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Appendix

A Proof of Theorem 2.1

Proof. Observe that the permutation invariant operator which associates to («g, 89) the values

(a1, B1) = (ao + Bo, |ao — Bol)

satisfies
af + 87 = 2(af + 57)-
Moreover, if (o, 1) = (af, + Bf, lag — B5|) then

(01 = ah)? + (81 — B < 2( (a0 — ah)* + (B — B0)?)-
Since Sj41x is computed by applying this operator to pairs of values of S;x, we derive that
1Sj+12]* = 2[[Sj+12* and [|Sj112 — Sja’||* < 2|[Sjz — Sja'|* .

Since Sox = z and Syz’ = 2/, iterating on these two equations proves Theorem 2.1.

B Haar Scattering from Haar Wavelets

The following proposition proves that order m + 1 scattering coefficients are computed by applying
an orthogonal Haar wavelet transform to order m scattering coefficients. We also prove by induction
on m that a scattering coefficient S;x(n, ¢) is of order m if and only if ¢ = 27k with

m

K= 22_“

k=1

for some 0 < j; < ... < j,, < J. This property is valid for m = 0 and the following proposition
shows that if it is valid for m then it is also valid for m+ 1 in the sense that an order m+-1 coefficient
is indexed by x + 27Jm+1 and it is computed by applying an orthogonal Haar transform to order m
scattering coefficients indexed by x.

Proposition B.1. Foranyv € V and 0 < q < 27 we write

279d—1

Siz(v,q) = > Sjz(n,q) 1y, (v).
n=0
Forany k =Y ;" 279% any jm41 > jmand 0 <n < 2774,
ij(na 2'7(’{ + 27'7‘m+1)) = Z |<§jmx('v 2jmﬁ)7 wjnz+1-,p>" (B.1)
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Proof. We derive from the definition of a scattering transform in equations (3,4) in the text that
Sj+1x(n’ 2q) = ij(anv Q) + ij(bna Q) = <§jx('7 Q)v 1Vj+1’n>7
Sjtr(n, 2q + 1) = [Sjz(an, q) = S;z(bn, @) = [(Sj2(-, @), ¥j+1n)l-



where V1, =V} 4, UV}, . Observe that
20mH1 (g 4 27Im 1) = 2mat g 4 ] = 2(20m T g) 4 1,
thus S;,, ,, z(n, 27m+1 (k + 279m+1)) is calculated from the coefficients S, ,, —1z(n, 29"+~ 1K) of
the previous layer with
Simpr@(n, 27m 1 (5 + 279m 0 )) = (S5 (L 20 T ) )] (B.2)
Since 271k = 2 - 27, the coefficient S;, ., _12(n, 29"+ 1K) is calculated from S;, x(n, 2/ k)
by (jm+1 — 1 — jm) times additions, and thus
Sjmir—12(n, 2Im+1=1y — (S, x( 2im k), 1y,
Combining equations (??) and (??) gives
S @(1, 2701 (k5 4 27740)) = (S, 2, 277 ), 5,4 ) (B.4)
We go from the depth j,,, 11 to the depth j > j,,,+1 by computing
Sijz(n, 2 (k+277m+1)) = (S, 2(-, 27 (s +277m0)) 1y, ).
Together with (??) it proves the equation (??) of the proposition. The summation over p, V., , C
V;n comes from the inner product <1ij+1,p, 1y, ). This also proves that x + 277/m+1 is the index
of a coefficient of order m + 1. O

(B.3)

ain):

Since Spx(n,0) = z(n), the proposition inductively proves that the coefficients at j-th level
Sjx(n,27k) for j,, < j < J are of order m. The expression in the proposition shows that an
m + 1 order scattering coefficient at scale 27 is obtained by computing the Haar wavelet coefficients
of several order m coefficients at the scale 2/+1, taking an absolute value, and then averaging their
amplitudes over V. It thus measures the averaged variations at the scale 2/m+! of the m-th order
scattering coefficients.

C Proof of Theorem 2.2

To prove Theorem 2.2, we first define an “interlaced pairings”. We say that two pairings of V' =
{1,...,d}

T = {a:wb:z}0§n<d/2
are interlaced for ¢ = 0, 1 if there exists no strict subset 2 of V' such that 7" and 7! are pairing
elements within 2. The following lemma shows that a single-layer scattering operator is invertible
with two interlaced pairings.
Lemma C.1. Suppose that x € R? takes more than 2 different values, and two pairings 7° and 7"
of V.= {1,...,d} are interlaced, then x can be recovered from

S1z(n,0) = z(an) + x(bs), Si1z(n,1) = |z(an) —x(by), 0<n<d/2.

Proof. By Eq. (2), for a triplet n1,n2,n3 if (n1,n2) is a pair in 7° and (n1,n3) a pair in 7! then
the pair of values {2(n1), z(ny)} are determined (with a possible switch of the two) from
z(n1) +x(n2),  |x(n1) — z(ng)]

and those of {xz(n1),z(ns)} are determined similarly. Then unless xz(n;) # x(n2) and
z(ng2) = z(ns) the three values z(n1),z(n2),xz(n3) are recovered. The interlacing condition
implies that 7! pairs ny to an index n4 which can not be ns or n;. Thus, the four values of
z(n1),x(n2), x(ns), x(xy4) are specified unless x(ny) = x(ny1) # x(ng) = x(nz). This inter-
lacing argument can be used to extend to {1,...,d} the set of all indices n; for which z(n;) is
specified, unless z takes only two values.

Proof of Theorem 2.2. Suppose that the 27 multiresolution approximations are associated to the .J
hierarchical pairjngs (71", ...,m7 ) where ¢; € {0, 1}, where for each j, ’/T? and 7rJ1» are two interlaced
pairings of d277 elements. The sequence (e, ..., €7) is a binary vector taking 2 different values.

The constraint on the signal x is that each of the intermediate scattering coefficients takes more than
2 distinct values, which holds for z € R? except for a union of hyperplanes which has zero measure.
Thus for almost every = € R?, the theorem follows from applying Lemma ?? recursively to the j-th
level scattering coefficients for J — 1 > j > 0. O



