Supplementary Material for “Discovering Structure in High-Dimensional
Data Through Correlation Explanation”

A Derivation of Egs. 7 and 8

We want to optimize the following objective.

m

max . aiJI(Yj:Xi)fiI(Yj - X)

aplysle) S5 j=1 (10)

s.t. Zp(yj |x) =1
Y;

In principle, we would also like Vi, j, c; j € {0,1},> 5 ;5 = 1, but we begin by solving the
optimization for fixed a.

We proceed using Lagrangian optimization. We introduce a Lagrange multiplier A;(x) for each
value of z and each j to enforce the normalization constraint and then reduce the constrained opti-
mization problem to the unconstrained optimization of the objective Lior = > j L;. We show the

solution for a single £;, but drop the j index to avoid clutter. (For fixed «, the optimization for
different j totally decouple.)

L= Y p@)pylr) <Z a;(log p(ylz;) — log(p(y))) — (log p(y|z) — log(p(y)))>

+3 M@ plylr) — 1)

Note that we are optimizing over p(y|z) and so the marginals p(y|x;), p(y) are actually linear func-
tions of p(y|z). Next we take the functional derivatives with respect to p(y|z) and set them equal to
0. Note that this can be done symbolically and proceeds in similar fashion to the detailed calculations
of information bottleneck [25].

This leads to the following condition.

n

1 j X i
Pysle) = Z5Pw) 11 <p;y(y|j) )>

=1

But this is only a formal solution since the marginals themselves are defined in terms of p(y|x).
ply) =Y _p@)plylz), plyle) =Y plyle)p(x)/p(z:)
z Tjti
The partition constant, Z(z) can be easily calculated by summing over just |Y;| terms.

Imagine we are given [ = 1,..., N samples, 2("), drawn from unknown distribution p(z). If =
is very high dimensional, we do not want to enumerate over all possible values of z. Instead, we
consider the quantity in Eq. 7 and Eq. 8 only for observed samples.

n Z‘(l) Qi
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In log-space, this has an even simpler form.

logp(yla®) = (1= ai)logp(y) + 3 aslog plylz ") — log Z(zV)
7 1=1

That is, the probabilistic label, y, for any sample, x, is a linear combination of weighted terms for
each z;. We recover p(y|z) by doing a nonlinear transformation consisting of exponentiation and
normalization.
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The consistency requirements which are sums over the state space of x can be replaced with sample
expectations.

N
- St L3 e

with similar estimates for the marginals p(y|x;). In practice, to limit the complexity in terms of the
number of samples, we can choose a random subset of samples at each iteration and estimate the
probabilistic labels and marginals only for them. The details of the optimization over « are described
in the next section.

Special case for Eq. 3 Note that the optimization in Eq. 3 corresponds to j = 1,...,m with
m =1and Vi, a; = 1.

Convergence The updates for the iterative procedure described here are guaranteed not to decrease
the objective at each step and are guaranteed to converge to a local optimum. Theoretical details are
described elsewhere [8].

B Implementation Details for CorEx

As pointed out in Sec. 5, the objective in Eq. 6 (for a single Y};) appears exactly as a bound on “an-
cestral” information [22]. We use this fact to motivate our choice for parameters in Eq. 9. Consider
the soft-max function we use to define o*.

aj j = exp <7(I(X¢ 2 Y)) — max I(X; : Yj))>
J

First of all, we allow +; ; to take different values at different 4, j. We start by enforcing the form
vi.; = Cj/H(X;). That way, the value of the exponent depends on normalized mutual information
(NMI) instead of mutual information. The minimum value that can occur is exp(—C};). We set
Cj = 1. If the difference of N M I’s take the minimum value of —1, we get o ; ~ 1/3. According
to the Steudel and Ay bound, X; can still contribute to a non-negative value for the part of objective
Eq. 6 that involves Y} as long as X; shares a common ancestor with at least 1/« + 1 other variables.
At the beginning of the learning, this is desirable as it allows all Y}’s to learn significant structures
even starting from small values of «; ;. However, as the computation progresses, we would like
to force the soft-max function to get closer to the true hard max solution. To that end, we set
vi,; = (1+D;)/H(X;), where Dj = 500 |Ex (—log Z;(x))|. The D, term represents the amount
of correlation learned by Y; [8]. For instance, if all p(y;|z;) = p(y,), log Z;(z) = 0 and Y; has
not learned anything. As the computation progresses and Y} learns more structure, we smoothly
transition to a hard-max constraint.

In all the experiments shown here, we set |Y;| = k = 2. For convergence of Algorithm 1, we
check when the magnitude of changes of Ex log(— >, Z;(x)) consistently falls below a threshold

of 10~° or when we reach 1000 iterations, whichever occurs first. We set A = 0.3 based on several
tests with synthetic data.

We construct higher order representation from the bottom up. After applying Algorithm 1, we take
the most likely value of Y for each sample in the dataset. Then we apply CorEx again using these la-
bels as the input. In principle, this sample of Y’s does not accurately reflect p(y) = > p(y|z)p(x)
and a more nuanced approximation like contrastive divergence could be used. However, in prac-
tice it seems that CorEx typically learns nearly deterministic functions of x, so that the maximum
likelihood labels well reflect the true distribution.

In Fig. 2, we suggested that uncorrelated random variables could be easily detected. In practice we
used a threshold that this was the case if MI(X; : Yparent(x,))/min(H(X;), H(Y)) < 0.05. At
higher layers of representation, this helps us identify root nodes. For the DNA example in Fig. 3,
“gender” was a root node, but for visual simplicity all root nodes were connected at the top level.
Following similar reasoning as above, we can also check which Y;’s have learned significant struc-
ture by looking at the value of Ex (—log Z;(x)).
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C Implementation Details for Comparisons

We represented the data from the binary erasure channel either as integers (0[X; = 0],1[X; =
e, 2[X; = 1]) for methods that deal with categorical data, or as floating numbers on the unit interval
for methods that require data of that form, (0[X; = 0],0.5[X; = e],1[X; = 1]). In principle, we
could also have treated “erased” information as missing. But we treated erasure as another outcome
in all cases, including for CorEx.

CorEx naturally handles missing information (you can see that Eq. 7 can be easily marginalized to
find labels even if some variables are missing). We had to use this fact for the DNA dataset which
did have some SNPs missing for some samples. In fact, because CorEx is, in a sense, looking for
the most redundant information, it is quite robust to missing information.

We will now briefly describe the settings for various learning algorithms learned. We used imple-
mentations of standard learning techniques in the scikit library for comparisons [34] (v. 0.14). We
only used the standard, default implementation for k-means, PCA, ICA, and “hierarchical cluster-
ing” using the Ward method. For spectral clustering we used a Gaussian kernel for the affinity
matrix and a nearest neighbors affinity matrix using 3 or 10 neighbors. For spectral bi-clustering
we tried clustering either the data matrix or its transpose. We set the number of clusters to be m in
the direction of variables and either 10 or 32 clusters for the variables. Note that the true number
of clusterings in the sample space was 28. For NMF we tried Projected Gradient NMF and NMF
with the two types of implemented sparseness constraints. For the restricted Boltzmann machine,
we used a single layer network with m units and learning rates 0.01,0.05,0.1. To cluster the input
variables, we looked for the neuron with the maximum magnitude weight. For dimensionality re-
duction techniques like LLE and Isomap, we used either 3 or 10 nearest neighbors and looked for a
m component representation. Then we clustered variables by looking at which variables contributed
most to each component of the representation.

C.1 Twenty newsgroups

For the twenty newsgroups dataset, scikit has built-in function for retrieving and processing the
dataset. We used the command below, resulting in a dataset with 18, 846 posts. (Several different
versions of this dataset are in circulation.)

sklearn.datasets.fetch_20newsgroups (subset="all’,
remove= ("headers’,’ footers’,’quotes’)) .

Because we are doing unsupervised learning, we combined the parts of the data normally split into
training and testing sets. The attempt to strip footers turned out to be particularly relevant. The
heuristic to do so looks for a single line at the end of the file, set apart from the others by a blank
line or some number of dashes. Obviously, many signature lines fail to conform to this format and
this resulted in strongly correlated signals. This led to features at layer 1 that were perfect predictors
of authors, like Gordon Banks, who always included a quote: “Skepticism is the chastity of the
intellect, and it is shameful to surrender it too soon.”

We considered any collection of upper or lower-case letters as a “word”. All characters were lower-
cased. Apostrophes were removed (so that “T’ve” becomes “ive”). We considered the top ten thou-
sand most frequent words. For the thousand most frequent words, for each document we recorded a
0 if the word was not present, 1 if it was present but occurred with less than the average frequency,
or a 2 if it occurred with more than average frequency. For the remaining words we just used a 0/1
representation to reflect if a word was present.

CorEx details For the twenty newsgroups data, we trained CorEx in a top-down-bottom-up way.
We started with a “low resolution” model with m = 100 hidden units and £ = 2. We used the result
of this optimization to construct 100 large groups of words. Then, for each (now much smaller)
group of words, we applied CorEx again to get a more fine-grained representation (and then we dis-
card the representation that we used to find the original clustering). The result was a representation
at layer 1 with 326 variables. At the next layer we fixed m = 50, all units were used. At the next
two layers we fixed m = 10, 1, respectively.
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