Supplementary material for “Learning Mixed Multinomial Logit
Model from Ordinal Data”

A Proof of Theorem 1

In order to apply Theorem 4, let A = p — p, then

[All2 < [[A —diag(A)|l2 + [[diag(A)[[2 < [|A —diag(A)|lr + HEIE[M](AM
< E (pij — Pij)? + max E (pij — Dij)
— i€[n] | <
i#£] J#i
< L B+ A p B
— \/idmax a a 2 dmax a a M

From Theorem 3, we know that [|Al|z < ﬁ\\Pa — P, € ey/(rqmax01(M2))/qmin and substi-
tuting this into the bound in Theorem 4 we get the desired bound.

B Proof of the performance guarantee for the spectral method in Theorem 3

To simplify notations, we will assume that the indices of the output of the algorithm and the ground
truths are matched such that the theorem holds with identity permutation. The spectral algorithm

outputs P = Up, £,2V7A#. From theorem 2, we know that P = Uy, Sy,°V# A¥, or equiva-

lently P = U MzZ}\ZVH Q~1/2. To show that P and P are close, we would hope that each of the
terms above to be close.

To that end, define

Vo= 5,208, PQY?, (17)

~ .1

G = V; @ U; @V;) (18)
2 )

where V = [01 D2 ... D,] (note that Gis proxy of V). Now

1P =Pll, < [10mTiP = Plly+[| P~ U3 P|l,
= H (71»@0}&213 - P H2 + || 0Mzi}\//[22VHAH — UMZ,E}VQT/Q_l/z H2 using (17)
< N0 P = Py + | 00 S (V =V Q72

O EY2VE QY2 - AT |, . (19)
To bound the three terms on the RHS of (19), we shall use the following ‘errors’ (which we shall
bound sharply later in the proof): define (recall H was produced by Algorithm Tensor Least Squares)

eny = M2~ Mp||2
O'T(Mg)
EH = ||H - HHQ (20)

Bounding the first term in RHS of (19). To begin with, note that we can represent P = Uy, XV T
by definition. Given the definition of (20), and an application of Davis-Kahan theorem [9] implies
that

1(Une,Usz, =D Uns |2 < e 21
Using this, we have
10, Uy, P = Pll2 = [|(Unr, Uiy, =) P2
< [(Unrs,Usy, = Dll2Uns, SV 2
<em|Plz, (22)
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Bounding the second term in RHS of (19). Consider
IZas,ll2 = [ Mall2 < [[Ma — Ma|lz + || Moll2
<enmor(Mz) + || Mzl2- (23)
We state the following Lemma providing bound on ||V — vH |l2 in terms of €7 and e¢:

Lemma B.1. There exists universal constant C1 > 0 such that

~ 7 1
v, < Clm(aHersM),and
HQ—l/?_AHHz < 01(5H+ ! EM) .
v/ Qmin

Given (23), Lemma B.1, the fact that U M, 1S a unitary matrix and () is a diagonal matrix, we obtain
that the second term in RHS of (19) is bounded by

100500 (V =V Q72| < [ U LIS LIV = V) ||l
Vemor(Mo) + Mzl |\~ o
V-V
< N | 2
| Ma|l2 7 ¢max 1
= G \/T(€H+¢mm>’ @9

for an appropriate universal constant Cy > 0, with £); < 1/2 and using fact o,.(M2) < || Ma||2-
Bounding the third term in RHS of (19). Observe that
VH )2 < IVI2 +[VH =Vl

<1+ 2ep + Civ/Tqmax (€0 + €0/ v/ Gmin) (25)

using Remark C.1 and Lemma B.1. Using (25) and Lemma B.1, the last term in (19) can be bounded
above as

HUMZi}vaH (Q71/2 - AFI) Hz §~ HUM2S}V/I§H2| VH H2||(Q71/2 - [\H) Hz
< (Vemor (M) + [[Mal) [V |2 Q712 — A,

\V4 max ].
< Cjs ||M2H2<1+\/TQmax5H+ \;qqi EM) (5H+ \/FEM) (26)
1
< Cov/PEe (en+ —o—eu ). @7)

for epr < v/ Gmin/ (" @max)s €1 < 1/1/T Gmax and for some universal constant C3 > 0.

Towards Theorem 3. Substituting (22), (24), (27) in (19), for universal constant Cy > 0, we get

1P = Plla < exr||Pll2 + Ca

HMQHQ T dmax (EH +

1
EM )
Gmin vV Gmin

||M2H2Tqmax 1
< Oy [T R (e en ) (28)
* Gmin v/ 4min

where we used the fact that | Pl|2 < ||1/||M2]|2/@min|| since P = UMzZMSVHAH. Given (28), to
complete the proof of Theorem 3, we need to establish bounds on €, and €.

Bounding ¢;,. To bound €,;, we need to bound error between M5 and Mg, the output of alternating
minimization procedure applied to M,. The following theorem [12] provides such a bound.

Theorem 5 (Theorem 4.1,[12]). For an N x N symmetric rank-r matrix M with incoherence i,
we observe off-diagonal entries corrupted by noise:

. — M+ Ei;  ifi#7,
K 0 otherwise.



Let M) denote the output after T iterations of MATRIXALTMIN. If n <
(6-(M)/o1(M))\/N/(32715), the noise is bounded by ||7392( e < op(M )/32\/77 and
each column of the noise is bounded by || Pq,(E):|| < o1(M)ur/3r/(8N), Vi € [N], then after
T > (1/2)log (2||M||p/e) iterations of MATRIXALTMIN, the estimate M(T) satzsﬁes.

’ IMI[rvr
M—MD|, < L A E
| 2 < e+ o (M) [Pa, (E)ll2 ,

forany e € (0,1). Further, M7) is ju-incoherent with 1y < 6oy (My) /o, (Ms).

To apply the above result in our setting to bound 7, we need to bound ||Pq, (E)||2 and || Pq, (E)||
for all ¢ € [N]. To that end, we state the following Lemma.

Lemma B.2. Let S = (2/IS]) Xoieq1,..is1/2) xizl be the sample covariance matrix, and let

E = ]\%év 1; So — My denote the sampling error in the off-diagonal entries. Then, there exists a
universal constant Cs > 0 such that with probability at least 1 — 6,

[Pa, (E)ll2 < 05\/]\[212%5(?/5) (01(M2) + %) :

Moreover, the Euclidean norm of the columns are uniformly bounded by

N3log(N/o)

E)ll <
Pa, (BNl < Coy| =it

foralli € [N].

Theorem 5 and Lemma B.2 imply that with probability at least 1 — §, for large enough iterations of
the MATRIXALTMIN,

Y [Mz||r N |7 log(N/d) N
= — <
EM O'T(M2) ||M2 M2H2 < CG JT(M2)2 7 |S| (0’1 (Mg) + 7 ) s (29)

for universal constant Cg, C7 > 0 when |S| > C7N*rlog(N/§)/((?0,.(Mz)?) — the assumption of
Theorem statement.

Bounding 5. To bound €5, we need bound on error induced by the output of the Tensor Least
Square procedure. The following result [12] provides such a bound.

Theorem 6 (Theorem 4.3,[12]). If N > w, then with probability at least 1 — 6,

02,(]\42)2
] 24#?#7’3'501(M2)3/2 Foa—1/2 1/2
|H - H|r < N¢@MMﬁmem+ﬂﬂﬁ&—Mgmmmbim2 % 0S|

where enp = (1/0,(Mz)) | Mz — M|, p = p(Ms), pr = pu(Uns,), and

S|

CN(N-1)(N-2) 2 P
83 = =TT =3 |5(t_§|3/2 RN (30)

To utilize above result, we state the following Lemma.
Lemma B.3. There exists a positive numerical constant Cy such that with probability at least 1 — 9,

H TSM?NS/Q log(1/6)
P (My)3/ s

H Pa, (S5 — M3> [ﬁMQS];[t/2> UMziX;JQ, U, 5, 1/2]

Theorem 6 and Lemma B.3 imply that with probability at least 1 — §
ey = [|H — H|5

f 12 51 (Ms)3/? N3/2 log(1/4)
<Copdrd [ 202l o o 31
S (quln/li (M3 M T g (Mp)372 S| Gh

12

Y



7'3(71(M2)2

for some positive numerical constants Co, C11 when N > Cy1— USRS

Equations (28)-(31) imply that

. Msllar 1
|P—Pl2 <Cy4 1¢2l2 7 dmax qmax(éH-F EM) ;
Gmin \/Qmin

||M2||2rqmax 3 3 MT1/2 UI(M2)3/2 N3/2 1Og(1/5) 1
< 0y [ Vel e
o : Qmin 10 Ml " qu:’ll’l/li O'T(M2)3/2 EMm + JT(M2)3/2 |S| + dmin oM

Using p1 < 6uo1(Ms)/o.(Ms) from Theorem 5, we obtain (for appropriate constant C5 > 0),

|P—Plls < C1z

4.5
1
2 - N UT(M2)> + )5M+ o (Mp)A S|

| Mall2 7 gmax | 2em 3 301(M2)3N5  [log(1/6)
<C 32
= 12\/qmi TR G YALE; sl J G2

where N > p*r3-5(0q(Mz)/o,.(Ms))*5 as per assumption of the Theorem statement. From (29),
it follows that when

T201(M2)2N2(01(M2) + N/é) IOg(N/(S)
E2Qmin£0—r (M2)4

[ Mal27 Gmax {(Wﬁ (01<M2> 138y (My)PN3/2qM2  [log(1/9) }
2 .

r|| Ma|[3-N? log(N/6)

>
|S| > Ci3 £2qminfo,(My)*

> Ch3

).
(33)

(we used || Ms||p < +/To1(Ma) for rank r matrix Ms) for an appropriate choice of universal con-
stant C13 > 0,

2em €
—qun/li < 3 (34)
Also, recall that for (29) to hold, we require
N*rlog(N/d)
S| >Cr————————= 35
812 Cr 20, (M,)? (35)
Also, when
6r6 N3oy (M5)% log(1/5
S| > Oy, 01(M2)"log(1/6) (36)

20, (Ms)? ’

for an appropriate choice of universal constant C4 > 0, the second term inside bracket in (32) is
less than % From above, it follows that when

r2N201(Ms)? log(N/5) (g o1(Ma) qmin,u67“401(M2)4N) N*rlog(N/6)

S| >C
512 O o, )T\ N VAT 201 (My)?
(37)
. max01 (M:
PPy < e lmaxi)
Gmin
”Q_l/Z_AG”? < &,
(') for some positive constants C' = Cp5 and C’. Assuming N >

for any ¢ € (0
)

C"r32 18y (Ms) /o, (Ms))*?, the above holds for

S| >

Yol rN* 10g(N/(5) (i I 0'1(M2) " T401(M2)4) .
Gmin01(M2)?e? \ £2 (N o, (Ms)5
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C Proof of the technical lemmas for the spectral method

C.1 Proof of Lemma B.1

In order to apply the perturbation analysis of Theorem C.2 from [2], it is crucial that we compare
to a tensor with an orthogonal decomposition. Since both H and G do not have orthogonal decom-
positions, we define a new tensor G that is close to G and has an orthogonal decomposition. Given
the singular value decomposition of V = XSYT, define V= XYT. This V € R"*" is orthogonal
such that VVT = VTV =1, and is close to V such that

V-Vl = [X(S-DYTs
< max|S; — 1
i€[r]
< 2w, (38)

where the last inequality follows from the next remark.
Remark C.1 (Remark 10 in [12]). Suppose | My — M|y < enro,(My), then

IT—=VVT|y < 2.

It follows that ||S2 — ||, = |[VVT — 1|y < 2ep;. Therefore, S2 € [1 — 2e57, 1 + 2¢5/] and so is
S € [1 —2ep,1 +2€M] forep < 1/2.

Since [V = VA|ly < |V = V] + [V = VA|ly < 2607 + |V — V|2, we are left to show that
|V =V H]|ly < 8/F Gmax (1 +(13//Gmin)ear) to finish the proof. Recall that G = S7_, ﬁ(f)i@)
¥; ® ;) and that VH is the output of the robust power method applied to H, and let

T

- 1
G = Z (1_11(8)1_}7@’[_}7) .

Applying (38), we get that

~ 1
G—G = max H ﬁz®ﬁz®ﬁz_@1®iz®ﬁz
IG=Gle = max | 30— |,
~ 1 3 T-\3
< max —{(u 0;)° — (u' v;) }
flull=1 _1\/@
| T T~ \2 TN/ T~ T—\2
< max —(u (V —=V)e; u ;)" (u v (u ;) + (u v
M_l;@( (V = Ve ) ((WT5)? + (u75) (w7 0:) + (uT0)?)
1 o~
< V —V|2(3+6ep + €32
%E” [l 2( M)
13
< EM
dmin

where the last line holds for e, < 1/2. Since ||ﬁ — G2 < ey + (13//Gmin)err, We show that
VH and V are close using the perturbation analysis for robust power method from [2].
Theorem C.2 (Restatement of Theorem 5.1 by [2]). Let G = Ziem Ai(v; @ v; @ v;) + E, where

|E|2 < Cy /\n;m, Then the tensor power-method after N > Cs(logr + log log (ﬂ‘gﬁg ) generates
vectors ¥;,1 <1 < r, and 5\1‘, 1<i<r, st,
v — op@yll2 < 8IEll2/Apays 1N — Apgiy| < 5]|E|l2- (39)

where P is some permutation on [r].



Applying the above theorem to H and G, we get that [|[VH — V|, < 8Fdmax(cn +
(13/+/qmin)enr). Notice that to apply the perturbation analysis, it is crucial that we use the fact
that G has an orthogonal decomposition. Similarly, we can show that

A ! < bepg + 05 €
i~ < H M -
\/@ vV Gmin
C.2  Proof of Lemma B.2
Let E = Pq,(S2 — E[S2]) = S2 — E[S2] — diag(S2 — E[S2]), and we bound each term
separately using concentration inequalities. Define the random matrix E(V) = S — E[Ss] =

% D oteq1,...|S|/2} (xtxtT — E[zizf ]) We apply the following matrix Bernstein bound for sum

of independent sub-exponential random matrices with X; = zy2!] — E[x2]].

Theorem 7 (Theorem 6.2 of [24]). Consider a finite sequence { X} of independent, random, self-
adjoint matrices with dimension N. Assume that

k!
E[X;] =0 and E[X[] = 5Rk_2At2 for k=2,34,...

Compute the variance parameter 0 = || ", A?||o. Then for all a > 0,

P12l 20) = New (02

The random matrix we defined X i is zero-mean, and satisfies E[X}] < E[(xz])F] = ¢+~ 1E[xta:t s
which follows form the fact that x7 2; = ¢ almost surely. We can prove the 1nequa11ty E[X} ] =
E[(z;x] )] via induction. Let X = E[z;z]]. When k = 1, E[X{] = 0 = E[(x;z])], since X is a
convex combination of positive semidefinite matrices. When k = 2, E[X 2] = E[(z2])?] — X2
E[(z;x])?], since X is posmve semidefinite. Suppose 0 < E[(xtxfT) — X[] for some k > 1, then
this implies E[X, (2,27 )¥ — X[) X;] = 0. It follows that

E[ (zz] V2 L X (22D X — (22T X — X (22T — th“] =0,
which implies

E[(zt:cf)kJrQ — Xf"'z} IE[ (xtth)k+1X + X(xtxtT)kJrl - X(xtxf)kX]
e’f—l)‘((%ﬂ - X)X

Y 1Y 1Yy

This follows from the fact that | X || < E i||xtmT|| = /. By induction, this proves the desired claim
that E[X}] < E[(x,2])*] = (F71E]| a:tx , for all k. Then, the condition in Theorem 7 is satisfied
with R = ¢, A? = (E[z,z]], and 0% = (|S\/2) O |E[zex])

S| —a?/2
PGIE b 2a) < New ((ppporara)

When |S| > (2¢1og(N/6))/||E[ztzl]||2 as per our assumption, the first term in the denominator
dominates for a = /2|S| ¢ ||E[z;z]]||2 log(N/J). This implies that with probability at least 1 — 4,

S| 7

2, which gives

and since [|Elw2] ]ls = | xtgy Pos (Ma) + (/N < ((2/N?)or(My) + (¢/N), this gives
the desired bound.

Now let E?) = diag(S, — E[Sy]), where each diagonal term is distributed as binomial distribution
Binom(|S|/2,¢/N). When |S| > (2N/¢)1og(|S|/d) standard Bernstein inequality gives

4¢ log(N/9)
E®) @ = oV
|| ||2 = Hel[al‘i,(] i = N |S|



for all ¢ € [N] with probability at least 1 — §. Together we have the desired upper bound on
IED 4+ E@)|,.

8E loa(lV/3) Al,c;gﬁgl\lf/ %) with prob-

ijl <
ability at least 1 — ¢ for all j # 4. This gives
802 log(N/§)

E)ll <

C.3 Proof of Lemma B.3

2 n(n—1)(n—2 S A A A
Let Habc = W ST th ‘1+|S\/2 abe where Yabc Z(i,j,k)EQa xt,ixt,jxt,inankaC’
and Q =U M, MQ/ . Then,
Vie = (@, Qa){we, Qu) (w1, Qc) — (w1, Qa) Z (fﬂf,iQibQic) — (w1, Q) Z(x?,iQiaQiC)

1€[N] i
<'TfaQ >Z(xt szsz )+2 Z CCt 1Qzanszc .
7 1€[N]
We claim that |V} | < 663u3r3/2N=3/2(1 — ep1)7%/20,(M3)~3/2.  Since z; has only
¢ non-zero entries and by incoherence of p(My) = i, we get that |(z,Q.)| <

L /T/(N(1 = ear)or(Mz)). Similarly, | Y,cn (@7 QueQic)l < ui(r/N)(1 —
en) " ron(Ma) ™ and | 3, ng (23, QiaQinQic)| < Lpd(r/N P2 (1 — ear) =320, (M) ~3/2,

Applying Hoeffding’s inequality to Hepe, we get that

- 48 r3/2 13 N3/2 - [log(2/9)
T on(Mp)32 S|

Habc - Habc ’

for eum < 1/2  with probability at least 1 — §, where Hgyp =
Foa—1/2 o &—1/2 1/2
PQS (M3)[UM22M2 ) [Uﬂbzlw [UM2 ]

D Proof of Theorem 4 for the error bound of RANKCENTRALITY

The proof builds on key technical Lemma from [19]. Recall that the comparison graph G = ([n], E)
has N = |E| pairs/edges and the transition matrix for a random walk on this graph G for mixture
component a,1 < a < ris p@) = [ﬁgaj)} € [0,1]"*™ which depends on P,, the estimation of P,
obtained by the algorithm in phase 1.

The Markov chain $(® is designed in such a way that if P, were indeed exactly equal to P,, based
on the true model parameters w2 then the following holds (easy to check): (a) Markov chain 13(“)
is irreducible and aperiodic as long as G is connected, (b) the stationary distribution 7(*) is equal
(proportional) to w(®) (without loss of generality, we assume that w(®) are such that they sum up to
1). The above fact primarily holds because in this ideal scenario the correspond Markov chain is a
reversible Markov chain with the desired stationary distribution. In reality, the Markov chain $(® is
an approximation of the ideal scenario and we need to quantity the error due to estimation error of
P,. This is precisely what we shall do next using the following Lemma of [19].

Lemma D.1 (Lemma 2 in [19]). For a Markov chain p and an aperiodic, irreducible and reversible
Markov chain p with the stationary distribution , let A = p — p and let ) be the distribution at
time t according to the Markov chain p when started with initial distribution 7). Then,

||ﬁ—(t) - 7TH t ||7~T(0) - 71—” Tmax Tmax
e S [A]l2 ;
[l [ Tmin 1 —p Tmin
where Tmin = Milig[p) T, Tmax = MaXig[n] Tir £ = Amax(P) + [|All2v/Tmax/Tmin, and
Amax(P) = max{\/\g( My - oy |[An(p)|} is the second largest eigenvalue of p in absolute value.
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To prove the desired bound, we need control on the quantities || A || and p. We know that the spectral
norm is bounded by ||Al|2 < € as per our assumption. The following lemma provides a lower bound
onl—p.

Lemma D.2. Fore < (1/4)6b7%/2(dmin/dmax ), we have

> lé dmin ]
- 4 b2 dmax

I—p

Note that we defined b = Tpax/7Tmin and also it follows from the definition that ||7|| > 1/y/n and
[|7(®) — 7| < 2. Substituting the bounds on ||A||lz < € and 1 — p, we get that there exists positive
numerical constant C, C” such that for ¢t > C'log (n/c)/log(p),

~(t) _ 5/2
17 — | < ME
||7T|| fdmin

The necessary number of iterations can be further bounded by ¢ > C’(b?dimax/({dmin)) (log(1/€) +
log(n)) using Lemma D.2.  This proves that the bound in Theorem 4, for ¢ <

(1/4)61)75/2 (dmin/dmax)-
Now we are left to prove Lemma D.2. From the definition of p,
1—/) > 1_>\max(p)_€\/g.

We will show that

gdmin

1- )\max 2 )
®) 2

(40)

where the desired bound follows for ¢ < (1/4)&dmin/(b°/?dmax) as per our assumption. To prove
(40), we use the comparison theorems (cf. see [19]), which bound the spectral gap of the Markov
chain p of interest, by comparing it to a more tractable Markov chain. We use the simple random
walk on the undirected graph G([n], E) as a reference. Define the transition matrix of a simple
random walk as

Qi = { d%_ for (i,j) € E
E 0 otherwise ,

where d; is the degree of node i. The stationary distribution of this Markov chain is u; = d;/ > ;4
and @ is reversible since the detailed balance equation is satisfied, i.e. 1;Qi; = 1/(3; dj) = p1;Qji
for all (i, j) € E. The following key lemma provides a bound on the spectral gap of p with respect
to the spectral gap of Q).

Lemma D.3 (Lemma 6 in [19]). Let Q, ;i and p, 7 be reversible Markov chains on a finite set [n]
representing random walks on a graph G([n|,E), i.e. p;; = 0and Q;; = 0if (i,5) ¢ E. For
o =ming jep{mpij/(1iQij)} and B = max;ev{mi/ui},

1 - Amax(p) > «

1- )\max(Q) a B '
We have defined £ = 1 — Apax(Q), and « and S can be bounded as follows.
(0% = min w
(i.))€E i Qij
WiW; d
> min ! Zke[n] i , and
(i) EE Amax (Wi +wj) Y oy Wi
U
S = max —
i€[n] fh;
< max Wi Zk di

ie[n) d; Zk Wi '
Hence, /3 > dimin/(2dmaxb?). This proves the desired bound in (40).
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E Proof of Remark 2.1
Assuming wl(a)’s are drawn uniformly at random from the interval [1,2] and G(V, £) drawn from
the Erdos-Rényi model with average degree d > logn, we want to bound the singular values and
the incoherence of My = PQPT. Define a matrix M = Q'/?2PTPQ'/? € R?*2. Since M and
M5 have the same set of non-zero singular values, we analyze the spectrum of M.

For our example, M = %PTP. Define P; and P, be the two columns of P such that P = [Py P,
then using McDiarmid’s inequality we get that, conditioned on the graph G with N edges and
maximum degree dyax,

| PFPQ ‘ S eN )
|[[P1]|* — (In(3486784401/68719476736) + 3)N | < &N,
|1 P2]|* — (In(3486784401/68719476736) + 3)N | < &N . 41)

with high probability for any positive constant e > 0. We provide a proof for || P; ||, and the others

follow similarly. Conditioned on the graph G, || P1||* = 32, ;e (w(l) —wgl))/(w(l)—i—wj(-l)) )2 =

b i

f (wgl), ce wg\})) is a function with bounded difference:
1 1 1 1 1 1 1 1
" su;()l) " | f(wg )7 . ,wg_)l,wf ),w§+)1, . ,wg))—f(wg ), e ,wz(_)l,vz( )7w£+)17 .. ,wfll)) | < dmax -

It follows that

2e2N?
P(|IP2 ~ENRAI% | 2N |6) < 2ep{ - Z—1
For Erdos-Rényi random graphs with d > logn, we know that dp., = @(J) and

N = O(dN) with high probability. Also, it is not too difficult to compute E[||P;|?] =
In(3486784401/68719476736) + 3 ~ 0.0189. It follows that with high probability, (41) holds.

Given (41), we can decompose the matrix as

7 — [(n(3486784401/68719476736) + 3)N 0 LA
= 0 (In(3486784401/68719476736) -+ 3) N )

where ||A||o < 2e. It follows that o1 (M) < 0.02N and o5 (M) > 0.017N. Choosing € = 0.001N,
this proves the desired bound.

To bound the incoherence, consider the SVD of My = USUT = PQPT. There exists a orthogonal
matrix R such that US'/?2 = PQ'/2R. Then, the i-th row of U is U; = el PQ'Y/2RS~1/2. We
know, Q = diag(1/2,1/2), S = diag(o1(M3),02(Ms)), and RRT = RT R = 1. It follows that

u(Mz) = max/NJ2|U|

Pi21 + P122(1/‘/§) V'1/02(Mo)

IN

IN

15.



