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In this file, we provide a detailed convergence analysis for the proposed DPL algorithm. We first
introduce some related definitions of the bi-convex optimization problem [1, 2], and present the
conclusions of the convergence of the alternative convex search (ACS) algorithm [3]. Then, we
analyze the bi-convex property of our objective function, and show the equivalence between the
ACS algorithm and our optimization algorithm.

1 Bi-convex problem and alternative convex search algorithm
We first introduce the basic definitions of bi-convex optimization problem, and then introduce the
ACS algorithm used to solve it. The convergence of the ACS algorithm has been analyzed in [2].
Definition 1. (Definition 1.1, [2]) The set B ⊆ X × Y is called a bi-convex set on X × Y , if
Bx := {y ∈ Y : (x, y) ∈ B} is convex for every x ∈ X and By := {x ∈ X : (x, y) ∈ B} is convex
for every y ∈ Y .
Definition 2. (Definition 1.2, [2]) A function f : B → < on a bi-convex set B ⊆ X × Y is called a
bi-convex function on B, if

fx(•) := f(x, •) : Bx → < is a convex function on Bx for every fixed x ∈ X ,

fy(•) := f(•, y) : By → < is a convex function on By for every fixed y ∈ Y .
Definition 3. (Definition 1.3, [2]) An optimization problem of the form

minx,y{f(x, y) : (x, y) ∈ B} (1)

is said to be a bi-convex optimization problem if the feasible set B is bi-convex on X × Y and the
objective function f is bi-convex on B.
Definition 4. (Definition 4.1, [2]) Let f : B → < be a given function and let (x∗, y∗) ∈ B. Then,
(x∗, y∗) is called a partial optimum of f on B, if

f(x∗, y∗) ≤ f(x, y∗), ∀x ∈ By∗ ; and f(x∗, y∗) ≤ f(x∗, y), ∀y ∈ Bx∗ . (2)

Please note that the condition of partial optimum is weak and the condition in Definition 4 is not
sufficient to guarantee a local optimum.

The ACS algorithm [3] is widely used to solve the bi-convex optimization problem. ACS is a special
case of the block relaxation methods [4], and the relationship between ACS and other algorithms
can be found in the survey paper [2]. For a general bi-convex optimization problem defined in (1),
the ACS algorithm chooses an arbitrary starting point z0 = (x0, y0) ∈ B and alternatively solves
the problem as follows.

Step 1: Fix yi and solve the following convex optimization problem:

minx{f(x, yi), x ∈ Byi
}. (3)

If there exists an optimal solution x∗ ∈ Byi
to (3), set xi+1 = x∗; otherwise, STOP.
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Step 2: Fix xi+1 and solve the following convex optimization problem:

miny{f(xi+1, y), y ∈ Bxi+1}. (4)

If there exists an optimal solution y∗ ∈ Bxi+1 to (4), set yi+1 = y∗; otherwise, STOP.

Step 3: If the stopping criterion is satisfied, we have the solution zi+1 =(xi+1, yi+1); otherwise, go
back to Step 1.

The convergence of ACS algorithm has been intensively studied in [2]. In this file, we only list two
theorems which are related to the convergence analysis of the proposed DPL method. For the proof
of the theorems, please refer to [2].

Theorem 1. (Theorem 4.5, [2]) Let B ⊆ <n × <m, let f : B → < be bounded from below, and
let the optimization problems (3) and (4) be solvable. Then the sequence {f(zi)}i∈N generated by
ACS converges monotonically.

Theorem 1 provides a convergence guarantee for the energy of the objective function {f(zi)}i∈N .
However, the convergence of {f(zi)}i∈N can not ensure the convergence of variable {zi}i∈N . To
further analyze the convergence of the variables, we need another theorem.

Theorem 2. (Theorem 4.9, [2]) Let X ⊆ <n and Y ⊆ <m be closed sets and let f : X × Y → <
be continuous. Let the optimization problems (3) and (4) be solvable.

1. If the sequence {zi}i∈N generated by ACS algorithm is contained in a compact set, then the
sequence has at least one accumulation point.

2. Suppose that for each accumulation point z∗ = (x∗, y∗) of the sequence {zi}i∈N the optimal so-
lution of (3) with y = y∗ or the optimal solution of (4) with x = x∗ is unique, then all accumulation
points are partial optima and have the same function value.

3. If for each accumulation point z∗ = (x∗, y∗) of the sequence {zi}i∈N the optimal solutions of
both (3) with y = y∗ and (4) with x = x∗ are unique, then

lim
i→∞

‖zi+1 − zi‖ = 0, (5)

and the accumulation points form a compact continuum C.

2 Convergence analysis of DPL
We analyze the property of the proposed DPL model and present some remarks on the convergence
of our optimization algorithm .

Remark 1. The sequence of {f(Di,Pi,Ai)}i∈N generated by our DPL algorithm converges mono-
tonically.

Proof. In the proposed DPL model, three variables D, P and A are optimized:

{P∗,A∗,D∗}=arg min
P,A,D

∑K

k=1
‖Xi−DkAk‖2F +τ ‖PkXk−Ak‖2F +λ‖PkX̄k ‖2F, s.t. ‖ di ‖22≤ 1. (6)

By fixing A, the variables D and P are separable, and they can be termed as a single variable.
Thus, the optimization problem in (6) is a bi-convex problem of {A, (D,P)}. In our DPL training
algorithm, we alternatively solve the following two convex optimization problems:

A∗ = arg min
A

∑K

k=1
‖ Xk − DkAk ‖2F +τ ‖ PkXk − Ak ‖2F, (7)

{D∗,P∗}=arg min
D,P

K∑
k=1

‖Xk−DkAk ‖2F +τ ‖PkXk−Ak ‖2F +λ‖PkX̄k ‖2F, s.t. ‖ di ‖22≤ 1. (8)

The continuous and differentiable functions (7) and (8) correspond to (3) and (4) in the ACS algo-
rithm, and the whole objective function (6) has a general lower bound 0. Thus, based on Theorem
1, the optimization procedure of our DPL algorithm are guaranteed to converge monotonically in
terms of energy.
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Remark 2. The sequence of {Di,Pi,Ai}i∈N generated by our DPL algorithm has at least one
accumulation point. All the accumulation points are partial optima of f and have the same function
value.

Proof. The variables X and D in (6) have normalized columns. One can easily find that the objective
function satisfies f(P,D,A) → ∞ if ‖P‖F → ∞ or ‖A‖F → ∞, which implies that the sequence
{Di,Pi,Ai}i∈N generated by the DPL algorithm is bounded in a finite dimensional space. Thus,
the compact set condition in Theorem 1 is satisfied and the sequence has at least one accumulation
point.

Furthermore, for any τ > 0, the A subproblem in (7) is a strict convex problem and has a unique
solution. The second condition in Theorem 2 is satisfied, which ensures that all the accumulation
points are partial optima and have the same function value.

Remark 3. If the problem in (8) has a unique solution, then the sequence {Di,Pi,Ai}i∈N generated
by our DPL algorithm satisfies:

lim
i→∞

‖Pi+1 − Pi‖+ ‖Di+1 − Di‖+ ‖Ai+1 − Ai‖ = 0. (9)

Proof. Based on Remark 2, the conditions 1 and 2 in Theorem 2 are satisfied in our DPL algorithm.
If we have the unique optimal solution of (D,P), we can have the conclusion (9) based on condition
3 in Theorem 2.

For the optimization problem in (8), the condition in Remark 3 becomes that the class-specific ma-
trices AkAT

k and XkXT
k + X̄kX̄k

T should be non-singular matrices, which is not satisfied in general
in our DPL model. In many applications, the dimension of feature space is much higher than the
sample number of each class, and XkXT

k + X̄kX̄k
T is a singular matrix. So we add a small regular-

ization term γI in the implementation to ensure that we can get the optimum in each P subproblem
(please refer to equation (10) in the main paper). As for the matrix AkAT

k , since in most cases the
atom number of class-specific dictionary is less than the sample number of each class, Ak is a row
full rank matrix, and thus AkAT

k is non-singular.

Please note that even the condition in Remark 3 is satisfied, the conclusion in Remark 3 can only
ensure that the change of the variables in adjacent iterations tends to be zero. There is no guarantee
that the sequence {Di,Pi,Ai}i∈N will converge to a local minimum. However, in most practical
applications, it is enough to terminate the iteration if the change of variables is less than a small
threshold.
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