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1 Introduction

We have the following state-space model

X0 ∼ µ,
Xn|X0:n−1 = x0:n−1, Y0:n−1 ∼ fn (xn|x0:n−1) for n ≥ 1,

Yn|X0:n = x0:n, Y0:n−1 ∼ gn (yn|x0:n, y0:n−1) for n ≥ 0

where Xn is a X−valued random variable and X a metric space. Given a realiza-
tion of the observations Y0:t = y0:t, we are interested in making inference about
the latent state variables. We introduce the following unnormalised measures
[2] for any 0 ≤ n ≤ t,

αn (dx0:n) = p (dx0:n , y0:n) , α̂n+1 (dx0:n+1) = p (dx0:n+1 , y0:n) .

with normalisation constant p(y0:n) and their normalised versions

ηn (dx0:n) = p (dx0:n| y0:n) , η̂n+1 (dx0:n+1) = p (dx0:n+1| y0:n) .

If µ (dx) is a measure, ψ (x) a real-valued function, K (dx′|x) a Markov
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kernel and A a Borel set, we use the following standard notation

µ (ψ) =

∫
µ (dx)ψ (x) ,

µK (A) =

∫
A

µ (dx)K (dx′|x) ,

Kψ (x) =

∫
ψ (x′)K (dx′|x) .

Using this notation, we have

αn (ψ) = α̂n (gnψ) , α̂n+1 (ψ) = αn fn (ψ) ,

ηn (ψ) =
α̂n (gnψ)

α̂n (gn)
, η̂n+1 (ψ) = ηn fn (ψ) .

The following particle algorithm is used.

• Initialisation n = 0. For i = 1, ..., N0 Sample Xi,0
0 ∼ µ (·) and compute

W i
0 = g0

(
y0|Xi,0

0

)
.

• At time n ≥ 0.

– Branching step: Resample
{
W i
n, X

i,n
0:n

}Nn

i=1
to obtain

{
W̃ i
n, X

i,n+1
0:n

}Nn+1

i=1
.

– Extension step: For i = 1, ..., Nn+1 sampleXi,n+1
n+1 ∼ fn+1

(
·|Xi,n+1

0:n

)
.

– Reweighing step: Set W i
n+1 = W̃ i

n.gn+1

(
yn+1|Xi,n+1

0:n+1, y0:n

)
.

On the branching step, we assume that the particles are processed sequen-
tially in order given by a permutation σn on [Nn]. The ith particle processed is
σn(i), and the number of children M i

n+1 and common weight of each child V in
are determined, based only on information of particles σn(1), . . . , σn(i), but not
later particles and satisfy

V in = W
i

n =
1

i

i∑
j=1

Wσn(j)
n ,

M i
n+1 =

⌊
W

σn(i)
n

W
i

n

⌋
+ Bernoulli

(
W

σn(i)
n

W
i

n

−

⌊
W

σn(i)
n

W
i

n

⌋)
.

The total number of children for the next stage is Nn+1 =
∑Nn

i=1M
i
n+1, with

weights
(
W̃ i
n

)Nn+1

i=1
= (V 1

n , . . . , V
1
n︸ ︷︷ ︸

M1
n+1

, . . . , V Nn
n , . . . , V Nn

n︸ ︷︷ ︸
MNn

n+1

).
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At each time step, we have the following approximations βN0
n and β̃N0

n of αn
and the approximation β̂N0

n+1 of α̂n+1 :

βN0
n (dx0:n) =

∑Nn

i=1W
i
nδXi,n+1

0:n
(dx0:n)

N0

β̃N0
n (dx0:n) =

∑Nn+1

i=1 W̃ i
nδXi,n+1

0:n
(dx0:n)

N0
,

β̂N0
n+1 (dx0:n+1) =

∑Nn+1

i=1 W̃ i
nδXi,n+1

0:n+1
(dx0:n)

N0
,

Practically, when performing state estimation, we are not interested in the un-
normalised measures βN0

n , β̃N0
n and β̂N0

n+1 but in their normalised versions defined
as

νN0
n (dx0:n) =

βN0
n (dx0:n)

βN0
n (1)

, ν̃N0
n (dx0:n) =

β̃N0
n (dx0:n)

β̃N0
n (1)

,

ν̂N0
n+1 (dx0:n+1) =

β̂N0
n+1 (dx0:n+1)

β̂N0
n+1 (1)

,

where νN0
n and ν̃N0

n approximate ηn while ν̂N0
n+1 approximates η̂n+1.

This particle filter also ouputs an estimate of the marginal likelihood given
by

p̂N0 (y0:n) = p̂N0 (y0)

n∏
k=1

p̂N0 (yk| y0:k−1)

where p̂N0 (y0) := 1
N0

∑N0

i=1W
i
0 and for k ≥ 1

p̂N0 (yk| y0:k−1) :=

∫
gk (yk|x0:k, y0:k−1) ν̂N0

k−1 (dx0:k)

=

∑Nk

i=1W
i
k∑Nk−1

i=1 W i
k−1

for k ≥ 1.

Hence it follows that

p̂N0 (y0:n) =
1

N0

Nn∑
i=1

W i
n. (1)

We denote by B (E) the space of bounded real-valued functions on a space
E, equipped with the sup norm denoted ‖f‖ = supx∈E |f (x)|. We also denote
by Fn the natural filtration associated with all random variables generated by
the particle algorithm at the end of the nth reweighting step, and F̃n similarly
for just after the the branching step.

We make the following assumption on the model and branching step.
Assumption B. The function gn (yn| ·, y0:n−1) : Xn+1 → R satisfies gn(yn|x0:n, y0:n−1) >

0 for all x0:n ∈ Xn+1 and ‖gn(yn|·, y0:n−1)‖ ≤ 1 for all n ≥ 0.
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We note that if ‖gn(yn|·, y0:n−1)‖ ≤ Bn for some known constant Bn, then
we can simply rescale gn(yn|·, y0:n−1) to satisfy Assumption B. The assumption
that gn(yn|x0:n, y0:n−1) > 0 for all x0:n is a sufficient assumption ensuring the
system of particles cannot die.

Assumption O. The particle ordering σn is independent of all other random
variables generating Fn, conditioned on the number of particles Nn, and σn is
uniformly distributed across all permutations of {1, . . . , Nn}.

It is straightforward to establish that the particle branching mechanism im-
plies that Pr (Nn > 0) = 1 for any n ≥ 0 and that the following unbiasedness
property is satisfied for any ψ ∈ B (Xn)

E

Nn+1∑
i=1

W̃ i
n ψ

(
Xi,n+1

0:n

)∣∣∣∣∣∣Fn
 =

Nn∑
i=1

W i
n ψ

(
Xi,n

0:n

)
. (2)

Additionally, it ensures that for each n and i, we have

V[M i
n|Fn] ≤ V = 1/4 (3)

as M i
n is a shifted Bernoulli random variable and W i

n, W̃
i
n ≤ 1 straightforwardly

by induction as ‖gn(yn|·, y0:n−1)‖ ≤ 1.
In the rest of the paper, Assumption B and Assumption O are assumed to

hold.

2 Marginal likelihood estimation and unbiased-
ness

In this Section, we established that the marginal likelihood estimate given in
(1) is unbiased.

Proposition 1 For any N0 ≥ 1 and n ≥ 0, we have

E
[
p̂N0 (y0:n)

]
= p (y0:n) .
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Proof. The proof follows from a backward induction. We have

E
[
p̂N0 (y0:n)

]
= E

[
E
[

1
N0

∑Nn

i=1W
i
n

∣∣∣ F̃n−1]]

= E

 1
N0

∑Nn

i=1 W̃
i
n−1

∫
fn

(
xn|Xi,n

0:n−1

)
gn

(
yn|Xi,n

0:n−1, xn, y0:n−1

)
dxn︸ ︷︷ ︸

p(yn|Xi,n
0:n−1,y0:n−1)

 (using W i
n = W̃ i

n−1.gn (·) )

= E
[
E
[

1
N0

∑Nn

i=1 W̃
i
n−1p

(
yn|Xi,n

0:n−1, y0:n−1

)∣∣∣Fn−1]] (using (2))

= E
[
E
[

1
N0

∑Nn−1

i=1 W i
n−1p

(
yn|Xi,n−1

0:n−1, y0:n−1

)∣∣∣ F̃n−2]]
= E

[
E
[

1
N0

∑Nn−1

i=1 W̃ i
n−2p

(
yn−1:n|Xi,n−1

0:n−2, y0:n−2

)∣∣∣Fn−2]]
= E

[
E
[

1
N0

∑Nn−2

i=1 W i
n−2p

(
yn−1:n|Xi,n−2

0:n−2, y0:n−2

)∣∣∣ F̃n−3]]
= E

[
1
N0

∑N0

i=1W
i
0p
(
y1:n|Xi,0

0 , y0

)]
= p (y0:n) .

3 L2 Error Bounds

We first establish L2 error bounds for the unnormalised measures βN0
n , β̃N0

n and

β̂N0
n .

Theorem 2 (L2 error bounds for unnormalised measures) For any n ≥
0, there exists an, bn, cn <∞ such that for any N0 ≥ 1 and any ψn ∈ B

(
Xn+1

)
,

ψn+1 ∈ B
(
Xn+2

)
E
[{
βN0
n (ψn)− αn (ψn)

}2] ≤ an
N0
‖ψn‖2 ,

E
[{
β̃N0
n (ψn)− αn (ψn)

}2
]
≤ bn
N0
‖ψn‖2 ,

E
[{
β̂N0
n+1 (ψn+1)− α̂n+1 (ψn+1)

}2
]
≤ cn
N0
‖ψn+1‖2 .

Using the function ψn(x0:n) = 1, we get control over the variance of the
unbiased estimator for the marginal likelihood estimate.

Corollary 3 We have, for some constant an,

V

[
1

N0

Nn∑
i=1

W i
n

]
≤ an
N0

.

We proof this result by induction on n. It is straightforward to check that

there exists a0 < ∞ such that E
[{
βN0
0 (ψ0)− α0 (ψ0)

}2
]
≤ a0

N0
‖ψ0‖2 holds as

the initial particles are i.i.d. The proof then relies on the following propositions.
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Proposition 4 (Branching Step) Assume that there exists an <∞ such that
for any ψn ∈ B

(
Xn+1

)
E
[{
βN0
n (ψn)− αn (ψn)

}2] ≤ an
N0
‖ψn‖2 (4)

then there exists bn <∞ such that for any ψn ∈ B
(
Xn+1

)
E
[{
β̃N0
n (ψn)− αn (ψn)

}2
]
≤ bn
N0
‖ψn‖2 . (5)

Proof. We have

β̃N0
n (ψn)− αn (ψn) = β̃N0

n (ψn)− βN0
n (ψn) + βN0

n (ψn)− αn (ψn)

so by Minkowski’s inequality

E1/2
[{
βN0
n (ψn)− αn (ψn)

}2] ≤ E1/2

[{
β̃N0
n (ψn)− βN0

n (ψn)
}2
]
+E1/2

[{
βN0
n (ψn)− αn (ψn)

}2]
.

The second term on the rhs is bounded using (4), so it suffices to control the
first term. We have

β̃N0
n (ψn)− βN0

n (ψn) =
1

N0

Nn∑
i=1

(
M i
n+1V

i
n −W i

n

)
ψn

(
Xi,n

0:n

)

E
[{

β̃N0
n (ψn)− βN0

n (ψn)
}2
∣∣∣∣Fn] =

1

N2
0

E

{Nn∑
i=1

(
M i
n+1V

i
n −W i

n

)
ψn

(
Xi,n

0:n

)}2
∣∣∣∣∣∣Fn


where M i

n+1 is the number of children of particle i and V in their common weight.
Using the specific structure of the branching step, these are independent across
particles, so,

E

{Nn∑
i=1

(
M i
n+1V

i
n −W i

n

)
ψn

(
Xi,n

0:n

)}2
∣∣∣∣∣∣Fn


=

Nn∑
i=1

E
[(
M i
n+1V

i
n −W i

n

)2∣∣∣Fn]ψn (Xi,n
0:n

)2
≤

Nn∑
i=1

V
[
M i
n+1V

i
n

∣∣Fn] ‖ψn‖2
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Using Assumption V, Now M i
n+1 is a translated Bernoulli variable and has

variance upper bounded by 1/4, so

E

{Nn∑
i=1

(
M i
n+1V

i
n −W i

n

)
ψn

(
Xi,n

0:n

)}2
∣∣∣∣∣∣Fn

 ≤ Nn∑
i=1

V E
[
(W

i

n)2
∣∣∣ Fn] ‖ψn‖2

Using W
i

n ≤ 1, ≤
Nn∑
i=1

V E
[
W

i

n

∣∣∣ Fn] ‖ψn‖2

Using Assumption O, =

Nn∑
i=1

V
1

Nn

Nn∑
i=1

W i
n ‖ψn‖

2

=V

Nn∑
i=1

Wi ‖ψn‖2 .

Now it follows from the unbiasedness of the marginal likelihood estimate that

E

{Nn∑
i=1

(
M i
n+1V

i
n −W i

n

)
ψn

(
Xi,n

0:n

)}2
 ≤ V ‖ψn‖2N0p(y0:n).

Hence, it follows that

E
[{
β̃N0
n (ψn)− βN0

n (ψn)
}2
]
≤ V p(y0:n)

N0
‖ψn‖2 .

Proposition 5 (Extend Step) Assume that there exists bn < ∞ such that
for any ψn ∈ B

(
Xn+1

)
E
[{
β̃N0
n (ψn)− αn (ψn)

}2
]
≤ bn
N0
‖ψn‖2 (6)

then there exists cn <∞ such that for any ψn+1 ∈ B
(
Xn+2

)
E
[{
β̂N0
n+1 (ψn+1)− α̂n+1 (ψn+1)

}2
]
≤ cn
N0
‖ψn+1‖2 . (7)

Proof. By Minkowski’s inequality,

E1/2

[{
β̂N0
n+1 (ψn+1)− α̂n+1 (ψn+1)

}2
]

≤E1/2

[{
β̂N0
n+1 (ψn+1)− E[β̂N0

n+1 (ψn+1) |F̃n]
}2
]

+ E1/2

[{
E[β̂N0

n+1 (ψn+1) |F̃n]− α̂n+1 (ψn+1)
}2
]

The second term is,

E1/2

[{
E[β̂N0

n+1 (ψn+1) |F̃n]− α̂n+1 (ψn+1)
}2
]

= E1/2

[{
β̃N0
n (fn(ψn+1))− αn (fn(ψn+1))

}2
]

≤ bn
N0
‖fn (ψn+1) ‖2 ≤ bn

N0
‖ψn+1‖2
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For the first term, we have,

β̂N0
n+1 (ψn+1)− E[β̂N0

n+1 (ψn+1) |F̃n]

=
1

N0


Nn+1∑
i=1

W̃ i
nψn+1

(
Xi,n+1

0:n+1

)
−
Nn+1∑
i=1

W̃ i
nfnψn+1

(
Xi,n+1

0:n

)
=

1

N0

Nn+1∑
i=1

W̃ i
n

(
ψn+1

(
Xi,n+1

0:n+1

)
− fnψn+1

(
Xi,n+1

0:n

))
.

Hence by taking expectations,

E
[{
β̂N0
n+1 (ψn+1)− E[β̂n+1 (ψn+1) |F̃n]

}2
∣∣∣∣F̃n]

=
1

N2
0

Nn+1∑
i=1

(
W̃ i
n

)2
E
[(
ψn+1

(
Xi,n+1

0:n+1

)
− fnψn+1

(
Xi,n+1

0:n

))2 ∣∣∣∣F̃n]

≤ 1

N2
0

Nn+1∑
i=1

W̃ i
n2‖ψn+1‖2

=
2

N2
0

Nn∑
i=1

W i
n‖ψn+1‖2

By unbiasedness of the marginal likelihood estimate,

E
[{
β̂N0
n+1 (ψn+1)− E[β̂n+1 (ψn+1) |F̃n]

}2
]
≤ 2p(y0:n)

N0
‖ψn+1‖2

Proposition 6 (Reweighing Step) Assume that there exists cn < ∞ such
that for any ψn+1 ∈ B

(
Xn+2

)
E
[{
β̂N0
n+1 (ψn+1)− α̂n+1 (ψn+1)

}2
]
≤ cn
N0
‖ψn+1‖2 (8)

then there exists an+1 <∞ such that for any ψn+1 ∈ B
(
Xn+2

)
E
[{
βN0
n+1 (ψn+1)− αn+1 (ψn+1)

}2
]
≤ an+1

N0
‖ψn+1‖2 . (9)

Proof. We have

βN0
n+1 (ψn+1)− αn+1 (ψn+1) = β̂N0

n+1(gn+1ψn+1)− α̂n+1 (gn+1ψn+1) ,

so

E
[{
βN0
n+1 (ψn+1)− αn+1 (ψn+1)

}2
]
≤ cn
N0
‖gn+1ψn+1‖2 ≤

cn
N0
‖ψn+1‖2.

The following Proposition shows that it is straightforward to transfer the
L2 error bounds on βN0

n , β̃N0
n and β̂N0

n to νN0
n , ν̃N0

n and ν̂N0
n .
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Proposition 7 (Normalisation) Assume we have an unnormalised random

measure µN0 (dx) = N−10

∑N
i=1Wi δXidx on E where 0 < Wi ≤ 1 almost surely

and such that there exists a measure µ and a constant c <∞ satisfying for any
ψ ∈ B (E)

E
[{
µN0 (ψ)− µ (ψ)

}2] ≤ c

N0
‖ψ‖2 (10)

then there exists a constant c <∞ such that for any ψ ∈ B (E)

E

[{
µN0 (ψ)

µN0 (1)
− µ (ψ)

µ (1)

}2
]
≤ c

N0
‖ψ‖2.

Proof. We have

µN0 (ψ)

µN0 (1)
− µ (ψ)

µ (1)
=
µN0 (ψ)

µN0 (1)
− µN0 (ψ)

µ (1)
+
µN0 (ψ)

µ (1)
− µ (ψ)

µ (1)

=
µN0 (ψ)

{
µ (1)− µN0 (1)

}
µN0 (1)µ (1)

+
µN0 (ψ)− µ (ψ)

µ (1)

so ∣∣∣∣µN0 (ψ)

µN0 (1)
− µ (ψ)

µ (1)

∣∣∣∣ ≤ ‖ψ‖
∣∣µN0 (1)− µ (1)

∣∣
µ (1)

+

∣∣µN0 (ψ)− µ (ψ)
∣∣

µ (1)
.

Hence by Minkowski’s inequality

E1/2

[{
µN0 (ψ)

µN0 (1)
− µ (ψ)

µ (1)

}2
]
≤ ‖ψ‖
µ (1)

E1/2
[{
µN0 (1)− µ (1)

}2]
+

1

µ (1)
E1/2

[{
µN0 (ψ)− µ (ψ)

}2]
and the result follows from (10).

The following Theorem now follows directly from the previous Proposition
and Theorem on L2 error bounds for unnormalised measures.

Theorem 8 (L2 error bounds for normalised measures) For any n ≥ 0,
there exists an, bn, cn < ∞ such that for any N0 ≥ 1 and any ψn ∈ B

(
Xn+1

)
,

ψn+1 ∈ B
(
Xn+2

)
E
[{
νN0
n (ψn)− ηn (ψn)

}2] ≤ an
N0
‖ψn‖2 ,

E
[{
ν̃N0
n (ψn)− ηn (ψn)

}2] ≤ bn
N0
‖ψn‖2 ,

E
[{
ν̂N0
n+1 (ψn+1)− η̂n+1 (ψn+1)

}2
]
≤ cn
N0
‖ψn+1‖2 .

9



4 Number of Particles

Proposition 9 The numbers of particles (Nn)n≥0 is a martingale.

Proof. We will show that E[Nn+1|Fn] = Nn by showing that for each particle
i = 1, . . . , Nn, the expected number of children E[M i

n+1|Fn] = 1. Using As-
sumption O, that the branching step involves a uniformly random ordering over
particles,

E[M i
n+1|Fn] = E

[
W

σn(i)
n

W
i

n

∣∣∣Fn]

= E

1

i

i∑
j=1

W
σn(j)
n

W
i

n

∣∣∣Fn


= 1

since W
i

n = 1
i

∑i
j=1W

σn(j)
n and σn is a uniform random permutation.

Proposition 10 We have
V[Nn] ≤ nV N0

for some constant V .

Proof. We proof this by induction on n. The case n = 0 is trivial since
V[N0] = 0. Recall that

Nn+1 =

Nn∑
i=1

M i
n+1

with M i
n+1 being independent given Fn, with variance V[M i

n+1|Fn] ≤ V by
Assumption V. Suppose the proposition is true for n. Then,

V[Nn+1|Fn] ≤ V Nn
V[Nn+1] = E [V[Nn+1|Fn]] + V [E[Nn+1|Fn]]

≤ E[V Nn] + V[Nn]

≤ (n+ 1)V N0

As a consequence, the standard deviation is
√
nV N0. Then the standard

deviation can be made arbitrarily small relative to the expected number of
particles, N0, by having N0 arbitrarily larger than V n.

Corollary 11 Using Doob’s maximal inequality, we can also control the path-
wise fluctuations of (Nn)n≥0 :

E[ sup
k=1,...,n

(
Nk
N0
− 1

)2

] ≤ 4n

N0
V =

n

N0
.
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Figure 1: In this figure we demonstrate potential consequences when Assump-
tion O is violated, comparing a best-case situation where the ordering of particles
at n is completely independent of the ordering of particles at n+ 1, artificially
subjecting the ordering of the particles to a random permutation, to a worst-
case situation where the ordering of particles is completely preserved from n to
n + 1. We plot the number of particles Kn at each of n = 1, . . . , 50 for a one-
dimensional linear Gaussian model, initialized with 100 particles. (left) When
the order of the particles arriving at each n is subject to a random permutation,
then the number of particles is reasonably stable, staying at or near 100. (right)
When the order of the particles arriving at each n is completely deterministic,
then the total number of particles quickly explodes, in this case exceeding 15000
by n = 11. In practice, a näıve implementation of the incremental resampling
scheme will have a very strong dependence in ordering across n — a particle
which is one of the first to reach stage n is quite likely one of the first to reach
stage n+ 1 as well.
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