A Proofs of Theorems

In this section, we give proofs of theorems.

A.1 Decomposition of generalization error in PU classification

Assume that 7* := p(y = 1) is the true class prior of the positive class. Subsequently,
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This decomposition is the key idea of our error bounds.

A.2 Proof of Theorem 1

Note that £ maps to [0, 1], but if y = +1 it maps to [0, 1/2]. We apply McDiarmid’s inequality and

obtain
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Equating the right-hand side of the above inequality to 6/2 gives us that with probability at least
1-4/2,
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Apply McDiarmid’s inequality again and obtain that with probability at least 1 — 6/2,
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Combining these two concentration inequalities and Eq. (14) completes the proof. O

A.3 Proof of Theorem 2
Definition 3 ([15], Definitions 3.1 and 3.2). Let F be a class of functions. Let x1,...,x, be in-
dependent observations drawn according to p(x), and o1, . . . , oy, be independent uniformly {£1}-

valued random variables, i.e., Rademacher variables. The empirical Rademacher complexity of F
conditioned on x1, . .., x, is defined by

Ru(F) = Eoy, .o {sup Z”lf x; },

erFn

and the Rademacher complexity of F is defined by

Ru(F) = Ba o, {Ru(F)}.
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Denote by R,,(F) the Rademacher complexity w.r.t. p(x | y = +1), and R/, (F) the Rademacher

complexity w.r.t. p(z). By Theorem 5.5 of [15] and the condition that Cj, = sup,c gs \/k(x, x),
we get

15)

Next, we need the following lemmas.

Lemma 4. Fix n > 0, then, for any 0 < § < 1 with probability at least 1 — § over the repeated

sampling of { (x4, y1), ..., (&, y,,)} for evaluating the empirical error, every f € F satisfies
~ 1 & <2 In(1/6)
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Proof. Note that both ( and Zn map to [0, 1], {is lower bounded by Zn, and the Lipschitz constant of

Z,, is 1/n. Hence, this lemma is essentially same as the first half of Theorem 4.4 in [15]. O
Lemma 5. Fix n > 0, then, for any 0 < § < 1 with probability at least 1 — § over the repeated
sampling of {x1, ..., x,} for evaluating the empirical error, every f € F satisfies
In(1/0)
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Proof. If we fix y = +1, both £ and 57,7 map to [0,1/2], and the Lipschitz constant of Zn is 1/(2n).
Then, the proof of this lemma is analogous with the proof of the first half of Theorem 4.4 in [15],
while there are two difference points:

e When applying Theorem 3.1 of [15], note that both ( and Zn map to [0,1/2], and conse-
quently McDiarmid’s inequality results in a tighter bound;

e When applying Lemma 4.2 of [15], note that Zn is (1/(2n))-Lipschitz continuous, and thus
the contraction of Rademacher averages results in a tighter bound. [

By Lemma 5 and (15), with probability at least 1 — /2 over the repeated sampling of {x1, ..., x,},

Il . CoCy 1n(2/5)
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Similarly, by Lemma 4 and (15), with probability at least 1 — §/2 over the repeated sampling of
{(1"/1’ yi)v Tt (x;ﬂay;ﬂ)}’
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Combining these two concentration inequalities and Eq. (14) completes the proof. [
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