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Abstract

We analyze a reweighted version of the Kikuchi approximation for estimating the
log partition function of a product distribution defined over a region graph. We
establish sufficient conditions for the concavity of our reweighted objective func-
tion in terms of weight assignments in the Kikuchi expansion, and show that a
reweighted version of the sum product algorithm applied to the Kikuchi region
graph will produce global optima of the Kikuchi approximation whenever the al-
gorithm converges. When the region graph has two layers, corresponding to a
Bethe approximation, we show that our sufficient conditions for concavity are
also necessary. Finally, we provide an explicit characterization of the polytope of
concavity in terms of the cycle structure of the region graph. We conclude with
simulations that demonstrate the advantages of the reweighted Kikuchi approach.

1 Introduction
Undirected graphical models are a familiar framework in diverse application domains such as com-
puter vision, statistical physics, coding theory, social science, and epidemiology. In certain settings
of interest, one is provided with potential functions defined over nodes and (hyper)edges of the
graph. A crucial step in probabilistic inference is to compute the log partition function of the distri-
bution based on these potential functions for a given graph structure. However, computing the log
partition function either exactly or approximately is NP-hard in general [2, 17]. An active area of re-
search involves finding accurate approximations of the log partition function and characterizing the
graph structures for which such approximations may be computed efficiently [29, 22, 7, 19, 25, 18].

When the underlying graph is a tree, the log partition function may be computed exactly via the sum
product algorithm in time linear in the number of nodes [15]. However, when the graph contains
cycles, a generalized version of the sum product algorithm known as loopy belief propagation may
either fail to converge or terminate in local optima of a nonconvex objective function [26, 20, 8, 13].

In this paper, we analyze the Kikuchi approximation method, which is constructed from a variational
representation of the log partition function by replacing the entropy with an expression that decom-
poses with respect to a region graph. Kikuchi approximations were previously introduced in the
physics literature [9] and reformalized by Yedidia et al. [28, 29] and others [1, 14] in the language of
graphical models. The Bethe approximation, which is a special case of the Kikuchi approximation
when the region graph has only two layers, has been studied by various authors [3, 28, 5, 25]. In ad-
dition, a reweighted version of the Bethe approximation was proposed by Wainwright et al. [22, 16].
As described in Vontobel [21], computing the global optimum of the Bethe variational problem may
in turn be used to approximate the permanent of a nonnegative square matrix.

The particular objective function that we study generalizes the Kikuchi objective appearing in pre-
vious literature by assigning arbitrary weights to individual terms in the Kikuchi entropy expansion.
We establish necessary and sufficient conditions under which this class of objective functions is
concave, so a global optimum may be found efficiently. Our theoretical results synthesize known re-
sults on Kikuchi and Bethe approximations, and our main theorem concerning concavity conditions
for the reweighted Kikuchi entropy recovers existing results when specialized to the unweighted
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Kikuchi [14] or reweighted Bethe [22] case. Furthermore, we provide a valuable converse result
in the reweighted Bethe case, showing that when our concavity conditions are violated, the entropy
function cannot be concave over the whole feasible region. As demonstrated by our experiments,
a message-passing algorithm designed to optimize the Kikuchi objective may terminate in local
optima for weights outside the concave region. Watanabe and Fukumizu [24, 25] provide a similar
converse in the unweighted Bethe case, but our proof is much simpler and our result is more general.

In the reweighted Bethe setting, we also present a useful characterization of the concave region of
the Bethe entropy function in terms of the geometry of the graph. Specifically, we show that if the
region graph consists of only singleton vertices and pairwise edges, then the region of concavity
coincides with the convex hull of incidence vectors of single-cycle forest subgraphs of the original
graph. When the region graph contains regions with cardinality greater than two, the latter region
may be strictly contained in the former; however, our result provides a useful way to generate weight
vectors within the region of concavity. Whereas Wainwright et al. [22] establish the concavity of
the reweighted Bethe objective on the spanning forest polytope, that region is contained within the
single-cycle forest polytope, and our simulations show that generating weight vectors in the latter
polytope may yield closer approximations to the log partition function.

The remainder of the paper is organized as follows: In Section 2, we review background information
about the Kikuchi and Bethe approximations. In Section 3, we provide our main results on concavity
conditions for the reweighted Kikuchi approximation, including a geometric characterization of the
region of concavity in the Bethe case. Section 4 outlines the reweighted sum product algorithm
and proves that fixed points correspond to global optima of the Kikuchi approximation. Section 5
presents experiments showing the improved accuracy of the reweighted Kikuchi approximation over
the region of concavity. Technical proofs and additional simulations are contained in the Appendix.

2 Background and problem setup
In this section, we review basic concepts of the Kikuchi approximation and establish some termi-
nology to be used in the paper.

Let G = (V,R) denote a region graph defined over the vertex set V , where each region r ∈ R is a
subset of V . Directed edges correspond to inclusion, so r → s is an edge of G if s ⊆ r. We use the
following notation, for r ∈ R:

A(r) := {s ∈ R : r ( s} (ancestors of r)
F(r) := {s ∈ R : r ⊆ s} (forebears of r)
N(r) := {s ∈ R : r ⊆ s or s ⊆ r} (neighbors of r).

For R′ ⊆ R, we define A(R′) =
⋃
r∈R′ A(r), and we define F(R′) and N(R′) similarly.

We consider joint distributions x = (xs)s∈V that factorize over the region graph; i.e.,

p(x) =
1

Z(α)

∏
r∈R

αr(xr), (1)

for potential functions αr > 0. Here, Z(α) is the normalization factor, or partition function, which
is a function of the potential functions αr, and each variable xs takes values in a finite discrete
set X . One special case of the factorization (1) is the pairwise Ising model, defined over a graph
G = (V,E), where the distribution is given by

pγ(x) = exp
(∑
s∈V

γs(xs) +
∑

(s,t)∈E

γst(xs, xt)−A(γ)
)
, (2)

and X = {−1,+1}. Our goal is to analyze the log partition function

logZ(α) = log
{ ∑
x∈X |V |

∏
r∈R

αr(xr)
}
. (3)

2.1 Variational representation

It is known from the theory of graphical models [14] that the log partition function (3) may be
written in the variational form

logZ(α) = sup
{τr(xr)}∈∆R

{∑
r∈R

∑
xr

τr(xr) log(αr(xr)) +H(pτ )
}
, (4)
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where pτ is the maximum entropy distribution with marginals {τr(xr)} and

H(p) := −
∑
x

p(x) log p(x)

is the usual entropy. Here, ∆R denotes the R-marginal polytope; i.e., {τr(xr) : r ∈ R} ∈ ∆R if
and only if there exists a distribution τ(x) such that τr(xr) =

∑
x\r

τ(xr, x\r) for all r. For ease of
notation, we also write τ ≡ {τr(xr) : r ∈ R}. Let θ ≡ θ(x) denote the collection of log potential
functions {log(αr(xr)) : r ∈ R}. Then equation (4) may be rewritten as

logZ(θ) = sup
τ∈∆R

{〈θ, τ〉+H(pτ )} . (5)

Specializing to the Ising model (2), equation (5) gives the variational representation
A(γ) = sup

µ∈M
{〈γ, µ〉+H(pµ)} , (6)

which appears in Wainwright and Jordan [23]. Here, M ≡ M(G) denotes the marginal polytope,
corresponding to the collection of mean parameter vectors of the sufficient statistics in the exponen-
tial family representation (2), ranging over different values of γ, and pµ is the maximum entropy
distribution with mean parameters µ.

2.2 Reweighted Kikuchi approximation

Although the set ∆R appearing in the variational representation (5) is a convex polytope, it may
have exponentially many facets [23]. Hence, we replace ∆R with the set

∆K
R =

{
τ : ∀t, u ∈ R s.t. t ⊆ u,

∑
xu\t

τu(xt, xu\t) = τt(xt) and ∀u ∈ R,
∑
xu

τu(xu) = 1
}

of locally consistent R-pseudomarginals. Note that ∆R ⊆ ∆K
R and the latter set has only polynomi-

ally many facets, making optimization more tractable.

In the case of the pairwise Ising model (2), we let L ≡ L(G) denote the polytope ∆K
R . Then L is

the collection of nonnegative functions τ = (τs, τst) satisfying the marginalization constraints∑
xs
τs(xs) = 1, ∀s ∈ V,∑

xt
τst(xs, xt) = τs(xs) and

∑
xs
τst(xs, xt) = τt(xt), ∀(s, t) ∈ E.

Recall that M(G) ⊆ L(G), with equality achieved if and only if the underlying graph G is a tree. In
the general case, we have ∆R = ∆K

R when the Hasse diagram of the region graph admits a minimal
representation that is loop-free (cf. Theorem 2 of Pakzad and Anantharam [14]).

Given a collection of R-pseudomarginals τ , we also replace the entropy term H(pτ ), which is
difficult to compute in general, by the approximation

H(pτ ) ≈
∑
r∈R

ρrHr(τr) := H(τ ; ρ), (7)

whereHr(τr) := −
∑
xr
τr(xr) log τr(xr) is the entropy computed over region r, and {ρr : r ∈ R}

are weights assigned to the regions. Note that in the pairwise Ising case (2), with p := pγ , we have
the equality

H(p) =
∑
s∈V

Hs(ps)−
∑

(s,t)∈E

Ist(pst)

when G is a tree, where Ist(pst) = Hs(ps) + Ht(pt) − Hst(pst) denotes the mutual information
and ps and pst denote the node and edge marginals. Hence, the approximation (7) is exact with

ρst = 1, ∀(s, t) ∈ E, and ρs = 1− deg(s), ∀s ∈ V.

Using the approximation (7), we arrive at the following reweighted Kikuchi approximation:
B(θ; ρ) := sup

τ∈∆K
R

{〈θ, τ〉+H(τ ; ρ)}︸ ︷︷ ︸
Bθ,ρ(τ)

. (8)

Note that when {ρr} are the overcounting numbers {cr}, defined recursively by

cr = 1−
∑

s∈A(r)

cs, (9)

the expression (8) reduces to the usual (unweighted) Kikuchi approximation considered in Pakzad
and Anantharam [14].
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3 Main results and consequences
In this section, we analyze the concavity of the Kikuchi variational problem (8). We derive a suffi-
cient condition under which the function Bθ,ρ(τ) is concave over the set ∆K

R , so global optima of
the reweighted Kikuchi approximation may be found efficiently. In the Bethe case, we also show
that the condition is necessary for Bθ,ρ(τ) to be concave over the entire region ∆K

R , and we provide
a geometric characterization of ∆K

R in terms of the edge and cycle structure of the graph.

3.1 Sufficient conditions for concavity

We begin by establishing sufficient conditions for the concavity of Bθ,ρ(τ). Clearly, this is equiva-
lent to establishing conditions under which H(τ ; ρ) is concave. Our main result is the following:

Theorem 1. If ρ ∈ R|R| satisfies ∑
s∈F(S)

ρs ≥ 0, ∀S ⊆ R, (10)

then the Kikuchi entropy H(τ ; ρ) is strictly concave on ∆K
R .

The proof of Theorem 1 is contained in Appendix A.1, and makes use of a generalization of Hall’s
marriage lemma for weighted graphs (cf. Lemma 1 in Appendix A.2).

The condition (10) depends heavily on the structure of the region graph. For the sake of inter-
pretability, we now specialize to the case where the region graph has only two layers, with the first
layer corresponding to vertices and the second layer corresponding to hyperedges. In other words,
for r, s ∈ R, we have r ⊆ s only if |r| = 1, and R = V ∪ F , where F is the set of hyperedges and
V denotes the set of singleton vertices. This is the Bethe case, and the entropy

H(τ ; ρ) =
∑
s∈V

ρsHs(τs) +
∑
α∈F

ραHα(τα) (11)

is consequently known as the Bethe entropy.

The following result is proved in Appendix A.3:

Corollary 1. Suppose ρα ≥ 0 for all α ∈ F , and the following condition also holds:∑
s∈U

ρs +
∑

α∈F : α∩U 6=∅

ρα ≥ 0, ∀U ⊆ V. (12)

Then the Bethe entropy H(τ ; ρ) is strictly concave over ∆K
R .

3.2 Necessary conditions for concavity

We now establish a converse to Corollary 1 in the Bethe case, showing that condition (12) is also
necessary for the concavity of the Bethe entropy. When ρα = 1 for α ∈ F and ρs = 1 − |N(s)|
for s ∈ V , we recover the result of Watanabe and Fukumizu [25] for the unweighted Bethe case.
However, our proof technique is significantly simpler and avoids the complex machinery of graph
zeta functions. Our approach proceeds by considering the Bethe entropy H(τ ; ρ) on appropriate
slices of the domain ∆K

R so as to extract condition (12) for each U ⊆ V . The full proof is provided
in Appendix B.1.

Theorem 2. If the Bethe entropy H(τ ; ρ) is concave over ∆K
R , then ρα ≥ 0 for all α ∈ F , and

condition (12) holds.

Indeed, as demonstrated in the simulations of Section 5, the Bethe objective function Bθ,ρ(τ) may
have multiple local optima if ρ does not satisfy condition (12).

3.3 Polytope of concavity

We now characterize the polytope defined by the inequalities (12). We show that in the pairwise
Bethe case, the polytope may be expressed geometrically as the convex hull of single-cycle forests
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formed by the edges of the graph. In the more general (non-pairwise) Bethe case, however, the
polytope of concavity may strictly contain the latter set.

Note that the Bethe entropy (11) may be written in the alternative form

H(τ ; ρ) =
∑
s∈V

ρ′sHs(τs)−
∑
α∈F

ραĨα(τα), (13)

where Ĩα(τα) := {
∑
s∈αHs(τs)}−Hα(τα) is the KL divergence between the joint distribution τα

and the product distribution
∏
s∈α τs, and the weights ρ′s are defined appropriately.

We show that the polytope of concavity has a nice geometric characterization when ρ′s = 1 for
all s ∈ V , and ρα ∈ [0, 1] for all α ∈ F . Note that this assignment produces the expression
for the reweighted Bethe entropy analyzed in Wainwright et al. [22] (when all elements of F have
cardinality two). Equation (13) then becomes

H(τ ; ρ) =
∑
s∈V

(
1−

∑
α∈N(s)

ρα

)
Hs(τs) +

∑
α∈F

ραHα(τα), (14)

and the inequalities (12) defining the polytope of concavity are∑
α∈F : α∩U 6=∅

(|α ∩ U | − 1)ρα ≤ |U |, ∀U ⊆ V. (15)

Consequently, we define

C :=
{
ρ ∈ [0, 1]|F | :

∑
α∈F : α∩U 6=∅

(|α ∩ U | − 1)ρα ≤ |U |, ∀U ⊆ V
}
.

By Theorem 2, the set C is the region of concavity for the Bethe entropy (14) within [0, 1]|F |.

We also define the set

F := {1F ′ : F ′ ⊆ F and F ′ ∪N(F ′) is a single-cycle forest in G} ⊆ {0, 1}|F |,
where a single-cycle forest is defined to be a subset of edges of a graph such that each connected
component contains at most one cycle. (We disregard the directions of edges in G.) The following
theorem gives our main result. The proof is contained in Appendix C.1.
Theorem 3. In the Bethe case (i.e., the region graph G has two layers), we have the containment
conv(F) ⊆ C. If in addition |α| = 2 for all α ∈ F , then conv(F) = C.

The significance of Theorem 3 is that it provides us with a convenient graph-based method for
constructing vectors ρ ∈ C. From the inequalities (15), it is not even clear how to efficiently verify
whether a given ρ ∈ [0, 1]|F | lies in C, since it involves testing 2|V | inequalities.

Comparing Theorem 3 with known results, note that in the pairwise case (|α| = 2 for all α ∈ F ),
Theorem 1 of Wainwright et al. [22] states that the Bethe entropy is concave over conv(T), where
T ⊆ {0, 1}|E| is the set of edge indicator vectors for spanning forests of the graph. It is trivial to
check that T ⊆ F, since every spanning forest is also a single-cycle forest. Hence, Theorems 2
and 3 together imply a stronger result than in Wainwright et al. [22], characterizing the precise
region of concavity for the Bethe entropy as a superset of the polytope conv(T) analyzed there. In
the unweighted Kikuchi case, it is also known [1, 14] that the Kikuchi entropy is concave for the
assignment ρ = 1F when the region graph G is connected and has at most one cycle. Clearly,
1F ∈ C in that case, so this result is a consequence of Theorems 2 and 3, as well. However, our
theorems show that a much more general statement is true.

It is tempting to posit that conv(F) = C holds more generally in the Bethe case. However, as the fol-
lowing example shows, settings arise where conv(F) ( C. Details are contained in Appendix C.2.
Example 1. Consider a two-layer region graph with vertices V = {1, 2, 3, 4, 5} and factors α1 =
{1, 2, 3}, α2 = {2, 3, 4}, and α3 = {3, 4, 5}. Then (1, 1

2 , 1) ∈ C\ conv(F).

In fact, Example 1 is a special case of a more general statement, which we state in the following
proposition. Here, F := {F ′ ⊆ F : 1F ′ ∈ F}, and an element F ∗ ∈ F is maximal if it is not
contained in another element of F.
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Proposition 1. Suppose (i) G is not a single-cycle forest, and (ii) there exists a maximal element
F ∗ ∈ F such that the induced subgraph F ∗ ∪N(F ∗) is a forest. Then conv(F) ( C.

The proof of Proposition 1 is contained in Appendix C.3. Note that if |α| = 2 for all α ∈ F , then
condition (ii) is violated whenever condition (i) holds, so Proposition 1 provides a partial converse
to Theorem 3.

4 Reweighted sum product algorithm
In this section, we provide an iterative message passing algorithm to optimize the Kikuchi varia-
tional problem (8). As in the case of the generalized belief propagation algorithm for the unweighted
Kikuchi approximation [28, 29, 11, 14, 12, 27] and the reweighted sum product algorithm for the
Bethe approximation [22], our message passing algorithm searches for stationary points of the La-
grangian version of the problem (8). When ρ satisfies condition (10), Theorem 1 implies that the
problem (8) is strictly concave, so the unique fixed point of the message passing algorithm globally
maximizes the Kikuchi approximation.

Let G = (V,R) be a region graph defining our Kikuchi approximation. Following Pakzad and
Anantharam [14], for r, s ∈ R, we write r ≺ s if r ( s and there does not exist t ∈ R such that
r ( t ( s. For r ∈ R, we define the parent set of r to be P(r) = {s ∈ R : r ≺ s} and the child set
of r to be C(r) = {s ∈ R : s ≺ r}. With this notation, τ = {τr(xr) : r ∈ R} belongs to the set ∆K

R
if and only if

∑
xs\r

τs(xr, xs\r) = τr(xr) for all r ∈ R, s ∈ P(r).

The message passing algorithm we propose is as follows: For each r ∈ R and s ∈ P(r), let
Msr(xr) denote the message passed from s to r at assignment xr. Starting with an arbitrary positive
initialization of the messages, we repeatedly perform the following updates for all r ∈ R, s ∈ P(r):

Msr(xr)← C


∑
xs\r

exp
(
θs(xs)/ρs

) ∏
v∈P(s)

Mvs(xs)
ρv/ρs

∏
w∈C(s)\r

Msw(xw)−1

exp
(
θr(xr)/ρr

) ∏
u∈P(r)\s

Mur(xr)ρu/ρr
∏

t∈C(r)
Mrt(xt)−1


ρr

ρr+ρs

. (16)

Here, C > 0 may be chosen to ensure a convenient normalization condition; e.g.,∑
xr
Msr(xr) = 1. Upon convergence of the updates (16), we compute the pseudomarginals ac-

cording to

τr(xr) ∝ exp

(
θr(xr)

ρr

) ∏
s∈P(r)

Msr(xr)
ρs/ρr

∏
t∈C(r)

Mrt(xt)
−1, (17)

and we obtain the corresponding Kikuchi approximation by computing the objective function (8)
with these pseudomarginals. We have the following result, which is proved in Appendix D:
Theorem 4. The pseudomarginals τ specified by the fixed points of the messages {Msr(xr)} via
the updates (16) and (17) correspond to the stationary points of the Lagrangian associated with the
Kikuchi approximation problem (8).

As with the standard belief propagation and reweighted sum product algorithms, we have several
options for implementing the above message passing algorithm in practice. For example, we may
perform the updates (16) using serial or parallel schedules. To improve the convergence of the
algorithm, we may damp the updates by taking a convex combination of new and previous messages
using an appropriately chosen step size. As noted by Pakzad and Anantharam [14], we may also use
a minimal graphical representation of the Hasse diagram to lower the complexity of the algorithm.

Finally, we remark that although our message passing algorithm proceeds in the same spirit as clas-
sical belief propagation algorithms by operating on the Lagrangian of the objective function, our
algorithm as presented above does not immediately reduce to the generalized belief propagation
algorithm for unweighted Kikuchi approximations or the reweighted sum product algorithm for
tree-reweighted pairwise Bethe approximations. Previous authors use algebraic relations between
the overcounting numbers (9) in the Kikuchi case [28, 29, 11, 14] and the two-layer structure of the
Hasse diagram in the Bethe case [22] to obtain a simplified form of the updates. Since the coeffi-
cients ρ in our problem lack the same algebraic relations, following the message-passing protocol
used in previous work [11, 28] leads to more complicated updates, so we present a slightly different
algorithm that still optimizes the general reweighted Kikuchi objective.
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5 Experiments
In this section, we present empirical results to demonstrate the advantages of the reweighted Kikuchi
approximation that support our theoretical results. For simplicity, we focus on the binary pairwise
Ising model given in equation (2). Without loss of generality, we may take the potentials to be
γs(xs) = γsxs and γst(xs, xt) = γstxsxt for some γ = (γs, γst) ∈ R|V |+|E|. We run our
experiments on two types of graphs: (1) Kn, the complete graph on n vertices, and (2) Tn, the√
n×
√
n toroidal grid graph where every vertex has degree four.

Bethe approximation. We consider the pairwise Bethe approximation of the log partition function
A(γ) with weights ρst ≥ 0 and ρs = 1 −

∑
t∈N(s) ρst. Because of the regularity structure of Kn

and Tn, we take ρst = ρ ≥ 0 for all (s, t) ∈ E and study the behavior of the Bethe approximation
as ρ varies. For this particular choice of weight vector ~ρ = ρ1E , we define

ρtree = max{ρ ≥ 0: ~ρ ∈ conv(T)}, and ρcycle = max{ρ ≥ 0: ~ρ ∈ conv(F)}.
It is easily verified that for Kn, we have ρtree = 2

n and ρcycle = 2
n−1 ; while for Tn, we have

ρtree = n−1
2n and ρcycle = 1

2 .

Our results in Section 3 imply that the Bethe objective function Bγ,ρ(τ) in equation (8) is concave
if and only if ρ ≤ ρcycle, and Wainwright et al. [22] show that we have the bound A(γ) ≤ B(γ; ρ)
for ρ ≤ ρtree. Moreover, since the Bethe entropy may be written in terms of the edge mutual
information (13), the function B(γ; ρ) is decreasing in ρ. In our results below, we observe that we
may obtain a tighter approximation to A(γ) by moving from the upper bound region ρ ≤ ρtree to the
concavity region ρ ≤ ρcycle. In addition, for ρ > ρcycle, we observe multiple local optima ofBγ,ρ(τ).

Procedure. We generate a random potential γ = (γs, γst) ∈ R|V |+|E| for the Ising model (2) by
sampling each potential {γs}s∈V and {γst}(s,t)∈E independently. We consider two types of models:

Attractive: γst ∼ Uniform[0, ωst], and Mixed: γst ∼ Uniform[−ωst, ωst].
In each case, γs ∼ Uniform[0, ωs]. We set ωs = 0.1 and ωst = 2. Intuitively, the attractive model
encourages variables in adjacent nodes to assume the same value, and it has been shown [18, 19] that
the ordinary Bethe approximation (ρst = 1) in an attractive model lower-bounds the log partition
function. For ρ ∈ [0, 2], we compute stationary points of Bγ,ρ(τ) by running the reweighted sum
product algorithm of Wainwright et al. [22]. We use a damping factor of λ = 0.5, convergence
threshold of 10−10 for the average change of messages, and at most 2500 iterations. We repeat this
process with at least 8 random initializations for each value of ρ. Figure 1 shows the scatter plots
of ρ and the Bethe approximation Bγ,ρ(τ). In each plot, the two vertical lines are the boundaries
ρ = ρtree and ρ = ρcycle, and the horizontal line is the value of the true log partition function A(γ).

Results. Figures 1(a)–1(d) show the results of our experiments on small graphs (K5 and T9) for
both attractive and mixed models. We see that the Bethe approximation with ρ ≤ ρcycle generally
provides a better approximation to A(γ) than the Bethe approximation computed over ρ ≤ ρtree.
However, in general we cannot guarantee whether B(γ; ρ) will give an upper or lower bound for
A(γ) when ρ ≤ ρcycle. As noted above, we have B(γ; 1) ≤ A(γ) for attractive models.

We also observe from Figures 1(a)–1(d) that shortly after ρ leaves the concavity region {ρ ≤ ρcycle},
multiple local optima emerge for the Bethe objective function. The presence of the point clouds
near ρ = 1 in Figures 1(a) and 1(c) arises because the sum product algorithm has not converged
after 2500 iterations. Indeed, the same phenomenon is true for all our results: in the region where
multiple local optima begin to appear, it is more difficult for the algorithm to converge. See Figure 2
and the accompanying text in Appendix E for a plot of the points (ρ, log10(∆)), where ∆ is the
final average change in the messages at termination of the algorithm. From Figure 2, we see that the
values of ∆ are significantly higher for the values of ρ near where multiple local optima emerge. We
suspect that for these values of ρ, the sum product algorithm fails to converge since distinct local
optima are close together, so messages oscillate between the optima. For larger values of ρ, the local
optima become sufficiently separated and the algorithm converges to one of them. However, it is
interesting to note that this point cloud phenomenon does not appear for attractive models, despite
the presence of distinct local optima.

Simulations for larger graphs are shown in Figures 1(e)–1(h). If we zoom into the region near
ρ ≤ ρcycle, we still observe the same behavior that ρ ≤ ρcycle generally provides a better Bethe

7



0 0.5 1 1.5 2

7

8

9

10

11

12

13

14

15

16

ρ

B
et
h
e
a
p
p
ro
x
im

a
ti
o
n

K5, mixed

 

 
ρtree
ρcy cl e

A(γ )

(a) K5, mixed

0 0.5 1 1.5 2

9.5

10

10.5

11

11.5

12

12.5

13

ρ

B
et
h
e
a
p
p
ro
x
im

a
ti
o
n

K5, attractive

 

 
ρtree
ρcy cl e

A(γ )

(b) K5, attractive
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(d) T9, attractive
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(f) K15, attractive
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Figure 1: Values of the reweighted Bethe approximation as a function of ρ. See text for details.

approximation than ρ ≤ ρtree. Moreover, the presence of the point clouds and multiple local optima
are more pronounced, and we see from Figures 1(c), 1(g), and 1(h) that new local optima with even
worse Bethe values arise for larger values of ρ. Finally, we note that the same qualitative behavior
also occurs in all the other graphs that we have tried (Kn for n ∈ {5, 10, 15, 20, 25} and Tn for
n ∈ {9, 16, 25, 36, 49, 64}), with multiple random instances of the Ising model pγ .

6 Discussion
In this paper, we have analyzed the reweighted Kikuchi approximation method for estimating the log
partition function of a distribution that factorizes over a region graph. We have characterized nec-
essary and sufficient conditions for the concavity of the variational objective function, generalizing
existing results in literature. Our simulations demonstrate the advantages of using the reweighted
Kikuchi approximation and show that multiple local optima may appear outside the region of con-
cavity.

An interesting future research direction is to obtain a better understanding of the approximation
guarantees of the reweighted Bethe and Kikuchi methods. In the Bethe case with attractive potentials
θ, several recent results [22, 19, 18] establish that the Bethe approximationB(θ; ρ) is an upper bound
to the log partition functionA(θ) when ρ lies in the spanning tree polytope, whereasB(θ; ρ) ≤ A(θ)
when ρ = 1F . By continuity, we must have B(θ; ρ∗) = A(θ) for some values of ρ∗, and it would
be interesting to characterize such values where the reweighted Bethe approximation is exact.

Another interesting direction is to extend our theoretical results on properties of the reweighted
Kikuchi approximation, which currently depend solely on the structure of the region graph and the
weights ρ, to incorporate the effect of the model potentials θ. For example, several authors [20, 6]
present conditions under which loopy belief propagation applied to the unweighted Bethe approxi-
mation has a unique fixed point. The conditions for uniqueness of fixed points slightly generalize the
conditions for convexity, and they involve both the graph structure and the strength of the potentials.
We suspect that similar results would hold for the reweighted Kikuchi approximation.
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generalization of Hall’s lemma. The authors thank the anonymous reviewers for feedback that im-
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A Proofs for Section 3.1

A.1 Proof of Theorem 1

We use the proof technique of Theorem 1 in Pakzad and Anantharam [14] for the unweighted Bethe
entropy, together with Lemma 1 in Appendix A.2, which provides a generalization of Hall’s marriage
lemma for weighted bipartite graphs.

We construct a bipartite graph according to

V1 := {r ∈ R : ρr < 0}, and V2 := {r ∈ R : ρr > 0},
where (s, t) ∈ E for s ∈ V1 and t ∈ V2 when s ⊂ t. Let weightsw be defined such thatw(s) = −ρs
for s ∈ V1 and w(s) = ρs for s ∈ V2. We claim that condition (19) of Lemma 1 is satisfied. Indeed,
for U ⊆ V1, we have

w(U) = −
∑
s∈U

ρs ≤
∑

s∈A(U)

ρs =
∑

s∈A(U):ρs>0

ρs +
∑

s∈A(U):ρs<0

ρs ≤
∑

s∈A(U):ρs>0

ρs = w(N(U)),

where the first inequality is a direct application of the assumption (10). Hence, by Lemma 1, we
have a saturating edge labeling γ.

For each t ∈ V2, define
ρ′t := ρt −

∑
s∈N(t)

γst ≥ 0.

We may then write

H(τ ; ρ) =
∑
s∈V1

ρsHs(τs) +
∑
t∈V2

ρtHt(τt)

=
∑

(s,t)∈E

γst {−Hs(τs) +Ht(τt)}+
∑
t∈V2

ρ′tHt(τt)

=
∑

(s,t)∈E

γst

{∑
xs

τs(xs) log τs(xs)−
∑
xt

τt(xt) log τt(xt)

}
+
∑
t∈V2

ρ′tHt(τt)

=
∑

(s,t)∈E

γst
∑
xt

τt(xt) log

(
τs(xs)

τt(xt)

)
+
∑
t∈V2

ρ′tHt(τt), (18)

where we have used the fact that
∑
xt\s

τt(xs, xt\s) = τs(xs), since τ ∈ ∆K
R , to obtain the last

equality.

Note that for each pair (s, t), we have∑
xt

τt(xt) log

(
τs(xs)

τt(xt)

)
= −DKL(τt‖τs),

which is strictly concave in the pair (τt, τs). Furthermore, each term Ht(τt) is concave in τt. It
follows by the expansion (18) that H(τ ; ρ) is strictly concave, as wanted.

A.2 Generalization of Hall’s marriage lemma

In this section, we prove a generalization of Hall’s marriage lemma, which is useful in proving
concavity of the Bethe entropy function H(τ ; ρ).

LetG = (V1∪V2, E) be a bipartite graph, where each vertex v ∈ V := V1∪V2 is assigned a weight
w(v) > 0. For a set U ⊆ V , define

w(U) :=
∑
s∈U

w(s).

Also define the neighborhood set
N(U) :=

⋃
s∈U

N(s),

10



where N(s) := {t : (s, t) ∈ E} is the usual neighborhood set of a single node.

We say that an edge labeling γ = (γst : (s, t) ∈ E) ∈ R|E|≥0 saturates V1 if the following conditions
hold:

1. For all s ∈ V1, we have
∑
t∈N(s) γst = w(s).

2. For all t ∈ V2, we have
∑
s∈N(t) γst ≤ w(t).

Lemma 1. Suppose
w(U) ≤ w(N(U)), ∀U ⊆ V1. (19)

Then there exists an edge labeling γ that saturates V1.

Proof. We prove the lemma in stages. First, assume w(v) ∈ Q for all v ∈ V and condition (19)
holds. With an appropriate rescaling, we may assume that all weights are integers. Call the new
weights w′. We then construct a graph G′ such that each node v ∈ V is expanded into a set Uv of
w′(v) nodes, and edges of G′ are constructed by connecting all nodes in Us to all nodes in Ut, for
each (s, t) ∈ E. By the usual version of Hall’s marriage lemma [4], there exists a matching of G′
that saturates V ′1 :=

⋃
v∈V1

Uv . Indeed, it follows immediately from condition (19) that

w′(U) ≤ w′(N(U)), ∀U ⊆ V1.

Suppose T ′ ⊆ V ′1 , and let T := {s ∈ V1 : Us ∩ T ′ 6= ∅}. Then

|T ′| ≤

∣∣∣∣∣⋃
s∈T

Us

∣∣∣∣∣ = w′(T ) ≤ w′(N(T )) = |N(T ′)|,

so the sufficient condition of Hall’s marriage lemma is met, implying the existence of a matching.
The edge labeling γ is obtained by setting

γst = {# of edges between Us and Ut in matching}
and rescaling.

Next, suppose w(v) ∈ R for all v ∈ V and condition (19) holds with strict inequality; i.e.,

w(U) < w(N(U)), ∀U ⊆ V1. (20)

We claim that there exists an edge labeling γ that saturates V1. Indeed, let

ε := min
U⊆V1

{w(N(U))− w(U)} > 0.

Define a new weighting w′ with only rational values, such that

w′(s) ∈
[
w(s), w(s) +

ε

2 · deg(G)

)
, ∀s ∈ V1,

w′(t) ∈
(
w(t)− ε

2 · deg(G)
, w(t)

]
, ∀t ∈ V2,

where deg(G) = |E| is the number of edges in G. It is clear that Hall’s condition (19) still holds
for w′. Hence, by the result of the last paragraph, there exists an edge labeling γ′ that saturates V1

with respect to w′. Observe that by decreasing the weights of γ′ slightly, we easily obtain an edge
labeling γ that saturates V1 with respect to the original weighting w.

Finally, consider the most general case: condition (19) holds and w(v) ∈ R for all v ∈ V . Note
that the problem of finding an edge labeling that saturates V1 may be rephrased as follows. Let
b1 ∈ R|V1| be the vector of weights (w(s) : s ∈ V1). Then for an appropriate choice of the matrix
A1 ∈ {0, 1}|V1|×|E|, the conditions∑

t∈N(s)

γst = w(s), ∀s ∈ V1,

may be expressed as a system of linear equations,

A1γ = b1. (21)
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Similarly, letting b2 = (w(t) : t ∈ V2) ∈ R|V2|, the conditions∑
s∈N(t)

γst ≤ w(t), ∀t ∈ V2,

may be expressed in the form
A2γ ≤ b2, (22)

where A2 ∈ {0, 1}|V2|×|E|. A saturating edge labeling exists if and only if there exists γ ∈ R|E|≥0

that simultaneously satisfies conditions (21) and (22). Now consider a sequence of weight vectors
{bn1}n≥1, such that bn1 → b1 and the convergence is from below and strictly monotone for each
component. Let wn = (bn1 , b2) denote the full sequence of weights. Then

wn(U) < w(U) ≤ w(N(U)) = wn(N(U)), ∀U ⊆ V.

It follows by the result of the previous paragraph that there exists an edge labeling γn ∈ R|E|≥0 such
that

A1γ
n = bn1 , and γn ∈ D :=

{
γ ∈ R|E|≥0 : A2γ ≤ b2

}
.

Clearly, D is a closed set; furthermore, it is easy to see that the constraint A2γ ≤ b2 implies that
each component of γ is bounded from above, since A2 contains only nonnegative entries. It follows
that the sequence {γn}n≥1 has a limit point γ∗ ∈ D. By continuity of the linear map A1, we must
have

A1γ
∗ = lim

n→∞
A1γn = lim

n→∞
bn1 = b1.

Hence, γ∗ is a valid edge labeling that saturates V1.

A.3 Proof of Corollary 1

By Theorem 1, H(τ ; ρ) is strictly concave provided condition (10) holds. Note that

F(α) = {α}, ∀α ∈ F,

whereas
F(s) = {s} ∪N(s), ∀s ∈ V.

Condition (10) applied to the set S = {α} gives the inequality

ρα ≥ 0, ∀α ∈ F. (23)

For a subset U ⊆ V , we can write

F(U) =
⋃
s∈U
F(s) = U ∪N(U) = U ∪ {α ∈ F : α ∩ U 6= ∅},

so (10) translates into ∑
s∈U

ρs +
∑

α∈F : α∩U 6=∅

ρα ≥ 0, ∀U ⊆ V, (24)

which is condition (12). It is easy to see that conditions (23) and (24) together also imply the validity
of condition (10) for any other set of regions S ⊆ R.

B Proofs for Section 3.2

B.1 Proof of Theorem 2

Our result relies on the property that if the Bethe entropy H(τ ; ρ) is concave over ∆K
R , then H(τ ; ρ)

is also concave over any subset ∆′ ⊆ ∆K
R . In particular, it is sufficient to assume that X is binary,

say X = {−1,+1}; the general multinomial case |X | > 2 follows by restricting the distribution of
Xs to be supported on only two points.

The first lemma shows that ρα ≥ 0 for all α ∈ F . The proof is contained in Appendix B.2.
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Lemma 2. If the Bethe entropy H(τ ; ρ) is concave over ∆K
R , then ρα ≥ 0 for all α ∈ F .

To establish the necessity of condition (12), consider a nonempty subset U ⊆ V and the correspond-
ing sub-region graph RU = U ∪ FU , where FU = {α ∩ U : α ∈ F, α ∩ U 6= ∅}. From the original
weights ρ ∈ R|V |+|F |, construct the sub-region weights ρU ∈ R|U |+|FU | given by

ρUs = ρs, ∀s ∈ U, and ρUα∩U = ρα, ∀α ∩ U ∈ FU .

For simplicity, we consider RU to be a multiset by remembering which factor α ∈ F each β =
α ∩ U ∈ FU comes from; we can equivalently work with RU as a set by defining the weights
ρU to be the sum over the pre-images of the factors in RU . Consider the set of locally consistent
RU -pseudomarginals ∆K

RU
. Define a map that sends τ̃ ∈ ∆K

RU
to τ ∈ ∆K

R defined by

τs(xs) =

{
τ̃s(xs) if s ∈ U,
1
2 otherwise,

τα(xα) =

{
τ̃α∩U (xα∩U ) ·

∏
s∈α\U τs(xs) if α ∩ U 6= ∅ (so α ∩ U ∈ FU ),∏

s∈α τs(xs) otherwise.

Let ∆U denote the image of ∆K
RU

under the mapping above, and note that ∆U ⊆ ∆K
R . Therefore,

H(τ ; ρ) is concave over ∆U . Now let τ ∈ ∆U and let τ̃ ∈ ∆K
RU

be a pre-image of τ . With this
construction, we have the following lemma, proved in Appendix B.3:

Lemma 3. The entropy H(τ ; ρ) differs from HU (τ̃ ; ρU ) by a constant, where HU (τ̃ ; ρU ) is the
Bethe entropy defined over the sub-region graph RU .

Finally, we have a lemma showing that we can extract condition (12) for U = V . The proof is
provided in Appendix B.4.

Lemma 4. If the Bethe entropy H(τ ; ρ) is concave over ∆K
R , then

∑
s∈V ρs +

∑
α∈F ρα ≥ 0.

By Lemma 3, the concavity of H(τ ; ρ) over ∆U implies the concavity of HU (τ̃ ; ρU ) over ∆K
RU

.
Then by Lemma 4 applied to RU , we have∑

s∈U
ρs +

∑
α∈F : α∩U 6=∅

ρα =
∑
s∈U

ρUs +
∑
β∈FU

ρUβ ≥ 0,

finishing the proof.

B.2 Proof of Lemma 2

Fix α ∈ F , and let ∆α be the set of pseudomarginals τ ∈ ∆K
R with the property that for all s ∈ V

and β ∈ F \ {α}, τs and τβ are uniform distributions over Xs and Xβ , respectively, while τα is
an arbitrary distribution on Xα with uniform single-node marginals. Then H(τ ; ρ) is concave over
∆α. On the other hand, note that for τ ∈ ∆α, Hs(τs) = log 2 and Hβ(τβ) = |β| log 2 are constants
for s ∈ V and β ∈ F \ {α}, so we can write

H(τ ; ρ) = ραHα(τα) + constant.

Since Hα(τα) is concave in τα, this implies ρα ≥ 0, as claimed.

B.3 Proof of Lemma 3

By construction, for s ∈ V \ U , we have Hs(τs) = log 2; and for α ∈ F with α ∩ U = ∅, we have
Hα(τα) = |α| log 2. Moreover, for α ∈ F with α ∩ U 6= ∅, we have

Hα(τα) = Hα∩U (τ̃α∩U ) +
∑
s∈α\U

Hs(τs) = Hα∩U (τ̃α∩U ) + |α \ U | log 2.
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Therefore, for τ ∈ ∆U , we can write

H(τ ; ρ) =
∑
s∈V

ρsHs(τs) +
∑
α∈F

ραHα(τα)

=
∑
s∈U

ρsHs(τ̃s) +
( ∑
s∈V \U

ρs

)
log 2

+
∑

α∈F : α∩U 6=∅

ρα

(
Hα∩U (τ̃α∩U ) + |α \ U | log 2

)
+

∑
α∈F : α∩U=∅

ρα|α| log 2

=
∑
s∈U

ρUs Hs(τ̃s) +
∑
β∈FU

ρUβHβ(τ̃β) + constant

= HU (τ̃ ; ρU ) + constant,

as wanted.

B.4 Proof of Lemma 4

Given mo,me ∈ R, we define a pseudomarginal τ = (τs, τα) by1

τs(xs) =
1 + xsmo

2
, ∀s ∈ V, xs ∈ X = {−1,+1},

and for α ∈ F with |α| = k,

τα(xα) =


2−k

(
1 + 2k−1mo + (2k−1 − 1)me

)
if xα = (1, . . . , 1),

2−k
(
1− 2k−1mo + (2k−1 − 1)me

)
if xα = (−1, . . . ,−1),

2−k(1−me) otherwise.

It is easy to see that
∑
xs
τs(xs) =

∑
xα
τα(xα) = 1, and that τs is the single-node marginal of τα.

Thus, for τ to lie in ∆K
R , we only need to ensure that τs(xs) ≥ 0 and τα(xα) ≥ 0, or equivalently,

−1 ≤ mo ≤ 1,
1 + 2k−1|mo|

2k−1 − 1
≤ me ≤ 1, ∀ 2 ≤ k ≤ K,

where K = max{|α| : α ∈ F}. Let M denote the set of (mo,me) satisfying the constraints above,
and let ∆M denote the set of pseudomarginals τ [mo,me] ∈ ∆K

R given by the construction above
for each (mo,me) ∈M .

Observe that the function (mo,me) 7→ τ [mo,me] is additive for convex combinations; i.e., for
(m

(1)
o ,m

(1)
e ), . . . , (m

(j)
o ,m

(j)
e ) ∈M and λ1, . . . , λj ≥ 0 with λ1 + · · ·+ λj = 1, we have

j∑
i=1

λiτ [m(i)
o ,m(i)

e ] = τ
[ j∑
i=1

λim
(i)
o ,

j∑
i=1

λim
(i)
e

]
.

Since M is convex, this shows that ∆M is a convex subset of ∆K
R . Therefore, H(τ ; ρ) is concave

over ∆M , and the additivity property above implies that the function

ζ(mo,me) := H(τ [mo,me]; ρ)

is concave over M . We now compute the Hessian of ζ and show how it relates to the required
quantity that we want to prove is nonnegative.

Fix (mo,me) ∈M , and note that τ ≡ τ [mo,me] has the property that τα = τβ whenever |α| = |β|.
Therefore, we can collect the terms in H(τ ; ρ) based on the cardinality of α ∈ V ∪ F . The single-
node entropy is, as a function of mo,

ζ1(mo) := Hs(τs) = −η
(

1 +mo

2

)
− η

(
1−mo

2

)
,

1The definition of τ [mo,me] above is equivalent to imposing the conditions

Eτα
[∏

s∈β
Xs

]
= mo if |β| is odd and Eτα

[∏
s∈β

Xs
]

= me if |β| is even,

for all α ∈ V ∪ F and ∅ 6= β ⊆ α.
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where η(t) := t log t. For α ∈ F with |α| = k ≥ 2, the entropy corresponding to τα is

ζk(mo,me) := Hα(τα) = −η
(

1 + 2k−1mo + (2k−1 − 1)me

2k

)
− η

(
1− 2k−1mo + (2k−1 − 1)me

2k

)
− (2k − 2) η

(
1−me

2k

)
.

The Bethe entropy can then be written as

ζ(mo,me) = H(τ ; ρ) = c1ζ1(mo) +

K∑
k=2

ckζk(mo,me),

where c1 =
∑
s∈V ρs and ck =

∑
α∈F : |α|=k ρα for k ≥ 2.

Let us compute the Hessian matrix of ζ(mo,me) along the axismo = 0. The function ζ1 has second
derivative ζ ′′1 (mo) = −1/(1−m2

o), so at mo = 0, the contribution of ζ1 to the Hessian of ζ is

∇2ζ1(0,me) =

(
−1 0
0 0

)
.

For k ≥ 2, the first partial derivatives of ζk are

∂ζk
∂mo

= −1

2

{
log
(
1 + 2k−1mo + (2k−1 − 1)me

)
− log

(
1− 2k−1mo + (2k−1 − 1)me

)}
,

∂ζk
∂me

= − (2k−1 − 1)

2k
{

log
(
1 + 2k−1mo + (2k−1 − 1)me

)
+ log

(
1− 2k−1mo + (2k−1 − 1)me

)
−2 log

(
1−me

)}
.

The Hessian∇2ζk at mo = 0 is then given by

∇2ζk(0,me) =

−
2k−1

1 + (2k−1 − 1)me
0

0 − 2k−1 − 1

(1 + (2k−1 − 1)me)(1−me)

 .

Therefore, the Hessian of ζ at mo = 0 is the diagonal matrix

∇2ζ(0,me) =


−c1 −

K∑
k=2

2k−1ck
1 + (2k−1 − 1)me

0

0 −
K∑
k=2

(2k−1 − 1)ck
(1 + (2k−1 − 1)me)(1−me)

 .

In particular, the eigenvalues of ∇2ζ(0,me) are its diagonal entries. Taking me → 1, we see that
the eigenvalue corresponding to the first diagonal entry satisfies

lim
me→1

λ1(me) = lim
me→1

{
−c1 −

K∑
k=2

2k−1ck
1 + (2k−1 − 1)me

}
= −

K∑
k=1

ck.

Since (0,me) ∈M as me → 1 and ζ(mo,me) is concave over M , we see that the eigenvalue above
is nonpositive, which implies

∑
s∈V

ρs +
∑
α∈F

ρα =

K∑
k=1

ck ≥ 0,

as desired.
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C Proofs for Section 3.3

C.1 Proof of Theorem 3

We first show that conv(F) ⊆ C in the general Bethe case. Since C is convex, it suffices to show
that F ⊆ C, so consider 1F ′ ∈ F. We need to show that inequality (15) holds for ρ = 1F ′ .

Let W1, . . . ,Wm denote the connected components of F ′ ∪ N(F ′) in G. Consider an arbitrary
U ⊆ V , and define Ui := Wi ∩ U for 1 ≤ i ≤ m, and U0 := U\{U1, . . . , Um}. Then each Wi has
at most one cycle. Furthermore, we may write∑

α∈F :
α∩U 6=∅

(|α ∩ U | − 1)ρα =
∑

α∈F ′ :
α∩U 6=∅

(|α ∩ U | − 1) =

m∑
i=1

{ ∑
α∈Wi :
α∩Ui 6=∅

(|α ∩ Ui| − 1)
}
. (25)

We claim that ∑
α∈Wi : α∩Ui 6=∅

(|α ∩ Ui| − 1) ≤ |Ui|, ∀1 ≤ i ≤ m. (26)

Indeed, consider the induced subgraph W ′i of Wi with vertex set Vi := Ui∪{α ∈Wi : α∩Ui 6= ∅}.
Since Wi has at most one cycle, W ′i has at most one cycle, as well. Furthermore, the number of
edges of W ′i is given by

|E(W ′i )| =
∑

α∈Wi : α∩Ui 6=∅

|α ∩ Ui|,

and the number of vertices is |Vi| = |Ui|+ |{α ∈Wi : α ∩ Ui 6= ∅}|.
We have the following simple lemma:
Lemma 5. A connected graph G has at most one cycle if and only if

|E(U)| ≤ |U |, ∀U ⊆ V.

Proof. First suppose G has at most one cycle. For any subset U ⊆ V , the induced subgraph H
clearly also contains at most one cycle. Hence, we may remove at most one edge to obtain a graph
H ′ which is a forest. Then

|E(H ′)| ≤ |V (H ′)| − 1 = |U | − 1. (27)

Furthermore, |E(U)| ≤ |E(H ′)|+ 1. It follows that |E(U)| ≤ |U |.
Conversely, if G is a connected graph with more than one cycle, we may pick U to be the union
of vertices in the two cycles, along with a path connecting the two cycles (in case the cycles are
disconnected). It is easy to check that condition (27) is violated in this case.

Applying Lemma 5 to the graph W ′i and rearranging then yields inequality (26). Combining with
equation (25) then yields∑

α∈F : α∩U 6=∅

(|α ∩ U | − 1)ρα ≤
m∑
i=1

|Ui| = |U | − |U0| ≤ |U |,

proving the condition (15).

We now specialize to the case where |α| = 2 for all α ∈ F . Note that in this case, we may identify
the region graph with an ordinary graph G = (V,E), where the edge set E is given by F . It is easy
to check that 1F ′ ∈ F if and only if the subgraph of G with edge set F ′ is a single-cycle forest. In
the following argument, we abuse notation and refer to G as G.

Recall that a rational polyhedron is a set of the form {x ∈ Rp : Ax ≤ b}, such that A and b
have rational entries. Clearly, C is a rational polyhedron. Furthermore, a polyhedron is integral
if all vertices are elements of the integer lattice Zp. The following result is standard in integer
programming:
Lemma 6. [Theorem 5.12, [10]] Let P be a rational polyhedron. Then P is integral if and only if
max{cTx : x ∈ P} is attained by an integral vector for each c for which the maximum is finite.
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We have already established that 1F ′ ∈ C for all 1F ′ ∈ F. Furthermore, any lattice point in C is
of the form 1H , where H ⊆ E. By Lemma 5, each connected component of H must contain at
most one cycle, implying that H is a single-cycle forest. Hence, 1H ∈ F, as well. We then combine
Lemma 6 with the following proposition to obtain the desired result.
Proposition 2. Let G = (V,E) be a graph. For any set of weights c = (cst) ∈ R|E|, the LP

max
∑

(s,t)∈E

cstxst (28)

s.t.
∑

(s,t)∈E(U)

xst ≤ |U |, ∀U ⊆ V, (29)

0 ≤ xst ≤ 1, ∀(s, t) ∈ E,
attains its maximum value at an integral vector x∗.

Proof. We first argue that it suffices to consider rational weights c ∈ Q|E|. LetX denote the feasible
set of the LP, and let F (c) = maxx∈X c

>x denote the maximum value of the LP. Note that F (c) is
continuous in c.

Suppose the claim in the proposition holds for c ∈ Q|E|. Given c ∈ R|E|, let x∗ ∈ arg maxx∈X c
Tx.

Let (c(n))n≥1 be a sequence of weights in Q|E| converging to c elementwise as n → ∞. Given
ε > 0, choose n sufficiently large such that ‖c(n)−c‖1 < ε and |F (c)−F (c(n))| < ε. Applying our
hypothesis, we know there exists an integral vector z∗ ∈ X such that F (c(n)) = (c(n))>z∗. Then

|F (c)− c>z∗| ≤ |F (c)− F (c(n))|+ |(c(n) − c)>z∗| ≤ ε+ ‖c(n) − c‖1 ‖z∗‖∞ ≤ 2ε.

Thus, we can find an integral vector z∗ ∈ X that achieves the objective function that is within 2ε
from the optimal value. Since ε > 0 is arbitrary, we conclude by continuity that we may find an
integral vector in X arbitrarily close to x∗. This implies that x∗ is an integral vector.

It now remains to prove the claim in the proposition for c ∈ Q|E|. If cst < 0 for some (s, t) ∈ E,
then any optimal solution x∗ will have x∗st = 0. If cst = 0, then we can set x∗st = 0 without changing
the objective value. Thus, we can assume cst > 0 for all (s, t) ∈ E. By scaling the weights, we can
further assume that cst ∈ {1, . . . ,K} for all (s, t) ∈ E, for some K ∈ N.

We first upper-bound the objective function. For 1 ≤ i ≤ K, let Ei = {(s, t) ∈ E : cst ≥ i} denote
the set of edges with weights at least i, and let Vi denote the set of vertices in Ei. By construction,
we have

V = V1 ⊃ · · · ⊃ VK , and E = E1 ⊃ · · · ⊃ EK .
Suppose the subgraph Gi = (Vi, Ei) is decomposed into connected components

Gi = Ti1 ∪ · · ·Tiαi ∪Hi1 ∪ · · · ∪Hiβi , (30)
where each Tij = (V (Tij), E(Tij)) is a tree and each Hi` = (V (Hi`), E(Hi`)) is a connected
graph with at least one loop. Thus, we have the disjoint partitions

Vi =

αi⋃
j=1

V (Tij) ∪
βi⋃
`=1

V (Hi`), and Ei =

αi⋃
j=1

E(Tij) ∪
βi⋃
`=1

E(Hi`).

Then we can write the objective function of the LP as∑
(s,t)∈E

cstxst =

K∑
i=1

∑
(s,t)∈Ei

xst =

K∑
i=1

 αi∑
j=1

∑
(s,t)∈E(Tij)

xst +

βi∑
`=1

∑
(s,t)∈E(Hi`)

xst

 . (31)

For i = 1, . . . ,K and j = 1, . . . , αi, since Tij is a tree, we have∑
(s,t)∈E(Tij)

xst ≤ |E(Tij)| = |V (Tij)| − 1, ∀x ∈ X. (32)

For ` = 1, . . . , βi, note that the set E(Hi`) of edges in Hi` is contained within the set E(V (Hi`))
of edges in the subgraph of G induced by V (Hi`). Thus, by inequality (29), we have∑

(s,t)∈E(Hi`)

xst ≤
∑

(s,t)∈E(V (Hi`))

xst ≤ |V (Hi`)|. (33)
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Plugging in the bounds (32) and (33) to inequality (31), we arrive at the upper bound

∑
(s,t)∈E

cstxst ≤
K∑
i=1

 αi∑
j=1

{
|V (Tij)| − 1

}
+

βi∑
`=1

|V (Hi`)|

 =

K∑
i=1

(|Vi| − αi) . (34)

We now prove the claim in the proposition by explicitly constructing an integral vector x∗ that
achieves the upper bound (34). Since x∗ ∈ {0, 1}|E|, it is the indicator vector of a subset E∗ ⊆ E.

Our approach is to construct, for each 1 ≤ i ≤ K, a spanning single-cycle forest Fi = (Vi, Ci) of
Gi = (Vi, Ei) with the following properties:

1. The restriction of Fi to Vi+1 ⊆ Vi is equal to Fi+1 = (Vi+1, Ci+1), or equivalently,
Ci ∩ Ei+1 = Ci+1. By induction, this implies C1 ∩ Ei = Ci, for 1 ≤ i ≤ K.

2. For 1 ≤ i ≤ K, we have |Ci| = |Vi| − αi.

Suppose we can construct such Fi’s. Setting E∗ = C1, we see that this construction yields a vector
x∗ = 1E∗ satisfying∑

(s,t)∈E

cstx
∗
st =

K∑
i=1

∑
(s,t)∈Ei

x∗st =

K∑
i=1

∑
(s,t)∈Ei

1{(s, t) ∈ C1}

=

K∑
i=1

|C1 ∩ Ei| =
K∑
i=1

|Ci| =
K∑
i=1

(
|Vi| − αi

)
,

so x∗ achieves the bound (34), as desired.

It now remains to construct the Fi’s. We start by taking FK to be a spanning single-cycle forest of
GK . Specifically, for each connected component H of GK , we do the following: If H is a tree,
we take H to be in FK . If H contains at least one loop, then we take an arbitrary spanning single-
cycle subgraph (i.e., a spanning tree with an additional edge to form one cycle) of H to be in FK .
Then FK = (VK , CK) satisfies |CK | = |VK | − αK , since there are αK trees among the connected
components of GK .

Suppose that for some 1 ≤ i ≤ K − 1, we have constructed a spanning single-cycle forest Fi+1

satisfying the desired properties. Now consider Gi = (Vi, Ei), and construct Fi = (Vi, Ci) as
follows: Consider each connected component of Gi in the decomposition (30).

(a) For each tree Tij = (V (Tij), E(Tij)), for all 1 ≤ j ≤ αi, take Tij to be in Fi. This
component of Fi is clearly consistent with Fi+1, and the contribution to the total number
of edges |Ci| is

αi∑
j=1

|E(Tij)| =
αi∑
j=1

(
|V (Tij)| − 1

)
=

αi∑
j=1

|V (Tij)| − αi.

(b) Consider Hi` = (V (Hi`), E(Hi`)), for some 1 ≤ ` ≤ βi, so Hi` has at least one loop.
There may be several connected components of Fi+1 inHi`; suppose there are γi` trees and
δi` single-cycle graphs from Fi+1 inHi`. From each of the δi` single-cycle graphs, remove
one edge to reduce it to a tree, and complete the γi` + δi` trees into a spanning tree of Hi`.
Add the δi` edges back, so the spanning tree now has δi` cycles. Remove δi` − 1 edges to
break this graph into δi` connected components, such that each of the original δi` single-
cycle graphs is in a separate connected components, and the last connected component is a
tree. Set this new graph to be in Fi. It is clear by construction that this component of Fi is
consistent with Fi+1 since we keep all the edges from Fi+1. Moreover, its contribution to
the total number of edges Ci is precisely

βi∑
`=1

(
{|V (Hi`)| − 1}+ δi` − {δi` − 1}

)
=

βi∑
`=1

|V (Hi`)|.
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Combining the two cases above, for each 1 ≤ i ≤ K we have constructed a spanning single-cycle
forest Fi that is consistent with Fi+1 and satisfies |Ci| =

∑αi
j=1 |V (Tij)| − αi +

∑βi
`=1 |V (Hi`)| =

|Vi| − αi, as desired. This completes the proof of the proposition.

C.2 Details for Example 1

It is easy to check that F = {0, 1}3\(1, 1, 1). Hence, (1, 1
2 , 1) /∈ conv(F). By enumerating the

inequalities defining the boundary of C for different values of U ⊆ V , one may check that the only
inequalities that are not trivially satisfied by ρ ∈ [0, 1]3 are

ρ1 + 2ρ2 + ρ3 ≤ 3,

2ρ1 + 2ρ2 + ρ3 ≤ 4,

ρ1 + 2ρ2 + 2ρ3 ≤ 4,

2ρ1 + 2ρ2 + 2ρ3 ≤ 5.

The first inequality together with the condition ρ ∈ [0, 1]3 implies the remaining three inequalities,
so

C =
{
ρ ∈ [0, 1]3 : ρ1 + 2ρ2 + ρ3 ≤ 3

}
.

Clearly, (1, 1
2 , 1) ∈ C.

C.3 Proof of Proposition 1

The first condition implies F /∈ F. In particular, F ∗ 6= F and we can find α∗ ∈ F \ F ∗. Since F ∗

is maximal, F̃ = F ∗ ∪ {α∗} /∈ F. This means 1F∗ ∈ F but 1F̃ = 1F∗ + 1{α∗} /∈ F. Define

ρ = 1F∗ + ε1{α∗}, with ε =
1

|α∗| − 1
∈ (0, 1).

We claim that ρ ∈ C, which will give us the desired conclusion since ρ /∈ conv(F).

To show ρ ∈ C, since we already know that 1F∗ ∈ F ⊆ C, we only need to verify inequality (15)
for U ⊆ V with U ∩ α∗ 6= ∅. Given such a subset U , note that since F ∗ ∪ N(F ∗) is a forest, the
subgraph induced by the nodes U ∪ {α ∈ F ∗ : α ∩ U 6= ∅} is also a forest, so∑

α∈F∗ : α∩U 6=∅

(|α ∩ U | − 1) ≤ |U | − 1.

Therefore,∑
α∈F : α∩U 6=∅

(|α ∩ U | − 1)ρα =
∑

α∈F∗ : α∩U 6=∅

(|α ∩ U | − 1) +
|α∗ ∩ U | − 1

|α∗| − 1
≤ |U | − 1 + 1 = |U |,

verifying condition (15), as desired.

D Proof of Theorem 4

For r ∈ R and s ∈ P(r), let λsr(xr) be a Lagrange multiplier associated with the consistency
constraint

∑
xs\r

τs(xr, xs\r) = τr(xr). We enforce the nonnegativity constraint τr(xr) ≥ 0 and
normalization constraint

∑
xr
τr(xr) = 1 explicitly. Then the Lagrangian associated with the opti-

mization problem (8) is

Lθ,ρ(τ ;λ) =
∑
r∈R

∑
xr

τr(xr)θr(xr)−
∑
r∈R

ρr
∑
xr

τr(xr) log τr(xr)

+
∑
r∈R

∑
t∈C(r)

∑
xt

λrt(xt)

τt(xt)−∑
xr\t

τr(xt, xr\t)

 .

(35)
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Setting the partial derivatives of Lθ,ρ with respect to the Lagrange multipliers equal to zero recovers
the consistency constraints. Taking the derivative of Lθ,ρ with respect to τr(xr) and setting it equal
to zero yields

log τr(xr) = C +
θr(xr)

ρr
+
∑

s∈P(r)

λsr(xr)

ρr
−
∑
t∈C(r)

λrt(xt)

ρr
,

where C is a constant that enforces the normalization condition
∑
xr
τr(xr) = 1. Defining the

messages by

logMsr(xr) =
λsr(xr)

ρs
,

we can write the equation above as

τr(xr) ∝ exp

(
θr(xr)

ρr

) ∏
s∈P(r)Msr(xr)

ρs/ρr∏
t∈C(r)Mrt(xt)

,

recovering equation (17).

For s ∈ R and r ∈ C(s), enforcing the consistency condition
∑
xs\r

τs(xr, xs\r) = τr(xr) gives us

exp

(
θr(xr)

ρr

)
Msr(xr)

ρs/ρr
∏
u∈P(r)\sMur(xr)

ρu/ρr∏
t∈C(r)Mrt(xt)

∝
∑
xs\r

exp

(
θs(xs)

ρs

) ∏
v∈P(s)Mvs(xs)

ρv/ρs

Msr(xr)
∏
w∈C(s)\rMsw(xw)

.

Rearranging the equation to collect Msr(xr) on the left hand side and taking the (1+ρs/ρr)-th root
on both sides gives us the update equation (16).

From the derivation above, it is clear that if {Msr(xr)} is a fixed point of the update equation (16),
then the collection τ of pseudomarginals defined by (17) is a stationary point of the Lagrangian (35),
since it sets the derivatives of Lθ,ρ equal to zero.

E Additional Simulation Results

In this section, we provide additional plots to better illustrate the observations that we make in
Section 5. For convenience, Figures 2(a)–2(d) and Figures 2(i)–2(l) show the same plots as in
Figure 1. Figures 2(e)–2(h) show the plots of (ρ, log10(∆)) for the Ising models in Figures 2(a)–
2(d), and similarly for Figures 2(m)–2(p). Here, ∆ is the final average change of the messages in
the sum product algorithm at termination; i.e., either when ∆ ≤ 10−10 or after 2500 iterations of
the algorithm with parallel updates.

For ρ ≤ ρcycle, in which the Bethe variational problem (8) is concave, there is a unique optimal value
for the Bethe approximation. The values of ∆ in this region are slightly higher than the convergence
threshold, which means sum product has not converged after 2500 iterations, but the final value of
∆ is sufficiently small that the messages have stabilized.

Shortly after ρ becomes larger than ρcycle, the curve of the Bethe values splits into multiple lines,
which indicates that the Bethe objective function has multiple local optima. These lines are evidently
distinct local optima since the values of ∆ are at the convergence threshold, which means sum
product converges and yields stationary points of the Lagrangian.

In the models with mixed potentials, we observe that for the values of ρ where the multiple local
optima begin to emerge, the values of ∆ are significantly higher and sum product does not converge.
This behavior is reflected in the presence of the point cloud in the plots of the Bethe values. As
noted in Section 5, we suspect that this behavior arises because distinct local optima are initially
close together, so messages oscillate between them. For larger values of ρ, however, the local optima
are sufficiently separated, so sum product converges and there are multiple lines in the graphs of the
Bethe values.

20



0 0.5 1 1.5 2

7

8

9

10

11

12

13

14

15

16

ρ

B
et
h
e
a
p
p
ro
x
im

a
ti
o
n

K5, mixed

 

 
ρtree
ρcy cl e

A(γ )

(a) K5, mixed, Bethe
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(b) K5, attractive, Bethe
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(c) T9, mixed, Bethe
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(d) T9, attractive, Bethe
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(h) T9, attractive, log(∆)
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(i) K15, mixed, Bethe
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(j) K15, attractive, Bethe
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(k) T25, mixed, Bethe
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(l) T25, attractive, Bethe
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Figure 2: Values of the reweighted Bethe approximation and the final log10(∆) as a function of ρ.
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