaleza (21.22%), Fassil (22.38%), and Agro Capital
(21%).The number of edges in the bipartite network is 65, out of a maximum
possible 80.

E.1.2 Learning the Parameters of the Model

Given the exogenous parameter λ, the learning scheme above estimates the
parameters ej and dj such that an equilibrium point of the game is a close
approximation of the observed data. Let us first explain how we choose the
exogenous diversification parameter λ.

Figure 1 shows how the objective function of the optimization program
varies as a function of λ. It shows that for a range of smaller values of λ, the
objective function value of the learning program is consistently small (note
that the optimization routine wants to minimize the objective function). As
λ grows, the objective function value oscillates a lot and is sometimes very
high.

Also shown in Figure 1 is how the interest rates become dissimilar as λ
is varied. For that, we first define a negative entropy term, C

∑
i
ri
Z log Z

ri
,

where Z =
∑

i ri, where C is a constant set to 100. Here, the negative
entropy quantifies the similarity among the interest rates. That is, high
negative entropy means the interest rates among the MFIs are more similar.
As we can see, at relatively low values of λ, the interest rates are similar
to each other and as λ becomes high, they become very much dissimilar at
some points.

We choose λ = 0.05, because at this level of λ, the objective function
value of the learning optimization is low as well as stable and the interest
rates are also allowed to be relatively dissimilar. As we will show later,
dissimilarities among the interest rates of the MFIs are very often observed
in the real-world data.

8http://www.asofinbolivia.com
9http://www.bcb.gob.bo/
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Figure 1: Optimal objective function values and “negative entropy” of in-
terest rates as λ varies. This shows that the objective function value becomes
large (which is undesirable) as λ grows.

The learned values of the parameters ej and dj for villages j in the Bolivia
market capture the variation among the villages with respect to the revenue
generation function. Although the rate ej of revenue generation varies only
from 1.001 to 1.234 among the villages, the variation in dj is much greater.

The individual loan allocations learned from data closely approximate
the observed allocations. In fact, the average relative deviation between

these two allocations is only 4.41% (relative deviation is calculated by
abs(xj,i−x̃j,i)∑

i x̃j,i
).

Figure 2 shows this. The 45o line is the locus of equality between these two
allocations.

Figure 2: Learned allocations vs. observed allocations. This shows that the
learned allocations closely approximate the allocations in the observed data.

The learned model matches the total loan allocations of the MFIs due
to the constraint of the program. As shown in Figure 9, the learned interest
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rates are, however, slightly different from the observed rates.

Issues of Bias and Variance.
Our dataset consists of a single sample. As a result, the traditional ap-

proach of performing cross validation using hold-out sets or plotting learning
curves by varying the number of samples would not work in our setting. To
investigate whether our model overfits the data, we have applied the fol-
lowing procedure of systematically introducing noise to the observed data
sample. In the case of overfitting, increasing the level of noise would lead
the equilibrium outcome to be significantly different from the observed data.

We use a parameter ν to control the level of noise. For any fixed ν, we
derive noisy samples by modifying each non-zero observed allocation x̃j,i by
adding to it a random noise (under certain noise models to be described
later). We denote the resulting noisy allocation by xνj,i and treat the newly
constructed noisy dataset as a training set and the observed dataset as test.
We learn the parameters of the model using the training set. We then find an
equilibrium allocation x∗ using Algorithm 1. 10 We compute the following

mean relative deviation as the test error: 1
n

∑
i

1
|Vi|
∑

j

abs(x∗j,i−x̃j,i)
Ti

. The

training error is computed similarly (by replacing x̃j,i by xνj,i). For each noise
level ν, we perform the whole procedure a number of times and calculate
the average error.

Gaussian Noise Model. In this model, we obtain xνj,i by adding to
each non-zero observed allocation x̃j,i a Gaussian random noise of mean 0
and standard deviation νσ(i), where σ(i) is the standard deviation of the
allocations of MFI i across all villages in which it operates. For the Bolivia
dataset, we find that varying the noise level ν between 0 and 1 and taking
the average over 25 trials, both the training and test errors are below 5.83%
and are close to each other (i.e., within the 95% confidence interval of each
other). The learning curve, shown in Figure 3, does not suggest overfitting.

Dirichlet Noise Model. In this noise model, we derive noisy alloca-
tions while keeping the total amount of loan disbursed by each MFI the
same as its observed total amount. We follow the commonly used procedure
of deriving a Dirichlet distribution from a gamma distribution [27, Ch. 18].
We control the noise (i.e., variance) of the Dirichlet distribution using the
parameter ν in the following way. For each MFI i, xνi = T (i)×Dir(νx̃i).

11

As the ν > 0 increases, the variance of the distribution Dir(νx̃i) decreases.

10Note that this equilibrium allocation would have remained the same all the time had
we treated the the observed dataset as the training set.

11Slightly abusing the notation, the vector x̃i corresponds to non-zero observed alloca-
tions only.
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Figure 3: Learning curve for the Bolivia dataset under Gaussian random
noise (vertical bars denote 95% CI). The learning curve does not suggest
overfitting.

Varying ν from 2−5 (high variance) to 215 (low variance) and taking the av-
erage over 50 trials at each ν, we found that the training and the test errors
are within the confidence intervals of each other across the whole spectrum
of noise levels. The maximum test error of 8.83% occurs at ν = 2−5 where
we also get the maximum offset of the 95% confidence interval, which is
0.66%. Once again, the learning curve, shown in Figure 4, does not suggest
overfitting.

Figure 4: Learning curve for the Bolivia dataset under the Dirichlet noise
model. Logarithm of the noise parameter ν is shown on the x-axis (verti-
cal bars denote 95% CI). The learning curve in this noise model does not
indicate overfitting as well.

Equilibrium Selection.
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In practice, equilibrium selection is an important issue. In general, we
cannot rule out the possibility of multiplicity of equilibria. In such cases,
our learning scheme biases its search for an equilibrium point that most
closely explains the data. One important question is: does the equilibrium
point that we compute change drastically when noise is added to our data?
In other words, how robust is our scheme? To answer this, we extend the
above experimental procedure using the following bootstrapping scheme. 12

Suppose that for each noise level ν, we have t trials (i.e., t noisy training
sets, each derived from the observed dataset using a particular noise model
with the given parameter ν). For each noise level ν, we iterate the following
procedure M times. At each iteration k, we uniformly sample t times (with
replacement, of course) from the t noisy training sets and then compute the

following relative mean equilibrium allocations: µ̂j,i = 1
t

∑t
l=1

x
∗(l)
j,i

Ti
(here,

x
∗(l)
j,i denotes equilibrium allocation for the l-th training set). Within the

same k-th iteration, we compute the following average deviation from mean:

δ̂(k) = 1
n

∑
i

1
|Vi|
∑

j
1
t

∑
l abs(x

∗(l)
j,i /Ti − µ̂j,i). This quantity signifies the

average distance of the equilibria of the sampled examples from the mean
equilibrium. Now, for each value of ν, we average this distance measure over
these M iterations. We perform this bootstrapping procedure for various
values of ν.

Figure 5: Average deviation of the equilibrium points from the mean for the
Bolivia dataset under the Gaussian noise model (vertical bars denote 95%
CI). It shows that the equilibrium point computed is robust with respect to
noise.

12In the previous experiment on the issue of overfitting, the focus was on the distance
between an equilibrium point and the data. Now, our focus is on the distance between
different equilibrium points when noise is added to the data.
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Figure 6: Average deviation of the equilibrium points from the mean for
the Bolivia dataset under the Dirichlet noise model. Logarithm of the noise
parameter ν is shown on the x-axis. Vertical bars denote 95% CI. It also
shows the robustness of the computed equilibrium point although the noise
model is different—Dirichlet.

For the Bolivia dataset, under the Gaussian noise model (described
above) and using t = 25 and M = 100, we found that this average dis-
tance varies from 0.79% to 0.96%, with the offset of the 95% CI ranging
from 0.015% to 0.026% for varied noise levels 0 < ν ≤ 1. On the other
hand, for the Dirichlet noise model and using t = 50 and M = 100, the
maximum average distance is 6.35%, which happens at a very high variance
parameterized by ν = 2−5. The minimum average distance of 0.10% hap-
pens at low variance with ν = 214. The offset of the 95% CI ranges from
0.001% to 0.05% across all the noise levels considered. The plots for these
two noise models are shown in Figures 5 and 6. Moreover, under both noise
models, the equilibrium interest rates do not deviate much from the mean
either. These suggest that an equilibrium point does not change much when
noise is introduced to the data and that our scheme is robust with respect
to noise in the real world data.

E.1.3 Equilibrium Computation

We discuss equilibrium computation on the model learned with λ = 0.05.
First, we would like to remind the reader about the point we made regarding
equilibrium selection. In practice, we have observed that the equilibrium
computed by Algorithm 1 converges to the learned values of x and r, even if
we start with different initial values. For example, Figure 7 shows the case
of MFI Bancosol’s convergence to the same equilibrium interest rate despite
different initialization (other interest rates were also differently initialized).
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This equilibrium interest rate is the same as the learned one. Not only that,
as Figure 8 shows individual loan allocations were also almost the same.

Figure 7: Two best response dynamics of MFI Bancosol with different
initialization. Both of these converged to the same solution.

Figure 8: Learned allocations vs. equilibrium allocations. The two alloca-
tions being almost identical, shows that the learning algorithm was able to
capture an equilibrium point using the inner part of the nested optimization
program.

Finally, Figure 9 shows a comparison among the observed, learned, and
equilibrium interest rates.
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Figure 9: Comparison among observed, learned, and equilibrium interest
rates. The equilibrium interest rates and the observed interest rates do not
completely match, which is fine as we do not assume the data to be an
equilibrium point.

E.2 Case Study: Bangladesh

E.2.1 Data

We have obtained microfinance data, dated December 2005, from Palli
Karma Sahayak Foundation (PKSF), which is the apex body of NGO MFIs
in Bangladesh. There are seven major MFIs (or collection of MFIs) operat-
ing in 464 upazillas or collection of villages. The data can be simplified as
a 464-by-7 matrix where an element in location (j, i) denotes the number of
borrowers that MFI i has in village j. The bipartite network-structure in-
duced by this data is very dense, consisting of 3096 edges out of a maximum
possible 3248.

The seven major MFIs or bodies of MFIs (and their flat interest rates) are
BRAC (15%), ASA (15%), PKSF partner organizations (12.5%), Grameen
Bank(10%), BRDB (8%), Other government organizations (8%), and Other
MFIs (12.5%) [51, 61].

E.2.2 Learning the Parameters of the Model

Due to the size of Bangladesh data, we are posed with the problem of solving
a nonlinear optimization problem of the order of thousands of variables and
constraints. As discussed above, the interior point algorithm is initialized
with a feasible solution, which makes computation much faster. Still, solving
the problem takes time in the order of hours, compared to minutes for the
Bolivia case.

44



Similar to the Bolivia case, the learned parameters ej (rate of revenue
generation) and dj (revenue from other sources) show variation among the
villages j. This is particularly the case with the estimated parameter dj ,
while the estimation of ej varies around 1.07 for all the villages. A more
detailed analysis of the estimated parameters (for example, their correlation
with access to resources such as rivers) is left for future work.

We also obtain a close approximation of observed individual allocations
in the learned model (see Figure 10. For example, the average deviation is
only 5.54% when λ = 0.05. The market clears in the learned model, and as
shown in Figure 11, the learned interest rates are close to the actual ones,
except for the government MFIs numbered 5 and 6, which are known to be
operating inefficiently, i.e., with much lower interest rates (8%) than that
required for sustainability without subsidies [18, 61].

Figure 10: Learned allocations vs. observed allocations. Although they are
not exactly the same, the learned allocations do approximate the observed
ones.

E.2.3 Equilibrium Computation

Similar to the Bolivia case, we have observed that the best response dynam-
ics of Algorithm 1 quickly converges to the allocations and interest rates
of the learned model. Figures 12 shows the similarity between learned and
equilibrium allocations.
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