
A Mean-based IDS

Here we introduce an approximate form of IDS that is suitable for some problems with bandit
feedback, satisfies our regret bounds for such problems, and can sometimes facilitate design of more
efficient numerical methods. We will derive this policy by investigating the structure of the mutual
information gt(a) = It (A

∗, Yt(a)), and considering a modified information measure.

Let pt,a = P (Yt(a) ∈ ·|Ft−1) denote the posterior predictive distribution at an action a, and let
pt,a (·|a∗) = P (Yt(a) ∈ ·|Ft−1, A

∗ = a∗) denote the posterior predictive distribution conditional
on the event that a∗ is the optimal action. Crucial to our results is the following fact, which is
a consequence of standard properties of mutual information5. It shows, the mutual information
between A∗ and Yt(a) is the expected KL divergence between the posterior predictive distribution
pt,a and the predictive distribution conditioned on the identity of the optimal action pt,a(·|a∗):

gt(a) = E
a∗∼αt

[DKL (pt,a(·|a∗) || pt,a)] . (7)

Our analysis in the full version of this paper [26] provides theoretical guarantees for an algorithm that
replaces the Kullback-Leibler divergence in (7) with a simpler measure of divergence: the squared
divergence “in mean”. Define

gME
t (a) = E

a∗∼αt

[

DME (pt,a(·|a∗) || pt,a)2
]

, and DME (P ||Q) := E
y∼P

[R(y)]− E
y∼Q

[R(y)] .

We introduce the policy πIDSME =
(

πIDSME

1 , πIDSME

2 , ...
)

where πIDSME

t ∈ argmin
π∈D(A)

∆t(π)
2

gME

t (π)
.

B Formal statement of bounds on the minimal information ratio

In Section 4, we listed several bounds on the minimal information ratio, but only provided a formal
statement of the result on linear bandit problems. Here we provide a more complete description of
three other bounds. The proofs are given in Appendix D.

B.1 Worst case bound

The next proposition shows that Ψ∗t is never larger than |A|/2. That is, there is always an action
sampling distribution π such that ∆t(π)

2 ≤ (|A|/2)gt(π). In the next section, we will will show
that under different information structures the ratio between regret and information gain can be much
smaller, which leads to stronger theoretical guarantees.

Proposition 4. For any t ∈ N, Ψ∗t ≤≤ |A|/2 almost surely.

Combining Proposition 4 with Proposition 2 shows that E
[

Regret
(

πIDS, T
)]

≤
√

1
2 |A|H(α1)T .

B.2 Full information

Our focus in this paper is on problems with partial feedback. For such problems, what the decision
maker observes depends on the actions selected, which leads to a tension between exploration and
exploitation. Problems with full information arise as an extreme point of our formulation where the
outcome Yt(a) is perfectly revealed by observing Yt(ã) for some ã 6= a; what is learned does not
depend on the selected action. The next proposition shows that under full information, the minimal
information ratio is bounded by 1/2.

Proposition 5. Suppose for each t ∈ N there is a random variable Zt : Ω → Z such that for each
a ∈ A, Yt(a) = (a, Zt). Then for all t ∈ N, Ψ∗t ≤ 1

2 almost surely.

Combining this result with Proposition 2 shows E
[

Regret(T, πIDS)
]

≤
√

1
2H(α1)T . Further, a

worst–case bound on the entropy of α1 shows that E
[

Regret(T, πIDS)
]

≤
√

1
2 log(|A|)T . Dani

5For details on the derivation of this fact when Yt(a) is a general random variable, see the appendix of [25].
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et al. [12] show this bound is order optimal, in the sense that for any time horizon T and num-
ber of actions |A| there exists a prior distribution over p∗ under which infπ E [Regret(T, π)] ≥
c0
√

log(|A|)T where c0 is a numerical constant that does not depend on |A| or T . The bound here
improves upon this worst case bound since H(α1) can be much smaller than log(|A|)when the prior
distribution is informative.

B.3 Combinatorial action sets and “semi–bandit” feedback

To motivate the information structure studied here, consider a simple resource allocation problem.
There are d possible projects, but the decision–maker can allocate resources to at most m ≤ d of
them at a time. At time t, project i ∈ {1, .., d} yields a random reward θt,i, and the reward from

selecting a subset of projects a ∈ A ⊂ {a′ ⊂ {0, 1, ..., d} : |a′| ≤ m} is m−1
∑

i∈A θt,i. In the
linear bandit formulation of this problem, upon choosing a subset of projects a the agent would only
observe the overall reward m−1

∑

i∈a θt,i. It may be natural instead to assume that the outcome

of each selected project (θt,i : i ∈ a) is observed. This type of observation structure is sometimes
called “semi–bandit” feedback [3].

A naive application of Proposition 3 to address this problem would show Ψ∗t ≤ d/2. The next
proposition shows that since the entire parameter vector (θt,i : i ∈ a) is observed upon selecting
action a, we can provide an improved bound on the information ratio.

Proposition 6. Suppose A ⊂ {a ⊂ {0, 1, ..., d} : |a| ≤ m}, and that there are random variables
(θt,i : t ∈ N, i ∈ {1, ..., d}) such that

Yt(a) = (θt,i : i ∈ a) and R (Yt(a)) =
1

m

∑

i∈a

θt,i.

Assume that the random variables {θt,i : i ∈ {1, ..., d}} are independent conditioned on Ft−1 and

θt,i ∈ [−1
2 , 1

2 ] almost surely for each (t, i). Then for all t ∈ N, Ψ∗t ≤ d
2m2 almost surely.

In this problem, there are as many as
(

d
m

)

actions, but because information-directed sampling ex-
ploits the structure relating actions to one another, its regret is only polynomial in m and d. In par-

ticular, combining Proposition 6 with Proposition 2 shows E
[

Regret(T, πIDS)
]

≤ 1
m

√

d
2H(α1)T .

Since H(α1) ≤ log |A| = O(m log( d
m
)) this also yields a bound of order

√

d
m
log

(

d
m

)

T . As

shown by Audibert et al. [3], the lower bound6 for this problem is of order

√

d
m
T , so our bound is

order optimal up to a

√

log( d
m
) factor.

C Algorithms used in numerical experiments

C.1 Optimization

Algorithm 1 uses Proposition 1 to provide a procedure for choosing an action. For a problem
with |A| = K actions, the algorithm requires inputs ∆ ∈ R

K
+ and g ∈ R

K
+ specifying re-

spectively the expected regret and information gain of each action. The distribution that mini-
mizes (5) is computed by looping over all pairs of actions (i, j) ∈ A × A and finding the opti-
mal probability of playing i instead of j. Finding this probability is particularly efficient because
the objective function is convex. Golden section search, for example, provides a very efficient

6In their formulation, the reward from selecting action a is
∑

i∈a
θt,i, which is m times larger than in our

formulation. The lower bound stated in their paper is therefore of order
√

mdT . They don’t provide a complete
proof of their result, but note that it follows from standard lower bounds in the bandit literature. In the proof
of Theorem 5 in that paper, they construct an example in which the decision maker plays m bandit games in
parallel, each with d/m actions. Using that example, and the standard bandit lower bound (see Theorem 3.5 of

Bubeck and Cesa-Bianchi [7]), the agent’s regret from each component must be at least

√

d

m
T , and hence her

overall expected regret is lower bounded by a term of order m
√

d

m
T =

√

mdT .
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Algorithm 1 chooseAction(∆ ∈ R
K
+ , g ∈ R

K
+ )

1: Initialize opt←∞
2: Calculate Optimal Sampling Distribution
3: for j ∈ {1, ..,K − 1} do
4: for i ∈ {i+ 1, ..,K} do

5: q ← argminq′∈[0,1] [q
′∆i + (1− q)∆j ]

2
/ [q′gi + (1− q′)gj ]

6: objectiveValue← [q∆i + (1− q)∆j ]
2
/ [qgi + (1− q)gj ]

7: if objectiveValue < opt then
8: (i∗, j∗, q∗)← (i, j, q)
9: opt← objectiveValue

10: end if
11: end for
12: end for
13:

14: Select Action:
15: Sample U ∼ Uniform ([0, 1])
16: if U < q∗ then
17: Play i∗

18: else
19: Play j∗

20: end if

method for optimizing a convex function over [0, 1]. In addition, in this case, any solution to
d
dq′

[q′∆i + (1− q)∆j ]
2
/ [q′gi + (1− q′)gj ] = 0 is given by the solution to a quadratic equation,

and therefore can be expressed in closed form.

C.2 Beta–Bernoulli

Here we will present an implementation of information-directed sampling for the Beta–Bernoulli
experiment described in Section 6. Consider a multi-armed bandit problem with binary rewards and
K independent arms denoted by A = {a1, ..., aK}. The mean reward Xi of each arm ai is drawn
from a Beta prior distribution, and the mean of separate arms are modeled independently.

Because the Beta distribution is a conjugate prior for the Bernoulli distribution, the posterior distri-
bution of each Xi is a Beta distribution. The parameters (β1

i , β
2
i ) of this distribution can be updated

easily. Let fi(x) and Fi(x) denote respectively the PDF and CDF of the posterior distribution Xi.
The posterior probability that A∗ = ai can be written as

P





⋂

j 6=i

{Xj ≤ Xi}



 =

1
∫

0

fi(x)P





⋂

j 6=i

{Xj ≤ x}
∣

∣

∣

∣

Xi = x



 dx =

1
∫

0

fi(x)





∏

j 6=i

Fj(x)



 dx

=

1
∫

0

[

fi(x)

Fi(x)

]

F (x)dx

where F : x 7→∏K
i=1 Fi(x).

Algorithm 2 uses this expression to compute the posterior probability αi that an action ai is optimal.
To compute the information gain gj of action j, we use Fact ??. Let Mi,j := E [Xj |Xk ≤ Xi ∀k]
denote the expected value of Xj given that action i is optimal. Step 18 computes the information gain
gj of action aj as the expected Kullback Leibler divergence between a Bernoulli distribution with

mean Mi,j and the posterior distribution at action j, which is Bernoulli with parameter β1
j /(β

1
j+β2

j ).
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Algorithm 2 Beta-Bernoulli IDS

1: Initialize: Input posterior parameters:
(β1 ∈ R

K , β2 ∈ RK)
2: fi(x) := Beta.pdf(x|β1

i , β
2
i ) for i ∈ {1, ..,K}

3: Fi(x) := Beta.cdf(x|β1
i , β

2
i ) for i ∈ {1, ..,K}

4: F (x) :=
∏K

i=1 Fi(x)

5: Qi(x) :=
∫ x

0
yfi(y)dy for i ∈ {1, ..,K}

6: KL(p1||p2) := p1 log
(

p1

p2

)

+ (1− p1) log
(

1−p1

1−p2

)

7:

8: Calculate optimal action probabilities:
9: for i ∈ {1, ..,K} do

10: αi ←
∫ 1

0

[

fi(x)
Fi(x)

]

F (x)dx

11: end for
12:

13: Calculate Information Gain
14: for (i, j) ∈ {1, ..,K} × {1, ..,K} do
15: if (i == j) then

16: Mi,i ← 1
αi

∫ 1

0

[

xfi(x)
Fi(x)

]

F (x)dx

17: else

18: Mi,j ← 1
αi

∫ 1

0

[

fi(x)F (x)
Fi(x)Fj(x)

]

Qj(x)dx

19: end if
20: end for
21:

22: Fill in problem data

23: ρ∗ ←
∑K

i=1 αiMi,i

24: for i ∈ {1, ...,K} do

25: ∆i ← ρ∗ − β1

i

β1

i
+β2

i

for i ∈ {1, ..,K}
26: gi ←

∑K
j=1 αjKL

(

Mj,i

∣

∣

∣

∣

β1

i

β1

i
+β2

i

)

27: end for
28:

29: chooseAction(∆, g)

Finally, the algorithm computes the expected reward of the optimal action ρ∗ = E [maxj Xj ] and
uses that to compute the expected regret of action j:

∆i = E

[

max
j

Xj −Xi

]

= ρ∗ − β1
i

(β1
i + β2

i )
.

Practical implementations of this algorithm can approximate each definite integral by evaluating the
integrand at a discrete grid of points in {x1, ..., xn} ⊂ [0, 1]. The values of fi(x), Fi(x), Qi(x)
and F (x) can be computed and stored for each value of x in this grid. In each period, the posterior
distribution of only a single action is updated, and hence these values need to be updated for only
one action each period.

Steps 14-21 are the most computationally intensive part of the algorithm. The computational cost of
these steps scales as K2n where K is the number of actions and n is the number of points used in
the discretization of [0,1].

C.3 Linear mean-based information-directed sampling

This section provides an implementation of mean-based information-directed sampling for the prob-
lem of linear optimization under bandit feedback. Consider a problem where the action setA is a fi-
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nite subset of Rd, and whenever an action a is sampled, only the resulting reward Yt(a) = R(Yt(a))
is observed. There is an unknown parameter θ∗ ∈ R

d such that for each a ∈ A the expected reward
of a is aT θ∗.

In Subsection 6 we introduced the term

gME
t (a) = E

a∗∼αt

[

DME (pt,a(·|a∗) || pt,a)2
]

(8)

where

DME (pt,a(·|a∗) || pt,a)2 :=

(

E
y∼pt,a(·|a∗)

[R(y)]− E
y∼pt,a

[R(y)]

)2

= (E [R(Yt(a))|Ft−1, A
∗ = a∗]− E [R(Yt(a))|Ft−1])

2
.

We will show that for this problem, gME
t (a) takes on a particularly simple form, and will present

an algorithm that leverages this. Write µt = E [θ∗|Ft−1] and write µ
(a∗)
t = E [θ∗|Ft−1, A

∗ = a∗] .
Define

Covt(X) = E

[

(X − E [X|Ft−1]) (X − E [X|Ft−1])
T |Ft−1

]

to be the posterior covariance of a random variable X : Ω→ R
d. Then,

DME (pt,a(·|a∗) || pt,a)2 = aT
(

[µ
(a∗)
t − µt][µ

(a∗)
t − µt]

T
)

a

and therefore
gME
t (a) = aTLta

where

Lt = E
a∗∼αt

[µ
(a∗)
t − µt][µ

(a∗)
t − µt]

T = Covt

(

µ
(A∗)
t

)

. (9)

is exactly the posterior covariance matrix of µ
(A∗)
t .

Algorithm 3 presents a simulation based procedure that computes gME
t (a) and ∆t(a) and selects an

action according to the distribution πIDSME

t . This algorithm requires the ability to generate a large
number of samples, denoted by M ∈ N in the algorithm, from the posterior distribution of θ∗, which
is denoted by P (·) in the algorithm. The actions set A = {a1, ..., aK} is represented by a matrix
A ∈ R

K×d where the ith row of A is the action feature vector ai ∈ R
d. The algorithm directly

approximates the matrix Lt that appears in equation (9). It does this by sampling parameters from
the posterior distribution of θ∗, and, for each action a, tracking the number of times a was optimal
and the sample average of parameters under which a was optimal. From these samples, it can also
compute an estimated vector R ∈ R

K of the mean reward from each action and an estimate p∗ ∈ R

of the expected reward from the optimal action A∗.

D Proofs

D.1 Proof of Proposition 1

Proof. First, we show the function Ψ : π 7→
(

πT∆
)2

/πT g is convex on
{

π ∈ R
K |πT g > 0

}

. As

shown in Chapter 3 of Boyd and Vandenberghe [5], f : (x, y) 7→ x2/y is convex over {(x, y) ∈
R

2 : y > 0}. The function h : π 7→ (πT∆, πT g) ∈ R
2 is affine. Since convexity is preserved under

composition with an affine function, the function Ψ = g ◦ h is convex.

We now consider the second claim. Let Ψ∗ ∈ R denote the optimal objective value for the mini-
mization problem (6). Define the function

ρ(π) =
(

πT∆
)2 −Ψ∗

(

πT g
)

and consider minimizing ρ(π) over all probability vectors π ∈ {v ∈ R
K : vT e = 1, v ≥ 0}. Since

Ψ∗ is the minimal value of (6), for any feasible π, ρ(π) ≥ 0, but for π∗ minimizing (6), ρ(π∗) = 0.
Therefore the set of minimizers of ρ(·) is the same as the set of minimizers of (6). We will now
show that there is a minimizer of ρ(π) with at most two nonzero components.
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Algorithm 3 Linear Information-Directed Sampling

1: Initialize: Input A ∈ R
K×d, M ∈ N and posterior distribution P (θ).

2: for i ∈ {1, ..,K} do

3: s(i) ← 0 ∈ R
d

4: ni ← 0 ∈ R

5: end for
6:

7: Perform Monte Carlo:
8: for m ∈ {1, ..,M} do
9: Sample θ ∼ P (·)

10: I ← argmaxi{(Aθ)i}
11: nI += 1
12: s(I) += θ
13: end for
14:

15: Calculate Problem Data From Monte Carlo Totals
16: µ← 1

M

∑K
i=1 s

(i)

17: R← Aµ ∈ R
K

18: for i ∈ {1, ..,K} do

19: µ(i) ← s(i)/ni

20: αi ← ni/M
21: end for

22: L←∑K
i=1 αi

(

µ(i) − µ
) (

µ(i) − µ
)T ∈ R

d×d

23: ρ∗ ←
∑K

i=1 αi[a
T
i µ

(i)] ∈ R

24: for i ∈ {1, ..,K} do
25: gi ← aTi Lai ∈ R

26: ∆i ← ρ∗ − aTi µ ∈ R

27: end for
28:

29: chooseAction(∆, g)
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Fix a minimizer π∗ of ρ(·). Differentiating of ρ(π) with respect to π at π = π∗ yields

∂

∂π
ρ(π∗) = 2

(

∆Tπ∗
)

∆−Ψ∗g

= 2L∗∆−Ψ∗g

where L∗ = ∆Tπ∗ is the expected instantaneous regret of the sampling distribution π∗. Let d∗ =
mini

∂
∂πi

ρ(π∗) denote the smallest partial derivative of ρ at π∗. It must be the case that any i with

π∗i > 0 satisfies d∗ = ∂
∂πi

ρ(π∗), as otherwise transferring probability from action ai could lead to

strictly lower cost. This shows that for each i with π∗i > 0,

gi =
−d∗
Ψ∗

+
2L∗

Ψ∗
∆i. (10)

Let i1, .., im be the indices such that π∗ik > 0 and gi1 ≥ gi2 ≥ ... ≥ gim . Then we can choose a

β ∈ [0, 1] so that
m
∑

k=1

π∗ikgik = βgi1 + (1− β)gim .

By equation (10), this implies as well that
∑m

k=1 π
∗
ik
∆ik = β∆i1 + (1− β)∆im , and hence that the

sampling distribution that plays ai1 with probability β and aim otherwise has the same instantaneous
expected regret and the same expected information gain as π∗. That is, starting with a general
sampling distribution π∗ that maximizes ρ(π), we showed there is a sampling distribution with
support over at most two actions attains the same objective value and hence that also maximizes
ρ(π).

D.2 Proof of Proposition 2

The following fact expresses the mutual information between A∗ and Yt(a) as the as the expected
reduction in entropy due to observing Yt(a).

Fact 1. (Lemma 5.5.6 of Gray [16])

It (A
∗;Yt(a)) = E [H(αt)−H(αt+1)|At = a,Ft−1]

We now prove Proposition 2,

Proof. By definition, if Ψt(πt) ≤ λ, then ∆t (πt) ≤
√
λ
√

gt (πt). Therefore,

E [Regret(T, π)] = E

T
∑

t=1

∆t(πt) ≤
√
λE

T
∑

t=1

√

gt (πt)
(a)

≤
√
λT

√

√

√

√

E

T
∑

t=1

gt (πt)
(b)

≤
√

λH(α1)T .

Inequality (a) follows from Hölder’s inequality. To show inequality (b), note that if actions are
selected according to a policy π = (π1, π2, ...), then

E

T
∑

t=1

gt (πt) = E

T
∑

t=1

E [H(αt −H(αt+1)|Ft−1] = E

T
∑

t=1

(H(αt −H(αt+1)) = H(α1)−H(αT+1) ≤ H(α1),

where the first equality relies on Fact 1 and the tower property of conditional expectation and the
final inequality follows from the non-negativity of entropy.

D.3 Proof of bounds on the information ratio

Here we leverage the tools of a very recent analysis of Thompson sampling [25] to provide bounds
on the information ratio of IDS. SinceΨ∗t = minπ Ψt(π) ≤ Ψt(π

TS
t ), the bounds on (πTS

t ) provided
by Russo and Van Roy [25] immediately yield bounds on the minimal information ratio.
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D.3.1 Proof of Proposition 4

Proof. Proposition 3 of Russo and Van Roy [25], shows

Ψt(π
TS
t ) ≤ |A|

2

almost surely for any t ∈ N. Note that the term Γt in that paper is exactly Ψt(π
TS
t )2. The result then

follows since

Ψ∗t
Def
= min

π∈D(A)
Ψt(π) ≤ Ψt(π

TS
t ).

D.3.2 Proof of Proposition 5

Proof. See Proposition 4 in [25], which shows Ψt(π
TS
t ) ≤ 1/2.

D.3.3 Proof of Proposition 3

Proof. See Proposition 5 of Russo and Van Roy [25], which shows Ψt(π
TS
t ) ≤ d/2.

D.3.4 Proof of Proposition 6

Proposition 6 of Russo and Van Roy [25], shows

Ψt(π
TS
t ) ≤ d

2m2

almost surely for any t ∈ N. Note that the term Γt in that paper is exactly Ψt(π
TS
t )2. The result then

follows since

Ψ∗t
Def
= min

π∈D(A)
Ψt(π) ≤ Ψt(π

TS
t ).
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