
Supplementary material for “Learning Mixed Multinomial Logit
Model from Ordinal Data”

A Proof of Theorem 1

In order to apply Theorem 4, let ∆ = p− p̃, then

‖∆‖2 ≤ ‖∆− diag(∆)‖2 + ‖diag(∆)‖2 ≤ ‖∆− diag(∆)‖F + max
i∈[n]

∆ii

≤
√∑

i 6=j
(pij − p̃ij)2 + max

i∈[n]

∣∣∣
∑

j 6=i
(pij − p̃ij)

∣∣∣

≤ 1√
2 dmax

‖Pa − P̃a‖ +
1

2
√
dmax

‖Pa − P̃a‖ .

From Theorem 3, we know that ‖∆‖2 ≤ 2√
dmax
‖Pa − P̃a‖ ≤ ε

√
(rqmaxσ1(M2))/qmin and substi-

tuting this into the bound in Theorem 4 we get the desired bound.

B Proof of the performance guarantee for the spectral method in Theorem 3

To simplify notations, we will assume that the indices of the output of the algorithm and the ground
truths are matched such that the theorem holds with identity permutation. The spectral algorithm
outputs P̂ = ŨM2

Σ̃
1/2
M2
V̂ H̃Λ̂H̃ . From theorem 2, we know that P = UM2

Σ
1/2
M2
V HΛH , or equiva-

lently P = UM2
Σ

1/2
M2
V HQ−1/2. To show that P and P̂ are close, we would hope that each of the

terms above to be close.

To that end, define

Ṽ ≡ Σ̃
−1/2
M2

ŨTM2
PQ1/2 , (17)

G̃ ≡
r∑

i=1

1√
qi

(ṽi ⊗ ṽi ⊗ ṽi) , (18)

where Ṽ = [ṽ1 ṽ2 . . . ṽr] (note that G̃ is proxy of V H ). Now
∥∥ P̂ − P

∥∥
2
≤

∥∥ ŨM2
ŨTM2

P − P
∥∥

2
+
∥∥ P̂ − ŨM2

ŨTM2
P
∥∥

2

=
∥∥ ŨM2Ũ

T
M2
P − P

∥∥
2

+
∥∥ ŨM2Σ̃

1/2
M2
V̂ H̃Λ̂H̃ − ŨM2Σ̃

1/2
M2
Ṽ Q−1/2

∥∥
2

using (17)

≤
∥∥ ŨM2Ũ

T
M2
P − P

∥∥
2

+
∥∥ ŨM2Σ̃

1/2
M2

(Ṽ − V̂ H̃)Q−1/2
∥∥

2

+
∥∥ŨM2

Σ̃
1/2
M2
V̂ H̃ (Q−1/2 − Λ̂H̃)

∥∥
2
. (19)

To bound the three terms on the RHS of (19), we shall use the following ‘errors’ (which we shall
bound sharply later in the proof): define (recall H̃ was produced by Algorithm Tensor Least Squares)

εM =
‖M2 − M̃2‖2
σr(M2)

εH = ‖H̃ −H‖2. (20)

Bounding the first term in RHS of (19). To begin with, note that we can represent P = UM2
ΣV T

by definition. Given the definition of (20), and an application of Davis-Kahan theorem [9] implies
that

‖(ŨM2
ŨTM2

− I)UM2
‖2 ≤ εM . (21)

Using this, we have

‖ŨM2
ŨTM2

P − P‖2 = ‖(ŨM2
ŨTM2

− I)P‖2
≤ ‖(ŨM2Ũ

T
M2
− I)‖2UM2‖ΣV T ‖2

≤ εM‖P‖2 , (22)
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Bounding the second term in RHS of (19). Consider

‖Σ̃M2‖2 = ‖M̃2‖2 ≤ ‖M̃2 −M2‖2 + ‖M2‖2
≤ εMσr(M2) + ‖M2‖2. (23)

We state the following Lemma providing bound on ‖Ṽ − V̂ H̃‖2 in terms of εM and εG:
Lemma B.1. There exists universal constant C1 > 0 such that

‖Ṽ − V̂ H̃‖2 ≤ C1
√
r qmax

(
εH +

1√
qmin

εM

)
, and

‖Q−1/2 − Λ̂H‖2 ≤ C1

(
εH +

1√
qmin

εM

)
.

Given (23), Lemma B.1, the fact that ŨM2
is a unitary matrix and Q is a diagonal matrix, we obtain

that the second term in RHS of (19) is bounded by
∥∥ ŨM2Σ̃

1/2
M2

(Ṽ − V̂ H̃)Q−1/2
∥∥

2
≤

∥∥ ŨM2

∥∥
2

∥∥Σ̃
1/2
M2

∥∥
2

∥∥(Ṽ − V̂ H̃)
∥∥

2

∥∥Q−1/2
∥∥

2

≤
√
εMσr(M2) + ‖M2‖2√

qmin
‖Ṽ − V̂ H̃‖2

≤ C2

√
‖M2‖2 r qmax

qmin

(
εH +

1√
qmin

εM

)
, (24)

for an appropriate universal constant C2 > 0, with εM ≤ 1/2 and using fact σr(M2) ≤ ‖M2‖2.

Bounding the third term in RHS of (19). Observe that

‖V̂ H̃‖2 ≤ ‖Ṽ ‖2 + ‖V̂ H̃ − Ṽ ‖2
≤ 1 + 2εM + C1

√
rqmax(εH + εM/

√
qmin) (25)

using Remark C.1 and Lemma B.1. Using (25) and Lemma B.1, the last term in (19) can be bounded
above as ∥∥ŨM2Σ̃

1/2
M2
V̂ H̃ (Q−1/2 − Λ̂H̃)

∥∥
2
≤
∥∥ŨM2Σ̃

1/2
M2

∥∥
2

∥∥V̂ H̃
∥∥

2

∥∥(Q−1/2 − Λ̂H̃)
∥∥

2

≤
(√

εMσr(M2) + ‖M2‖2
)
‖V̂ H̃‖2 ‖Q−1/2 − Λ̂G‖2

≤ C3

√
‖M2‖2

(
1 +
√
rqmaxεH +

√
rqmax√
qmin

εM

)(
εH +

1√
qmin

εM

)
(26)

≤ C3

√
‖M2‖2

(
εH +

1√
qmin

εM

)
, (27)

for εM ≤
√
qmin/(r qmax), εH ≤ 1/

√
r qmax and for some universal constant C3 > 0.

Towards Theorem 3. Substituting (22), (24), (27) in (19), for universal constant C4 > 0, we get

‖P̂ − P‖2 ≤ εM‖P‖2 + C4

√
‖M2‖2 r qmax

qmin

(
εH +

1√
qmin

εM

)

≤ C4

√
‖M2‖2 r qmax

qmin

(
εH +

1√
qmin

εM

)
, (28)

where we used the fact that ‖P‖2 ≤ ‖
√
‖M2‖2/qmin‖ since P = UM2

Σ
1/2
M2
V HΛH . Given (28), to

complete the proof of Theorem 3, we need to establish bounds on εM and εH .

Bounding εM . To bound εM , we need to bound error betweenM2 and M̃2, the output of alternating
minimization procedure applied to M̂2. The following theorem [12] provides such a bound.
Theorem 5 (Theorem 4.1, [12]). For an N × N symmetric rank-r matrix M with incoherence µ,
we observe off-diagonal entries corrupted by noise:

M̂ij =

{
Mij + Eij if i 6= j ,

0 otherwise.
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Let M̂ (τ) denote the output after τ iterations of MATRIXALTMIN. If µ ≤
(σr(M)/σ1(M))

√
N/(32 r1.5), the noise is bounded by ‖PΩ2

(E)‖2 ≤ σr(M)/32
√
r, and

each column of the noise is bounded by ‖PΩ2
(E)i‖ ≤ σ1(M)µ

√
3r/(8N), ∀i ∈ [N ], then after

τ ≥ (1/2) log
(
2‖M‖F /ε

)
iterations of MATRIXALTMIN, the estimate M̂ (τ) satisfies:

‖M − M̂ (τ)‖2 ≤ ε+
9 ‖M‖F

√
r

σr(M)
‖PΩ2

(E)‖2 ,

for any ε ∈ (0, 1). Further, M̂ (τ) is µ1-incoherent with µ1 ≤ 6µσ1(M2)/σr(M2).

To apply the above result in our setting to bound εM , we need to bound ‖PΩ2
(E)‖2 and ‖PΩ2

(E)i‖
for all i ∈ [N ]. To that end, we state the following Lemma.
Lemma B.2. Let S2 ≡ (2/|S|)∑t∈{1,...,|S|/2} xtx

T
t be the sample covariance matrix, and let

E = N(N−1)
`(`−1) S2 −M2 denote the sampling error in the off-diagonal entries. Then, there exists a

universal constant C5 > 0 such that with probability at least 1− δ,

‖PΩ2
(E)‖2 ≤ C5

√
N2 log(N/δ)

`|S|
(
σ1(M2) +

N

`

)
.

Moreover, the Euclidean norm of the columns are uniformly bounded by

‖PΩ2(E)i‖ ≤ C5

√
N3 log(N/δ)

`2|S| ,

for all i ∈ [N ].

Theorem 5 and Lemma B.2 imply that with probability at least 1− δ, for large enough iterations of
the MATRIXALTMIN,

εM =
1

σr(M2)
‖M2 − M̃2‖2 ≤ C6

‖M2‖F N
σr(M2)2

√
r log(N/δ)

` |S|
(
σ1(M2) +

N

`

)
, (29)

for universal constant C6, C7 > 0 when |S| ≥ C7N
4r log(N/δ)/(`2σr(M2)2) – the assumption of

Theorem statement.

Bounding εH . To bound εH , we need bound on error induced by the output of the Tensor Least
Square procedure. The following result [12] provides such a bound.

Theorem 6 (Theorem 4.3, [12]). If N ≥ 144r3σ1(M2)2

σr(M2)2 , then with probability at least 1− δ,

‖H − H̃‖F ≤ 24µ3
1µr

3.5σ1(M2)3/2

Nq
1/2
minσr(M2)3/2

εM + 2
∥∥∥PΩ3

(
S3 −M3

)[
ŨM2

Σ̃
−1/2
M2

, ŨM2
Σ̃
−1/2
M2

, ŨM2
Σ̃
−1/2
M2

] ∥∥∥
F
,

where εM = (1/σr(M2))‖M̃2 −M2‖, µ = µ(M2), µ1 = µ(ŨM2), and

S3 =
N(N − 1)(N − 2)

`(`− 1)(`− 2)

2

|S|
( |S|∑

t=1+|S|/2
xt ⊗ xt ⊗ xt

)
. (30)

To utilize above result, we state the following Lemma.
Lemma B.3. There exists a positive numerical constant C9 such that with probability at least 1− δ,

∥∥∥PΩ3

(
S3 −M3

)[
ŨM2

Σ̃
−1/2
M2

, ŨM2
Σ̃
−1/2
M2

, ŨM2
Σ̃
−1/2
M2

] ∥∥
F
≤ C9

r3µ3
1N

3/2

σr(M2)3/2

√
log(1/δ)

|S| .

Theorem 6 and Lemma B.3 imply that with probability at least 1− δ
εH = ‖H − H̃‖2

≤ C10 µ
3
1 r

3

(
µr1/2

Nq
1/2
min

σ1(M2)3/2

σr(M2)3/2
εM +

N3/2

σr(M2)3/2

√
log(1/δ)

|S|

)
(31)
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for some positive numerical constants C10, C11 when N ≥ C11
r3σ1(M2)2

σr(M2)2 .

Equations (28)-(31) imply that

‖P̂ − P‖2 ≤ C4

√
‖M2‖2 r qmax

qmin

(
εH +

1√
qmin

εM

)
,

≤ C4

√
‖M2‖2 r qmax

qmin

(
C10 µ

3
1 r

3

(
µr1/2

Nq
1/2
min

σ1(M2)3/2

σr(M2)3/2
εM +

N3/2

σr(M2)3/2

√
log(1/δ)

|S|

)
+

1√
qmin

εM

)
, .

Using µ1 ≤ 6µσ1(M2)/σr(M2) from Theorem 5, we obtain (for appropriate constant C12 > 0),

‖P̂ − P‖2 ≤ C12

√
‖M2‖2 r qmax

q2
min

{(µ4r3.5

N

(σ1(M2)

σr(M2)

)4.5

+ 1
)
εM +

µ3r3σ1(M2)3N3/2q
1/2
min

σr(M2)4.5

√
log(1/δ)

|S|

}
.

≤ C12

√
‖M2‖2 r qmax

qmin

{
2εM

q
1/2
min

+ µ3r3σ1(M2)3N1.5

σr(M2)4.5

√
log(1/δ)

|S|

}
, (32)

where N ≥ µ4r3.5(σ1(M2)/σr(M2))4.5 as per assumption of the Theorem statement. From (29),
it follows that when

|S| ≥ C13
r2σ1(M2)2N2(σ1(M2) +N/`) log(N/δ)

ε2qmin`σr(M2)4
≥ C13

r‖M2‖2FN2 log(N/δ)

ε2qmin`σr(M2)4

(
σ1(M2) +

N

`

)
,

(33)

(we used ‖M2‖F ≤
√
rσ1(M2) for rank r matrix M2) for an appropriate choice of universal con-

stant C13 > 0,

2εM

q
1/2
min

≤ ε

2
. (34)

Also, recall that for (29) to hold, we require

|S| ≥ C7
N4r log(N/δ)

`2σr(M2)2
. (35)

Also, when

|S| ≥ C14
µ6r6N3σ1(M2)6 log(1/δ)

ε2σr(M2)9
, (36)

for an appropriate choice of universal constant C14 > 0, the second term inside bracket in (32) is
less than ε

2 . From above, it follows that when

|S| ≥ C15
r2N2σ1(M2)2 log(N/δ)

qminε2σr(M2)4

(N
`2

+
σ1(M2)

`
+
qminµ

6r4σ1(M2)4N

σr(M2)5

)
+
N4r log(N/δ)

`2σ1(M2)2

(37)

‖P̂ − P‖2 ≤ ε

√
r qmaxσ1(M2)

qmin
, and

‖Q−1/2 − Λ̂G‖2 ≤ ε ,

for any ε ∈ (0, C ′) for some positive constants C = C15 and C ′. Assuming N ≥
C ′′r3.5µ6(σ1(M2)/σr(M2))4.5, the above holds for

|S| ≥ C ′′′
rN4 log(N/δ)

qminσ1(M2)2ε2

( 1

`2
+
σ1(M2)

`N
+
r4σ1(M2)4

σr(M2)5

)
.
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C Proof of the technical lemmas for the spectral method

C.1 Proof of Lemma B.1

In order to apply the perturbation analysis of Theorem C.2 from [2], it is crucial that we compare
to a tensor with an orthogonal decomposition. Since both H̃ and G̃ do not have orthogonal decom-
positions, we define a new tensor Ḡ that is close to G̃ and has an orthogonal decomposition. Given
the singular value decomposition of Ṽ = XSY T , define V̄ ≡ XY T . This V̄ ∈ Rr×r is orthogonal
such that V̄ V̄ T = V̄ T V̄ = I, and is close to Ṽ such that

‖Ṽ − V̄ ‖2 = ‖X(S − I)Y T ‖2
≤ max

i∈[r]
|Sii − 1|

≤ 2εM , (38)

where the last inequality follows from the next remark.

Remark C.1 (Remark 10 in [12]). Suppose ‖M2 − M̃2‖2 ≤ εMσr(M2), then

‖I− Ṽ Ṽ T ‖2 ≤ 2εM .

It follows that ‖S2 − I‖2 = ‖Ṽ Ṽ T − I‖2 ≤ 2εM . Therefore, S2
ii ∈ [1 − 2εM , 1 + 2εM ] and so is

Sii ∈ [1− 2εM , 1 + 2εM ] for εM ≤ 1/2.

Since ‖Ṽ − V̂ H̃‖2 ≤ ‖Ṽ − V̄ ‖2 + ‖V̄ − V̂ H̃‖2 ≤ 2εM + ‖V̄ − V̂ H̃‖2, we are left to show that
‖V̄ −V̂ H̃‖2 ≤ 8

√
r qmax(εH+(13/

√
qmin)εM ) to finish the proof. Recall that G̃ =

∑r
i=1

1√
qi

(ṽi⊗
ṽi ⊗ ṽi) and that V̂ H̃ is the output of the robust power method applied to H̃ , and let

Ḡ ≡
r∑

i=1

1√
qi

(v̄i ⊗ v̄i ⊗ v̄i) .

Applying (38), we get that

‖G̃− Ḡ‖2 = max
‖u‖=1

∥∥∥
r∑

i=1

1√
qi

(ṽi ⊗ ṽi ⊗ ṽi − v̄i ⊗ v̄i ⊗ v̄i)
∥∥∥

2

≤ max
‖u‖=1

r∑

i=1

1√
qi

{
(uT ṽi)

3 − (uT v̄i)
3
}

≤ max
‖u‖=1

r∑

i=1

1√
qi

(
uT (Ṽ − V̄ )ei

)(
(uT ṽi)

2 + (uT ṽi)(u
T v̄i) + (uT v̄i)

2
)

≤ 1√
qmin
‖Ṽ − V̄ ‖2(3 + 6εM + ε2

M )

≤ 13√
qmin

εM ,

where the last line holds for εM ≤ 1/2. Since ‖H̃ − Ḡ‖2 ≤ εH + (13/
√
qmin)εM , we show that

V̂ H̃ and V̄ are close using the perturbation analysis for robust power method from [2].
Theorem C.2 (Restatement of Theorem 5.1 by [2]). Let G =

∑
i∈[r] λi(vi ⊗ vi ⊗ vi) + E, where

‖E‖2 ≤ C1
λmin

r . Then the tensor power-method after N ≥ C2(log r + log log
(
λmax

‖E‖2

)
, generates

vectors v̂i, 1 ≤ i ≤ r, and λ̂i, 1 ≤ i ≤ r, s.t.,

‖vi − v̂P (i)‖2 ≤ 8‖E‖2/λP (i), |λi − λ̂P (i)| ≤ 5‖E‖2. (39)

where P is some permutation on [r].
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Applying the above theorem to H̃ and Ḡ, we get that ‖V̂ H̃ − V̄ ‖2 ≤ 8
√
r qmax(εH +

(13/
√
qmin)εM ). Notice that to apply the perturbation analysis, it is crucial that we use the fact

that Ḡ has an orthogonal decomposition. Similarly, we can show that
∣∣∣λ̂i −

1√
qi

∣∣∣ ≤ 5εH +
65√
qmin

εM .

C.2 Proof of Lemma B.2

Let E = PΩ2
(S2 − E[S2]) = S2 − E[S2] − diag(S2 − E[S2]), and we bound each term

separately using concentration inequalities. Define the random matrix E(1) ≡ S2 − E[S2] =
2
|S|
∑
t∈{1,...,|S|/2}

(
xtx

T
t − E[xtx

T
t ]
)

. We apply the following matrix Bernstein bound for sum

of independent sub-exponential random matrices with Xt = xtx
T
t − E[xtx

T
t ].

Theorem 7 (Theorem 6.2 of [24]). Consider a finite sequence {Xt} of independent, random, self-
adjoint matrices with dimension N . Assume that

E[Xt] = 0 and E[Xk
t ] � k!

2
Rk−2A2

t for k = 2, 3, 4, . . .

Compute the variance parameter σ2 ≡ ‖∑tA
2
t‖2. Then for all a ≥ 0,

P
(∥∥∑

t

Xt

∥∥
2
≥ a

)
≤ N exp

( −a2/2

σ2 +Ra

)
.

The random matrix we definedXt is zero-mean, and satisfies E[Xk
t ] � E[(xtx

T
t )k] = `k−1E[xtx

T
t ],

which follows form the fact that xTt xt = ` almost surely. We can prove the inequality E[Xk
t ] �

E[(xtx
T
t )k] via induction. Let X̄ ≡ E[xtx

T
t ]. When k = 1, E[Xt] = 0 � E[(xtx

T
t )], since X̄ is a

convex combination of positive semidefinite matrices. When k = 2, E[X2
t ] = E[(xtx

T
t )2]− X̄2 �

E[(xtx
T
t )2], since X̄ is positive semidefinite. Suppose 0 � E[(xtx

T
t )k −Xk

t ] for some k ≥ 1, then
this implies E[Xt

(
(xtx

T
t )k −Xk

t

)
Xt] � 0. It follows that

E
[

(xtx
T
t )k+2 + X̄(xtx

T
t )kX̄ − (xtx

T
t )k+1X̄ − X̄(xtx

T
t )k+1 −Xk+2

t

]
� 0 ,

which implies

E
[

(xtx
T
t )k+2 −Xk+2

t

]
� E

[
(xtx

T
t )k+1X̄ + X̄(xtx

T
t )k+1 − X̄(xtx

T
t )kX̄

]

� `k−1X̄(2`I− X̄)X̄

� 0 .

This follows from the fact that ‖X̄‖ ≤ E[‖xtxTt ‖] = `. By induction, this proves the desired claim
that E[Xk

t ] � E[(xtx
T
t )k] = `k−1E[xtx

T
t ], for all k. Then, the condition in Theorem 7 is satisfied

with R = `, A2
t = `E[xtx

T
t ], and σ2 = (|S|/2) ` ‖E[xtx

T
t ]‖2, which gives

P
( |S|

2

∥∥E(1)
∥∥

2
≥ a

)
≤ N exp

( −a2/2

|S|`‖E[xtxTt ]‖2/2 + `a

)
.

When |S| ≥ (2` log(N/δ))/‖E[xtx
T
t ]‖2 as per our assumption, the first term in the denominator

dominates for a =
√

2|S| ` ‖E[xtxTt ]‖2 log(N/δ). This implies that with probability at least 1− δ,

‖E(1)‖2 ≤
√

4 ` ‖E[xtxTt ]‖2 log(N/δ)

|S| ,

and since ‖E[xtx
T
t ]‖2 = ‖ `(`−1)

N(N−1)PΩ2
(M2) + (`/N)I‖2 ≤ (`2/N2)σ1(M2) + (`/N), this gives

the desired bound.

Now let E(2) ≡ diag(S2 − E[S2]), where each diagonal term is distributed as binomial distribution
Binom(|S|/2, `/N ). When |S| ≥ (2N/`) log(|S|/δ) standard Bernstein inequality gives

‖E(2)‖2 ≤ max
i∈[N ]

E
(2)
ii ≤

√
4` log(N/δ)

N |S| ,
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for all i ∈ [N ] with probability at least 1 − δ. Together we have the desired upper bound on
‖E(1) + E(2)‖2.

In the case of ‖Ei‖, similar concentration of measure shows that |Eij | ≤
√

8 `2 log(N/δ)
N2 |S| with prob-

ability at least 1− δ for all j 6= i. This gives

‖PΩ2(E)i‖ ≤
√

8 `2 log(N/δ)

N |S| .

C.3 Proof of Lemma B.3

Let Ĥabc = n(n−1)(n−2)
`(`−1)(`−2)

2
|S|
∑|S|
t=1+|S|/2 Y

t
abc where Y tabc =

∑
(i,j,k)∈Ω3

xt,ixt,jxt,kQ̂iaQ̂jbQ̂kc,

and Q̂ = ŨM2Σ̃
−1/2
M2

. Then,

Y tabc = 〈xt, Q̂a〉〈xt, Q̂b〉〈xt, Q̂c〉 − 〈xt, Q̂a〉
∑

i∈[N ]

(x2
t,iQ̂ibQ̂ic)− 〈xt, Q̂b〉

∑

i

(x2
t,iQ̂iaQ̂ic)

−〈xt, Q̂c〉
∑

i

(x2
t,iQ̂iaQ̂ib) + 2

∑

i∈[N ]

x3
t,iQ̂iaQ̂ibQ̂ic .

We claim that |Y tabc| ≤ 6`3µ3
1r

3/2N−3/2(1 − εM )−3/2σr(M2)−3/2. Since xt has only
` non-zero entries and by incoherence of µ(M̂2) = µ1, we get that |〈xt, Q̂a〉| ≤
`µ1

√
r/(N(1− εM )σr(M2)). Similarly, |∑i∈[N ](x

2
t,iQ̂ibQ̂ic)| ≤ `µ2

1(r/N)(1 −
εM )−1σr(M2)−1 and |∑i∈[N ](x

3
t,iQ̂iaQ̂ibQ̂ic)| ≤ `µ3

1(r/N)3/2(1− εM )−3/2σr(M2)−3/2.

Applying Hoeffding’s inequality to Ĥabc, we get that

∣∣Ĥabc −Habc

∣∣ ≤ 48 r3/2 µ3
1N

3/2

σr(M2)3/2

√
log(2/δ)

|S| ,

for εM ≤ 1/2 with probability at least 1 − δ, where Habc =

PΩ3
(M3)[ŨM2

Σ̃
−1/2
M2

, [ŨM2
Σ̃
−1/2
M2

, [ŨM2
Σ̃
−1/2
M2

].

D Proof of Theorem 4 for the error bound of RANKCENTRALITY

The proof builds on key technical Lemma from [19]. Recall that the comparison graphG = ([n], E)
has N = |E| pairs/edges and the transition matrix for a random walk on this graph G for mixture
component a, 1 ≤ a ≤ r is p̃(a) = [p̃

(a)
i,j ] ∈ [0, 1]n×n which depends on P̃a, the estimation of Pa

obtained by the algorithm in phase 1.

The Markov chain p̃(a) is designed in such a way that if P̃a were indeed exactly equal to Pa, based
on the true model parameters w(a), then the following holds (easy to check): (a) Markov chain p̃(a)

is irreducible and aperiodic as long as G is connected, (b) the stationary distribution π̃(a) is equal
(proportional) to w(a) (without loss of generality, we assume that w(a) are such that they sum up to
1). The above fact primarily holds because in this ideal scenario the correspond Markov chain is a
reversible Markov chain with the desired stationary distribution. In reality, the Markov chain p̃(a) is
an approximation of the ideal scenario and we need to quantity the error due to estimation error of
P̃a. This is precisely what we shall do next using the following Lemma of [19].
Lemma D.1 (Lemma 2 in [19]). For a Markov chain p̃ and an aperiodic, irreducible and reversible
Markov chain p with the stationary distribution π, let ∆ = p̃ − p and let π̃(t) be the distribution at
time t according to the Markov chain p̃ when started with initial distribution π̃(0). Then,

‖π̃(t) − π‖
‖π‖ ≤ ρt

‖π̃(0) − π‖
‖π‖

√
πmax

πmin
+

1

1− ρ‖∆‖2
√
πmax

πmin
,

where πmin = mini∈[n] πi, πmax = maxi∈[n] πi, ρ = λmax(p) + ‖∆‖2
√
πmax/πmin, and

λmax(p) = max{|λ2(p)|, . . . , |λn(p)|} is the second largest eigenvalue of p in absolute value.
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To prove the desired bound, we need control on the quantities ‖∆‖2 and ρ. We know that the spectral
norm is bounded by ‖∆‖2 ≤ ε as per our assumption. The following lemma provides a lower bound
on 1− ρ.
Lemma D.2. For ε ≤ (1/4)ξb−5/2(dmin/dmax), we have

1− ρ ≥ 1

4

ξ

b2
dmin

dmax
.

Note that we defined b ≡ πmax/πmin and also it follows from the definition that ‖π‖ ≥ 1/
√
n and

‖π̃(0) − π‖ ≤ 2. Substituting the bounds on ‖∆‖2 ≤ ε and 1 − ρ, we get that there exists positive
numerical constant C,C ′ such that for t ≥ C ′ log

(
n/ε
)
/ log(ρ),

‖π̃(t) − π‖
‖π‖ ≤ C b5/2 dmax

ξ dmin
ε .

The necessary number of iterations can be further bounded by t ≥ C ′(b2dmax/(ξdmin))
(

log(1/ε)+

log(n)
)

using Lemma D.2. This proves that the bound in Theorem 4, for ε ≤
(1/4)ξb−5/2(dmin/dmax).

Now we are left to prove Lemma D.2. From the definition of ρ,

1− ρ ≥ 1− λmax(p)− ε
√
b .

We will show that

1− λmax(p) ≥ ξdmin

2b2dmax
, (40)

where the desired bound follows for ε ≤ (1/4)ξdmin/(b
5/2dmax) as per our assumption. To prove

(40), we use the comparison theorems (cf. see [19]), which bound the spectral gap of the Markov
chain p of interest, by comparing it to a more tractable Markov chain. We use the simple random
walk on the undirected graph G([n], E) as a reference. Define the transition matrix of a simple
random walk as

Qij =

{
1
di

for (i, j) ∈ E ,
0 otherwise ,

where di is the degree of node i. The stationary distribution of this Markov chain is µi = di/
∑
j dj ,

andQ is reversible since the detailed balance equation is satisfied, i.e. µiQij = 1/(
∑
j dj) = µjQji

for all (i, j) ∈ E. The following key lemma provides a bound on the spectral gap of p with respect
to the spectral gap of Q.
Lemma D.3 (Lemma 6 in [19]). Let Q,µ and p, π be reversible Markov chains on a finite set [n]
representing random walks on a graph G([n], E), i.e. pij = 0 and Qij = 0 if (i, j) /∈ E. For
α ≡ min(i,j)∈E{πipij/(µiQij)} and β ≡ maxi∈V{πi/µi},

1− λmax(p)

1− λmax(Q)
≥ α

β
.

We have defined ξ ≡ 1− λmax(Q), and α and β can be bounded as follows.

α = min
(i,j)∈E

πipij
µiQij

≥ min
(i,j)∈E

wiwj
∑
k∈[n] dk

dmax(wi + wj)
∑
k∈V wk

, and

β = max
i∈[n]

πi
µi

≤ max
i∈[n]

wi
∑
k dk

di
∑
k wk

.

Hence, α/β ≥ dmin/(2dmaxb
2). This proves the desired bound in (40).
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E Proof of Remark 2.1

Assuming w(a)
i ’s are drawn uniformly at random from the interval [1, 2] and G(V, E) drawn from

the Erdös-Rényi model with average degree d̄ ≥ log n, we want to bound the singular values and
the incoherence of M2 = PQPT . Define a matrix M̃ = Q1/2PTPQ1/2 ∈ R2×2. Since M̃ and
M2 have the same set of non-zero singular values, we analyze the spectrum of M̃ .

For our example, M̃ = 1
2P

TP . Define P1 and P2 be the two columns of P such that P = [P1 P2],
then using McDiarmid’s inequality we get that, conditioned on the graph G with N edges and
maximum degree dmax,

∣∣PT1 P2

∣∣ ≤ εN ,∣∣ ‖P1‖2 − (ln(3486784401/68719476736) + 3)N
∣∣ ≤ εN ,∣∣ ‖P2‖2 − (ln(3486784401/68719476736) + 3)N
∣∣ ≤ εN . (41)

with high probability for any positive constant ε > 0. We provide a proof for ‖P1‖2, and the others
follow similarly. Conditioned on the graphG, ‖P1‖2 =

∑
(i,j)∈E(

(
w

(1)
j −w

(1)
i )/(w

(1)
i +w

(1)
j )

)2
=

f(w
(1)
1 , . . . , w

(1)
N ) is a function with bounded difference:

sup
w

(1)
1 ...,w

(1)
n ,v

(1)
i

∣∣ f(w
(1)
1 , . . . , w

(1)
i−1, w

(1)
i , w

(1)
i+1, . . . , w

(1)
n )−f(w

(1)
1 , . . . , w

(1)
i−1, v

(1)
i , w

(1)
i+1, . . . , w

(1)
n )

∣∣ ≤ dmax .

It follows that

P
(∣∣ ‖P1‖2 − E[‖P1‖2]

∣∣ ≥ εN
∣∣∣G
)
≤ 2 exp

{
− 2ε2N2

d2
maxn

}
.

For Erdös-Rényi random graphs with d̄ ≥ log n, we know that dmax = Θ(d̄) and
N = Θ(d̄N) with high probability. Also, it is not too difficult to compute E[‖P1‖2] =
ln(3486784401/68719476736) + 3 ' 0.0189. It follows that with high probability, (41) holds.

Given (41), we can decompose the matrix as

M̃ =

[
(ln(3486784401/68719476736) + 3)N 0

0 (ln(3486784401/68719476736) + 3)N

]
+ ∆ ,

where ‖∆‖2 ≤ 2ε. It follows that σ1(M̃) ≤ 0.02N and σ2(M̃) ≥ 0.017N . Choosing ε = 0.001N ,
this proves the desired bound.

To bound the incoherence, consider the SVD of M2 = USUT = PQPT . There exists a orthogonal
matrix R such that US1/2 = PQ1/2R. Then, the i-th row of U is Ui = eTi PQ

1/2RS−1/2. We
know, Q = diag(1/2, 1/2), S = diag(σ1(M2), σ2(M2)), and RRT = RTR = I. It follows that

µ(M2) = max
i

√
N/2‖Ui‖

≤ max
i

√
N/2

√
P 2
i1 + P 2

i2(1/
√

2)
√

1/σ2(M2)

≤ 15 .
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