
Spatio-temporal Representations of Uncertainty in
Spiking Neural Networks

– Supplementary Information –

Cristina Savin
IST Austria

Klosterneuburg, A-3400, Austria
csavin@ist.ac.at

Sophie Deneve
Group for Neural Theory, ENS Paris

Rue d’Ulm, 29, Paris, France
sophie.deneve@ens.fr

1 Distributed spike-based coding

The coding scheme has been derived elsewhere [1, 2] and is reproduced here for completeness.
Unlike standard approaches, the model starts by specifying how information will be read out from
the network. Given the specific decoder used for extracting information from the neural responses,
we derive the network dynamics such as to yield the desired output. Specifically, we make the the
Ansatz that the signal of interest y(t) can be decoded from the neuron responses linearly:

ŷ(t) = Γ · r(t) (1)

where ŷ(t) is the network output, Γ is a fixed matrix corresponding to the decoding weights and r
is the low-pass version of the spikes o, ṙi = − 1

τV
ri + oi.

Assuming that the signal to be encoded, y(t), is known1, we want the neurons to spike as to minimize
the L2 error between the network output and this target, with a quadratic regularizer, parametrized
by λ, which is meant to ensure sparseness and a more uniform utilisation of neural resources:

L = (y − ŷ)
T

(y − ŷ) + λ · rTr (2)

Note for notational convenience that we have dropped the explicit dependence of all vectors on time.
To construct the network dynamics, we greedily minimize this loss function – a neuron i emits an
action potential whenever spiking would reduce the current error, i.e. if L|oi = 1 < L|oi = 0.
Spelling out this constraint we obtain a condition for when the neuron should spike to reduce the
loss L:

(y − ŷ)
T

(y − ŷ) + λ
∑
j

r2j > (y − ŷ − Γi)
T

(y − ŷ − Γi) + λ

1 +
∑
j

r2j

 (3)

Γi (y − ŷ)− λri > 0.5 ·
(
λ+ ΓT

i Γi

)
(4)

To get this expression closer to the traditional form for leaky integrate-and-fire neurons, we can
interpret the left side of this equation as the membrane potential of the neuron, Vi = Γi (y − ŷ) −
λri, and the right side as the neural threshold, Θi = 0.5 ·

(
λ+ ΓT

i Γi

)
. To obtain the network

dynamics for encoding the signal y, we take the derivative of the membrane potential equation, and
use the equation for ṙi above. After some algebraic manipulation, this results in the final form of the
network dynamics:

V̇ = − 1

τv
V −Wo + ΓT

(
ẏ +

1

τv
y

)
(5)

1This corresponds to the externally-driven network described in the main text; we relax this assumption
later for the self-generated signal scenario.

1

where W = ΓTΓ + λ · I corresponds to the recurrent connections in the network.

When the signal to be represented is given, then the last term in this equation corresponds to an
external input provided to the network, I = ΓT

(
ẏ + 1

τv
y
)

. Alternatively, we can assume the

evolution of y is described by a differential equation of the form ẏ = 1
τslow

F (y), where F is an
arbitrary function. In this case, rather than being provided as an external input the last term is
computed in the circuit as I = ΓT

(
1

τslow
F (ŷ) + 1

τv
ŷ
)

. Note that this second scenario involves
an approximation step, using the network output ŷ as a proxy for y. While the success of this
approximation depends on the specific function F , it seems to work well in practice provided that
the parameters are such that the signal is well represented in the externally-driven version of the
system. The linear version of the signal dynamics has been analyzed in detail previously [2]. The
additional step required for distributed MCMC sampling to assume that the function F is stochastic
(Eq.2), and corresponds to the gradient of the Hamitonian as we explain in the following. For
inference, the function F is depends additionally on the sensory evidence.

2 Langevin sampling

Langevin sampling is a special case from the broad class of Hamiltonian Monte Carlo (HMC) meth-
ods [3], developed for efficient sampling in continuous spaces. The general approach can be sum-
marised as following: to sample from a D-dimensional, real-valued distribution, P(x), we define a
set of auxiliary variables,2 p, (of sizeD). We use these to construct an auxiliary distribution P(x,p)
from which we can sample from using standard Hamiltonian dynamics.

Formally, the random variables x and p are assumed to be independent, P(x,p) = P(x) · P(p);
furthermore, the momentum variables are also independent and Gaussian, with zero mean, and unit
variance, i.e. p ∼ N (p; 0, I). To construct the dynamics, we need to compute the negative log-
probability of the distribution, H (x,p) = − log P(x,p), which corresponds in physics terms to the
total energy of the system; this can be decomposed into a potential energy term,U (x) = − log P(x),
and a kinetic energy, K (p) = − log P(p) = 0.5 · pT · p (as x and p are independent and p is
Gaussian). These energies correspond to the following equations of motion:

ẋi =
∂H

∂pi
= pi (6)

ṗi =
∂H

∂xi
=
∂U

∂xi
(7)

Given these dynamics, the MCMC sampling proceeds by iteratively applying the following steps: we
run the dynamics, starting from the current position (x,p), for a time T and collect the final position
(x∗,p∗).3 We use the final position as a proposal for the new state of the MCMC chain; this proposal
is then accepted in the usual way, with a probability given as the ratio of the probabilities in the new
vs. old state. The entire procedure is guaranteed to result in samples {x} distributed according to
P(x). As a particularity of the Hamiltonian dynamics, the next state can be far from the original,
yet has a very high probability of acceptance, ensuring efficient sampling. The Langevin dynamics
are obtained in the limit of T being very small (a single integration step).

One implementation-level complication of these methods is the fact that the method used for inte-
grating the dynamics needs to be volume-preserving (see [3] for details). If using a simple leap-
frogging algorithm to solve this problem, Langevin results in the following discrete update steps:

pi ∼ N (pi; 0, 1) (8)

x∗i = xi −
η2

2

∂U

∂xi
(x) + η pi (9)

p∗i = pi −
η

2

∂U

∂xi
(x)− η

2

∂U

∂xi
(x) (10)

2Due to a terminology borrowed from physics, these are called ‘momentum’ variables.
3In a physical analogy, this corresponds to kicking a ball on a surface shaped as − log P, starting from the

current position, and tracking where it ends up after a fixed time T .

2

where η is the integration step. The proposed state x∗i , p
∗
i is accepted with probability:

min

{
1, exp

(
−

(
U(x∗)− U(x)− 1

2

∑
i

(
(p∗i)

2 − p2i
)))}

If we ignore the acceptance step4 (by making η small enough such that the acceptance probability is
very close to 1), and make the notational change pi → ε and ∇U = F then the dynamics reduce to
the form used for the network:

xi(t+ 1) = xi(t)−
η2

2
Fi(x) + η ε (11)

with the noise term ε ∼ N (ε; 0, 1).

3 Computational implication of a multi-chain encoding

es
tim

at
e

single chain
multi-chain (25)

0 500 1000
−3

0

3

6

time (ms)

Figure 1: We assume a bivariate normal posterior and compare the estimate of the mean and variance
of x1 (marginalising out x2) as a function of the sampling time. We compare the estimates obtained
by 1 (blue) or 25 (green) independent chains. The ground truth is shown in red; shaded regions show
s.e.m. for 10 repetitions. The improvement in the multi-chain scenario is due partly to the trivial fact
that there are more samples available at any specific time, but also because samples within a chain
are correlated, whereas samples across chains are independent.

4 Network dynamics for probabilistic inference

We chose inference in a linear mixture with Gaussian noise as a simple example of probabilis-
tic computation and used it to investigate the broad implications of distributed sampling on neu-
ral responses.5 Briefly, the generative model assumes stimuli arise as a linear combination of
D underlying causes with multivariate Gaussian noise, s = Ax + η, leading to the likelihood
P (s|x) = N (s; Ax,Ση), where Ση is the noise covariance. We assume also a multivariate Gaus-
sian prior, P (x) = N

(
x;µprior,Σprior

)
, which results in a normally distributed posterior:

P (x|s) ∝ P (s|x) · P (x) = N
(
x;µposterior,Σposterior

)
(12)

with parameters:

µposterior = Σposterior ·
(
Σ−1

prior · µprior + AT ·Σ−1
noise · s

)
(13)

Σ−1
posterior = Σ−1

prior + AT ·Σ−1
noise ·A (14)

Replacing these posterior parameters in Eq. 3 from the main text, we obtain the network dynamics
implementing inference in our generative model. The main difference is that the drift D is replaced

4Note that the acceptance step is a consequence of the discretisation used for the implementation of these
dynamics on a computer, but does not concern a physical system evolving according to such dynamics.

5The focus here is the representation of the posterior rather than the underlying probabilistic computation.

3

by two terms, a stimulus-dependent one, corresponding to a feedforward input to the circuit (main
text, Fig.1c, ‘self-generated’), Win = 1

τslow
ΓTAT ·Σ−1

noise · s, and another constant which reflects
the prior, Wprior = 1

τslow
ΓTΣ−1

priorµprior. The simple dependence on the stimulus is characteristic
of a Gaussian likelihood, used in many classic models (e.g. changing the prior, we could get sparse
coding [4]); other noise models may require a nonlinear influence of the stimulus s on the dynamics.

5 Neural tuning in a multi-chain scenario

Figure 2: a. Mean firing rates as a function of stimulus, for all neurons. b. Mechanics of stimulus
encoding in the multi-chain scenario. Left: decoding weights corresponding to all chains for an
example neuron (gray) and their vector sum (blue); Middle: tuning curves for 10 randomly selected
example neurons, star on top marks the phase of

∑
k Γki (the neuron in the first panel is the same

as left). Right: decoding weights for the tuning curves of the corresponding colour. c. Spike count
correlations for an example stimulus. Neural index sorted by preferred chain (defined in text) and
phase within that chain; black lines mark boundaries of the subpopulation preferring the 2nd chain.
d. Spike count correlations (averaged across stimuli) as a function of the neurons’ tuning similarity;
mean of this distribution shown in magenta. e. Example CCG (averaged across trials for a single
stimulus) for two example neuron pairs, the first pair with both neurons sharing the same chain
preference, the second involving neurons with different chain preferences.

To quantify the properties of neural responses in the multi-chain we repeated the basic experiment
in main text, Fig.2 forK = 5, using the same parameters. We found that neurons continue to exhibit
stimulus tuning (Fig. 2a). Thus, the multi-chain network is similar to the single-chain case, but it
appears more overcomplete. To better understand the reason for this tuning, we looked at individual

4

neurons and analysed their stimulus preference in relation to their decoding weights Γi (Fig. 2b).
Since the decoding weights are initialised at random, each neuron represents different directions in
y space for different chains; to quantify the relationship between these decoding weights and the
neuron’s stimulus preference we looked at the vector sum of the neuron’s contributions in different
chains (Fig. 2b). We found that this measure predicts reasonably well the tuning of the neuron
as measured by average firing rates (this trend is true across the population; even when there are
strong individual components in different directions, or when the sum vector is small compared to
the individual components, see Fig. 2b, right). This finding suggests that realistic tuning curves can
be obtained as long as the net contribution to the decoder Γi is not vanishing.6

The Fano factors did not differ significantly from the single-chain case (not shown). More interest-
ingly, we found the spike-count correlogram exhibit a block diagonal structure (Fig. 2c). To reveal
this structure, we had to reorder neuron indices by each neuron’s preferred chain (the chain corre-
sponding to the largest decoding vector, k∗ = argmaxk|Γi|) and then by the neuron’s phase pref-
erence within this chain. We found that the off-diagonal component is very close to zero all-round,
suggesting that despite the significant across-chain overlap in Γ, the activity of neurons preferring
different chains is essentially decorrelated; in contrast, within-chain neural pairs recapitulate the
correlation structure observed in the single chain scenario. Ultimately, these results mean that the
spike-correlations are elevated in neurons with similar decoding prefereces in the K × D dimen-
sional space in which the actual signal resides, i.e. the K chains. Hence, these observations are
consistent with our findings about the representation of a single chain.

When pooling correlations across all neuron pairs, we found they continue to express a dependence
on tuning (inherited from the block-diagonal part), and a small positive mean (Fig. 2d). Fast time-
scale correlations exhibited the same general patterns, with neurons within the same chain showing
tuning-dependent synchrony and responses across chains being asynchronous (see Fig. 2e for a
representative example; population averages not shown).

These findings are reminiscent of the experimental observation that pairs of neurons that are spa-
tially near to each other show higher and tuning-dependent correlations, whereas at larger distances
activities become uncorrelated [5, 6]. It is tempting to hypothesize that this locality in the correlation
structure could reflect a topological organisation of neurons by preference to different chains. Such
spatial clustering would be important for interpreting experimental data, especially in the context of
decoding. In particular, one could use information about spatial distance and the presence (and tun-
ing dependence) of correlations to isolate subsets of neurons likely to correspond to a single chain,
which could then be used for the population analyses described in the main text.

6 Simulations details

The default parameter values used for all simulations were: τv = 20ms for the membrane poten-
tial, λ = 6.25/N2, η = τv

τslow
= 0.002. We used a linear scaling of the network size with the

dimensionality of the signal represented, N = K × 37. For the single chain scenario, the decoding
matrix was initialised at random, by sampling the orientation of the decoding vector uniformly on
the unit sphere, then sampling its magnitude uniformly on the interval [0.25, 1.25]. For the multi
chain results in Fig. 2, we generated the decoding matrix Γ as having a block diagonal structure,
on the backdrop of weaker random across-chain weights (preserving the overall norm of the decod-
ing vectors). This additional structure facilitates visualisation of the results but is not needed for
the results. When assessing the neural implications of the scheme we used 50 trials, each lasting 1
second. To describe the effect the sensory input, we assumed a dependency such that the posterior
mean tracks different x coordinates on a circle of radius 17 and manipulated the magnitude and
structure of the correlations, as shown in Fig. 3a in the main text. When plotting the tuning curves,
we used test stimuli distributed uniformly around the circle, identified by their phase. Lastly, for the
results on decoding, we first simulated a sensory-like experiment in the low uncertainty condition
(as before, 12 stimuli, 50 trials each, 1 second long), we convolved the observed spikes with an
exponential kernel parametrized by the membrane potential τv . We used simple linear regression

6Hence, sampling uniformly the phase of Γi is not a good initialiser for the decoding weights when K is
large; here we added a modest bias term in the direction of one of the chains (different for different neurons);
on average the ‘preferred’ direction was 25% stronger than the rest.

7The spatial scale is arbitrary; it is determined by the overall magnitude of the decoding weights Γ.

5

to infer a linear map Γ̂ between these instantaneous firing rates and the known stimuli. This map
was then used to visualise the responses of the same network on test data obtained under different
uncertainty conditions.

References

[1] Boerlin, M. & Deneve, S. Spike-based population coding and working memory. PLoS Compu-
tational Biology 7, e1001080 (2011).

[2] Boerlin, M., Machens, C.K. & Denève, S. Predictive coding of dynamical variables in balanced
spiking networks. PLoS Computational Biology (2013).

[3] Neal, R. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo 54,
113–162 (2010).

[4] Olshausen, B.A. & Field, D.J. Sparse coding with an overcomplete basis set: a strategy em-
ployed by V1? Vision Research 37, 3311–3325 (1997).

[5] Smith, M.A. & Kohn, A. Spatial and temporal scales of neuronal correlation in primary visual
cortex. Journal of Neuroscience 28, 12591–12603 (2008).

[6] Cohen, M.R. & Kohn, A. Measuring and interpreting neuronal correlations. Nature Neuro-
science 14, 811–819 (2011).

6

	Distributed spike-based coding
	Langevin sampling
	Computational implication of a multi-chain encoding
	Network dynamics for probabilistic inference
	Neural tuning in a multi-chain scenario
	Simulations details

