
A Appendix

A.1 Non-linear Conjugate Gradients for the LASSO problem

The Polak-Ribiere non-linear Conjugate Gradient method was adapted to solve the LASSO problem
in [22, 19], and was found in [19] to be the most effective method that is matrix-vector based, and
hence, easily parallelizable. Consider the LASSO problem, given in a generic form

min
x∈Rn

G(x) = min
x∈Rn

1

2
xTMx− bTx + λ‖x‖1, (16)

where M ∈ Rn×n is a symmetric positive definite matrix and b ∈ Rn is a given vector. This
problem corresponds to the LASSO problems in (5) and (8), each one with its corresponding Hessian
as M and gradient as b.

In [22], it was suggested to use a diagonal preconditioner with the non-linear CG method:

D = diag(M),

i.e., D is the diagonal part of M. This diagonal preconditioner comes from the shrinkage weights
that are used in the coordinate descent method for solving (16). This method uses the so-called soft
shrinkage function to overcome the `1 term in (16), which is given by

Sλ(x) = sign(x) ·max(0, |x| − λ). (17)

The full NLCG method as used in [19] is given in Algorithm 2. As in [19], we also use the exact
linesearch procedure that appears in [21] as a part of this algorithm.

Algorithm: NLCG(x(0),M,b,λ)
Define z(0) = 0.
for k = 1, 2, ... do

Define the direction z(k) = SλD−1

(
x(k) + D−1(b−Mx(k))

)
− x(k).

if nnz(z(k)) ≤ nnz(z(k−1)) then
βPR = max

{
0, (z(k))T (z(k)−z(k−1))

(z(k−1))T z(k−1)

}
.

else
βPR = 0.

end
Update the direction: z(k) ← z(k) + βPRz(k−1).
Perform a line search: α∗ = arg minαG(x(k) + αz(k))

Update the solution: x(k+1) = x(k) + α∗z(k)

end
Algorithm 2: Non-linear Conjugate Gradient for LASSO

The most expensive operation when applying Algorithm 2 to problem (8), is the computation of
Mx(k) (or Mz(k)), which is given by W∆jW in the context of (8).

The preconditioner that we use for NLCG is diagonal, i.e., has a value for each entry of ∆j . As said
before, the preconditioner corresponds to the shrinkage weights in the coordinate descent method
[22] and, hence, following [12] we define the preconditioning weight Ωil for the entry (i, l) by

Ωil =

{
WiiWll + W2

il i 6= l
W2

ii i = l
. (18)

This is calculated only for the active set (9), and all the values in (18) are known from the computa-
tions of WIj and WNj

. In this work, similarly to [19], we terminate the NLCG iterations once the
correction at iteration k drops below the correction at iteration 1, i.e. when ‖z(k)‖1/‖z(1)‖1 < εnlcg.
Other stopping criterions may be used instead.

10

A.2 Dealing with Dense Columns/Rows

In section 2.1.1, we describe how we multiply the Hessian with a direction, i.e., compute
W(∆jWIj). If the set Nj in (10) is small enough, then WNj

can be computed and stored in
memory. However, computing WNj

might cause a memory problem if the matrix A has a few
dense columns, and at least one of the sets Nj is of size O(n). We treat this case differently. First,
we cluster all the dense columns into one block; let it be I1. Then, we offer two options: one is to
re-solve the corresponding |I1| linear systems for W(∆1WI1) in each time they are needed, that is
at each multiplication of the Hessian with a direction in the NLCG algorithm. Since we expect I1 to
contain very few columns, this computation should not be too expensive. The other solution is not
to process the rows that correspond to the neighborhood N1 for this block, and only focus on the
corresponding |I1| × |I1| block of A. Since the entries in the rows of all Nj’s are treated twice in
each sweep because of symmetry, ignoring them in one block will still result in a convergent method
since the union of all blocks still covers all the variables as in Equation (15). Thus, the proof of
Theorem 1 still holds in this situations. We note that we did not encounter such a situation in our
numerical experiments.

A.3 Computing the Linesearch Matrices

In this section we describe how to calculate the matrices Bi in (14) efficiently, using the matrices
WIj and WNj

that are computed before the linesearch procedure (See Algorithm 1). Although the
computation of these matrices seems to need the solutions of large linear systems (involving A22

as in (11)), it can be done very efficiently using properties of the Schur complement avoiding the
computational burden of solving linear systems.

First, the computation of B0 is readily available by inverting a small |Ij | × |Ij | matrix. Since the
indices partitioned as ‘1’ are actually those in Ij , the matrix ((A−1)11)−1 is available as part ofWIj

and by the Schur complement properties we have:

B0 = ((A−1)11)−1. (19)

Second, the computation of B1 is also available by

B1 = ∆11 + T + TT ,

where ∆ denotes ∆j and

T = −∆T
21A

−1
22 A21 = ∆12(A−1)21B0. (20)

The latter is available for us since (A−1)21 is again a part of WIj .

For B2 = −∆12A
−1
22 ∆21, we need only A−1

22 in the block that correspond to Nj . That is because
∆21, for example, is non-zero only in the rows that correspond toNj . Following Schur complement
we have

A−1
22 = (A−1)22 − (A−1)21B0(A−1)T21, (21)

and we need the values of this matrix only at the block that correspond to the columns and rows in
Nj (an Nj×Nj matrix). These, again are available for us from the computation of WNj

. Given this
matrix, we compute

B2 = ∆T
12(A−1)22∆21 +

[
∆T

12(A−1)21

]
B0

[
(A−1)T21∆21

]
, (22)

where the matrix ∆T
12(A−1)21 in brackets is computed also for (20). See next section for more

details on the complexity costs of the procedures.

A.4 Computational complexity and cost

In this section we elaborate on the computational cost of our algorithm. Each BCD-IC iteration
consists of treating p blocks, each containing approximately n/p rows/columns. The treatment of

11

each block has three main stages: (1) computing its gradient, active set and WNj
for the Hessian.

(2) Solving the associated LASSO problem. (3) Applying linesearch. We show that the cost of
each BCD-IC iteration depends on the dimension n, number of blocks p and the average number of
non-zeros per row in A(k), which we denote by s, i.e. s = nnz(A(k))

n . Hence, for example, in the
columns of a block Ij there are about sn

2

p non-zeros.

Computation of the gradient, active set and Hessian.
This stage is the most expensive part of our algorithm, and it is dominated by the computation of
SIj , WIj , WNj

. The first two are required for the gradient and active set (9), while the last is
required for the Hessian. Computing SIj is done in mn|Ij | computations for each block Ij (m is
the number of samples xi), and overall for all blocks it sums to mn2.

As explained before, each of the columns of WIj and WNj is computed by solving a linear system
Az = el where el is the suitable canonical vector. In this work, we use CG to solve these linear
systems, and assume that each system solution requires Tcg iterations, each one dominated by a
matrix-vector multiplication. Hence, solving the |Ij | + |Nj | linear systems requires O(Tcg(|Ij | +
|Nj |)sn) operations.

Overall, computing the gradient, the active set in (9) and WNj
for the Hessian for all blocks sums

to O
(
mn2 + Tcgsn

2 + Tcgsn
∑p
j=1 |Nj |

)
. While the first two terms do not depend on the number

of blocks p, the last one decreases as p grows. For p = 1 (no partitioning) |Nj | = 0, and for p = n∑p
j=1 |Nj | = sn. For an arbitrary p,

∑p
j=1 |Nj | depends on the connectivity of the graph of A.

Solution of the LASSO Problem.
Similarly to the CG algorithm for solving linear systems, the cost of the non-linear CG method
is dominated by the number of matrix-vector multiplications (one at each iteration). Again, we
assume that each solve of the block sub-problem (8) requires Tnlcg iterations. Following Section
(2.1.1), each Hessian computation (W∆jW)Ij restricted to entries in the active set (9) requires
O(s|Ij |(|Nj |+|Ij |)) operations. Overall, for a whole sweep of BCD-IC, the NLCG method requires

O
(
snTnlcg(

n
p +

∑p
j=1 |Nj |)

)
. This cost has two terms with opposite dependence on p: as p grows

the term
∑p
j=1 |Nj | also grows, but the term n

p reduces.

In the method [11], a similar block-coordinate-descent approach is applied on the full LASSO prob-
lem (5), instead of the original problem (3) as in our case. There, each sweep costs roughly O(n2)

operations, versus O(n
2

p) per full sweep as in our case. That is another advantage of our algorithm
compared to [11], since we assume that p is large for large-scale problems.

The linesearch procedure.
Following the description in Sections 2.1.2 and A.3, the linesearch procedure requires several dom-
inating computations. First, Equations (20) and (22) involve three multiplications of a sparse matrix
with a dense matrix, requiring O(s|Ij |2) + O(s|Ij ||Nj |) operations. More dominant, however, are
the dense matrix multiplications in Equations (19), (20), (22), and computing the determinants ac-
cording to (14) in the Armijo linesearch procedure (6). Each of these cost O(|Ij |3) operations,
often dominating the sparse-dense multiplications. Overall, the linesearch procedure for all the p
blocks is achieved inO(nn

2

p2)+O
(
sn(np +

∑p
i=1 |Nj |)

)
. Here, again we have terms with opposite

dependence on p.

The overall cost of the BCD-IC iteration.
Summing all the complexity costs above, we conclude the the overall cost of the whole algorithm is
dominated by

O
(
mn2 + sn2

[
Tcg +

Tnlcg

p + (Tcg + Tnlcg)
1
n

∑p
j=1 |Nj |

]
+ n3

p2

)
operations. The only two quantities that do not depend on p are the first ones above, needed for
computing the gradient and active set. The rest of the costs either grow as p grows, or reduce as
p grows. This suggests that there is an optimal value for p to reduce the cost of the entire algo-

12

rithm. This value depends on the unknown parameters of the problem—the condition numbers of
the matrices which influences Tcg , the connectivity of the graph which influences Nj , the sparsity s,
etc. In addition, the optimal value of p depends on the machine characteristics where the algorithm
runs. For example, the block size should be several times the number of cores in the machine in
order to obtain good parallelization performance. Figure 2 shows the runtime for several choices of
block size for the experiment with the random matrix (size 10,000) which appears in Table 1. The
presented timings are averaged over 3 experiments, and it is clear that there is an optimal choice for
the block size.

Figure 2: Solution timings per block size for a random problem, n = 10, 000.

From all of the above problem parameters, the one which is hardest to predict is
∑p
j=1 |Nj |, and is

the only term that forces us to choose fewer blocks (choose p to be small). Figure 3 shows the sum
of neighborhoods per number of blocks for two problems. One is the random problem in Table 1
and the other involves a matrix that corresponds to a simple 2D cartesian lattice with five non-zeros
per row. It shows that

∑p
j=1 |Nj | is relatively high for the random case, which forces us to choose

a relatively small number of blocks. On the other hand, as we increase the number of blocks for the
other example, the sum of neighborhoods remains relatively small, so we expect to choose a high
number of blocks for this problem and reduce the costs of the other stages of the algorithm.

Figure 3: Sum of neighborhoods
∑p
j=1 |Nj | per number of blocks p.

A.5 Convergence Guarantee

In this section we first recall the lemmas in [12], and then we use them to prove Theorem 1. For that
purpose, we introduce some useful notation. First, we denote by A the estimated matrix before the
treatment of a block. We assume that ∆j is the Newton’s direction ∆∗j(A) obtained for solving (8)
for matrix A and some block j at some iteration of Algorithm 1. Furthermore, we treat the matrices
such as ∆j by their actual vectorized version vec(∆j), such that for example, ∆j∇2f(A)∆j

appears in the equations instead of vec(∆j)∇2f(A)vec(∆j). Next, we denote by δj(A) the term
in Armijo’s rule (6),

δj(A) = tr(∆j(S−W)) + λ‖A + ∆j‖1 − λ‖A‖1. (23)

13

A.5.1 Lemmas

The following Lemmas are related to the specific problem (3) that we are solving. Lemma 1 suggest
that for any algorithm, all the iterates have positive bounded eigenvalues. Lemmas 2 and 3 define
optimality and the properties of a stationary point.

Lemma 1. The level set U =
{
A|F (A) < F (A(0)) and A ∈ Sn

++

}
is contained in the set

{A|mI � A �MI} for positive constants m,M > 0.

Lemma 2. Problem (3) has a unique global minimizer A∗.

Lemma 3. A∗ is the optimal solution of (3) if and only if

gradSijF (A∗) = 0 ∀i, j, (24)

where the minimum-norm sub-gradient gradSijF (A) is defined by

gradSijF (A) =

 ∇ijf(A) + λ if Aij > 0,
∇ijf(A)− λ if Aij < 0,
sign(∇ijf(A)) max (|∇ijf(A)| − λ, 0) if Aij = 0.

(25)

Next, Lemma 4 introduces a direct connection between the Newton’s direction obtained for a block
and the sub-gradient value in a stationary point.

Lemma 4. For any index set I ⊆ N , ∆I(A) = ∆I = 0 if and only if gradSijF (A) = 0 for all
(i, j) ∈ I .

The Lemma below proves that the linesearch term (23) is always negative or zero, implying the
functional decrease after the lineseach procedure (6).

Lemma 5. The term δj(A) in the line search condition (6) for ∆j satisfies

δj(A) = ∇f(A)T∆j + λ‖A + ∆j‖1 − λ‖A‖1 ≤ −∆T
j ∇2f(A)∆j , (26)

and consequently,
δj(A) ≤ −m‖∆j‖2F . (27)

Additionally, it is necessary to show that the linesearch procedure always can find an α value that
maintains the positive definiteness of the updated estimate A +α∆. This is proven with the follow-
ing Lemma:

Lemma 6. For any A � 0 and symmetric ∆, there exists an ᾱ > 0 such that for all α < ᾱ, (1)
A + α∆ � 0 and (2) A + α∆ satisfies the line search condition (6).

The last Lemma proves that any convergent sequence of iterates in the algorithm has the Newton’s
direction converging to the zero matrix. This Lemma proves implicitly that the functional is nonin-
creasing between iterates and these converge to a stationary point.

Lemma 7. For any convergent subsequence Ast → Ā,

∆st ≡∆Jst
(Ast)→ 0. (28)

A.5.2 Proof of Theorem 1

Next, we use the above Lemmas to prove Theorem 1 presented in Section 3.

Proof. Suppose {At} is a convergent sequence to Ā obtained from our algorithm with the blocks
satisfying the Gauss-Seidel condition (15). Let {At}T be a subsequence of {At} converging to Ā.
Since the choice of the index set It selected at each step is finite, we can further assume that It = Ī0
for all t ∈ T . From Lemma 7, ∆Ī0(At)→ 0. By the continuity of ∇f(A) and ∇2f(A), it follows
that ∆Ī0(At)→∆Ī0(Ā). Hence, ∆Ī0(Ā) = 0.

14

Furthermore,
{
∆Ī0(At)

}
T
→ 0 and ‖At −At+1‖F ≤ ‖∆Ī0(At)‖F , so {At+1}T also converges

to Ā. By further subsetting of T we can assume that It+1 = Ī1 for all t ∈ T . By the same argument
we can prove

{
∆It+1

(At)
}
T
→ 0, so ∆Ī1(Ā) = 0. Similarly, we can show that ∆Īi(Ā) = 0 ∀i =

0, . . . , T − 1 can be assumed for an appropriate subset of T . According to Lemma 4 and the Gauss-
Seidel condition (15), Ā is a stationary point: gradSijF (Ā) = 0 ∀i, j. Moreover, by Lemma 2, there
exists a unique optimal point, so the sequence {At} generated by our algorithm must converge to
the global optimum.

15

