
Appendix

A Omitted Proofs from Section 3

A.1 Proof of Lemma 3.2

Observe that in iteration t, two consecutive intervals I
t�1,i

and I
t�1,i+1

correspond to two unions
of consecutive intervals I

a

[· · ·[I
b

and I
b+1

[· · ·[I
c

respectively from the original partition P
0

.
Moreover, since each interval in P

t�1

\F
t�1

, t > 1, is formed by merging two consecutive intervals
from P

t�2

\ F
t�2

, it must be the case that b� a+ 1, c� b+ 1 2

t�1 < 2

s�1 1/(2"0). Hence,
by Lemma 3.1, we have

|p(I
t�1,i

)� bp
m

(I
t�1,i

))|
p
"0 · 2s�1 · "0

10k
 "0

10

p
2k

and similarly,

|p(I
t�1,i+1

)� bp
m

(I
t�1,i+1

))| "0

10

p
2k

.

To simplify notation, let I = I
t�1,i

and J = I
t�1,i+1

. By definition of ↵,

↵
p

(I, J) =

����
p(I)

|I| � p(I) + p(J)

|I|+ |J |

���� |I|+
����
p(J)

|J | � p(I) + p(J)

|I|+ |J |

���� |J |

=

2

|I|+ |J |
��p(I)|J |� p(J)|I|

��. (1)

A straightforward calculation now gives that

|↵
p

(I, J)� ↵bpm(I, J)| =

2

|I|+ |J |

���
��p(I)|J |� p(J)|I|

���
��bp

m

(I)|J |� bp
m

(J)|I|
��
���

 2

|I|+ |J |

⇣��p(I)� bp
m

(I)
��|J |+

��p(J)� bp
m

(J)
��|I|

⌘

 2"0/(5k).

A.2 Proof of Lemma 3.3

We start by recording a basic fact that will be useful in the proof of the lemma. Let p be a distribution
over an interval I and let q be any sub-distribution over I . Perhaps contrary to initial intuition, the
optimal scaling c · q, c > 0, of q to approximate p (with respect to the L

1

-distance) is not necessarily
obtained by scaling q so that c · q is a distribution over I . However, a simple argument (see e.g.,
Appendix A.1 of [CDSS14]) shows that scaling so that c ·q is a distribution cannot result in L

1

-error
more than twice that of the optimal scaling:
Claim A.1. Let p, g : I ! R�0 be probability distributions over I (so

R
I

p(x)dx =

R
I

g(x)dx = 1).
Then, writing kfk

1

to denote
R
I

|f(x)|dx, for every a > 0 we have that kp� gk
1

 2kp� agk
1

.

We now proceed with the proof of Lemma 3.3.

We first show that a total of at most O(k log(1/"0)) intervals are ever added into F
t

across all
executions of Step 4(b).

Suppose that intervals I
t�1,i

, I
t�1,i+1

are added into F
t

in some execution of Step 4(b). We consider
the following two cases:

Case 1: I
t�1,i

[I
t�1,i+1

contains at least one breakpoint of Q. Since Q has at most k breakpoints,
this can happen at most k times in total.

Case 2: I
t�1,i

[I
t�1,i+1

does not contain any breakpoint of Q. Then I
t�1,i

[I
t�1,i+1

is a subset of
an interval in Q. Recalling that intervals I

t�1,i

, I
t�1,i+1

were added into F
t

in an execution
of Step 4(b), we have that ↵bpm(I

t�1,i

, I
t�1,i+1

) > "0/(2k), and hence by Lemma 3.2, we
have that ↵

p

(I
t�1,i

, I
t�1,i+1

) � 1

5

· "

0

k

. Claim A.1 now implies that the contribution to the

10

L
1

distance between p and q from I
t�1,i

[I
t�1,i+1

, i.e.,
R
It�1,i[It�1,i+1

|p(x) � q(x)|dx,

is at least 1

10

"

0

k

.
Since kp� qk

1

= opt

k

(p), there can be at most

k +O

✓
opt

k

(p) · k
"0

◆
= O

✓
k · log 1

"

◆

intervals ever added into F
t

across all executions of Step 4(b) (note that for the last equality
we have used the assumption that opt

k

(p) ").

Next, we argue that each F
t

satisfies |F
t

| O(k log2(1/")). We have bounded the number of
intervals added into F

t

in Step 4(b) by O(k log(1/"0)), so it remains to bound the number of intervals
added in Step 4(c)(Case 3) and 4(c)(Case 4). It is clear that a total of at most O(log(1/"0)) intervals
are ever added in 4(c)(Case 4). Inspection of Step 4(c)(Case 3) shows that for a given value of t,
the number of intervals that this step adds to F

t

is at most the number of “blocks” of consecutive
F

t

-intervals. Since each interval added in Step 4(c)(Case 3) extends some blocks of consecutive
F

t

-intervals but does not create a new one (and hence does not increase their number), across the
s = log(1/"0) stages, the total number of intervals that can be added in executions of Step 4(c)(Case
3) is at most O(k log2(1/"0)). It follows that we have |F

s

| = O(k log2(1/")) as claimed.

To bound |P
t

\ F
t

|, we observe that by inspection of the algorithm, for each t we have |P
t

\ F
t

|
1

2

|P
t�1

\ F
t�1

|. Since |P
0

| = ⇥(k/"0), it follows that |P
s

\ F
s

| = O(k), and the lemma is proved.

A.3 Proof of Lemma 3.4

Fix an interval I in P . If there does not exist an interval J in Q such that I ✓ J , then I must contain
a breakpoint of Q, and hence since P is "0-good for (p, q), we have p(I) "0/(2k). This implies
that the contribution to k(p)P � qk

1

that comes from I , namely
R
I

|(p)P(x)� q(x)|dx, satisfies
Z

I

|(p)P(x)� q(x)|dx
Z

I

|(p)P(x)� p(x)|dx+

Z

I

|p(x)� q(x)|dx

Z

I

|p(x)� q(x)|dx+ 2p(I)

Z

I

|p(x)� q(x)|dx+

"0

k
.

The other possibility is that there exists an interval J in Q such that I ✓ J . In this case, we have
that Z

I

|(p)P(x)� q(x)|dx
Z

I

|p(x)� q(x)|dx.

Since there are at most k intervals in P containing breakpoints of Q, summing the above inequalities
over all intervals I in P , we get that

k(p)P � qk
1

 kp� qk
1

+ "0 = opt

k

(p) + "0,

and hence
k(p)P � pk

1

 k(p)P � qk
1

+ kp� qk
1

 2opt

k

(p) + "0.

A.4 Proof of Lemma 3.5

We construct the claimed R based on P
s

,P
s�1

, . . . ,P
0

as follows:

(i) If I is an interval in P
s

not containing a breakpoint of Q, then I is also in R.
(ii) If I is an interval in P

s

that does contain a breakpoint of Q, then we further partition I
into a set of intervals S by calling procedure Refine-partition(s, I). This recur-
sive procedure exploits the local structure of the earlier, finer partitions P

s�1

,P
s�2

, . . . as
described below.

11

Procedure Refine-partition:
Input: Integer t, Interval J
Output: S, a partition of interval J

1. If t = 0, then output {J}.
2. If J is an interval in P

t

, then
(a) If J contains a breakpoint of Q, then output Refine-partition(t � 1,

J).
(b) Otherwise output {J}.

3. Otherwise, J is a union of two intervals in P
t

. Let J
1

and J
2

denote the two
intervals in P

t

such that J
1

[J
2

= J . Output Refine-partition(t, J
1

) [
Refine-partition(t, J

2

).

We claim that |R| (the number of intervals in R) is at most |P
s

| + O(k · log 1

"

). To see this,
note that each interval I 2 P

s

not containing a breakpoint of Q (corresponding to (i) above)
translates directly to a single interval of R. For each interval of type (ii) in P

s

, inspection of
the Refine-Partition procedure shows that that these intervals are partitioned into at most
O(k log(1/")) intervals in R.

In the rest of the proof, we show that for any interval J in P
s

containing at least one breakpoint of
Q, the contribution to the L

1

distance between (p)Ps and (p)R coming from interval J is at most
|b

J

| · "

0
log

1
"

k

, where b
J

is the set of breakpoints of Q in J .

Consider a fixed breakpoint v of Q. Let I
t,v

denote the interval containing v in the partition P
t

.
If I

t,v

merges with another interval in P
t

in Case 1 of Step 4(c), we denote that other interval as
I 0
t,v

. Since I
t,v

merges with I 0
t,v

in Case 1 of Step 4(c), these intervals are both not in F
t

and hence
were both not in F

t�1

in Step 4(b). Consequently when t > 1 it must be the case that condition
(ii) of Step 4(b) does not hold for these intervals, i.e. ↵bpm(I

t,v

, I 0
t,v

) "0/(2k). It follows that
by Lemma 3.2, we have that ↵

p

(I
t,v

, I 0
t,v

) is at most 4"

0

5k

. When t = 1, we have a similar bound
↵
p

(I
t,v

, I 0
t,v

) "0/k, by using (1) and the fact that p(I
t,v

), p(I 0
t,v

) "0/2k when I
t,v

, I 0
t,v

2 P
0

.

On the other hand, inspection of the procedure Refine-Partition gives that if two intervals
in P

t

are unions of some intervals in Refine-partition(s, I), and their union is an interval in
P
t+1

, then there exists v which is a breakpoint of Q such that the two intervals are I
t,v

and I 0
t,v

.

Thus, the contribution to the L
1

distance between (p)Ps and (p)R coming from interval J is at most
"

0

k

· log 1

"

0 · |bJ |. Summing over all intervals J that contain at least one breakpoint and recalling that
the total number of breakpoints is at most k, we get that the overall L

1

distance between (p)Ps and
(p)R is at most ".

A.5 Proof of Theorem 6

Proof. The algorithm A0 works in two stages, which we describe and analyze below.

In the first stage, A0 iterates over dlog(20/")e “guesses” for the value of optC(p), where the i-th
guess g

i

is "

10

· 2i�1 (so g
1

=

"

10

and gdlog(20/")e � 1). For each value of g
i

, it performs r = O(1)

runs of Algorithm A (using a fresh sample from p for each run) using parameter g
i

as the “"”
parameter for each run; let h

1,i

, . . . , h
r,i

be the r hypotheses thus obtained for the i-th guess. It is
clear that this stage uses O(m("/10) +m(2"/10) + · · ·) = O(m(")) draws from p, and similarly
that it runs in time O(t(")). If optC(p) ", then (for a suitable choice of r = O(1)) we get that
with probability at least 39/40, some hypothesis h

1,`

satisfies kp � h
1,`

k ↵ · optC(p) + "/10.
Otherwise, there must be some i 2 {2, . . . , dlog(20/")e} such that g

i

/2 < optC(p) g
i

; in this
case, for a suitable choice of r = O(1) we get that with probability at least 39/40, there is some
hypothesis h

i,`

that satisfies kp � h
i,`

k
1

 ↵ · optC(p) + g
i

 (↵ + 2) · optC(p). Thus in either
event, with probability at least 39/40 some h

i,`

satisfies kp� h
i,`

k
1

 (↵+ 2) · optC(p) + "/10.

In the second stage, A0 runs a hypothesis selection procedure to choose one of the candidate
hypotheses h

i,`

. A number of such procedures are known (see e.g. Section 6.6 of [DL01] or

12

[DDS12, DK14, AJOS14]); all of them work by running some sort of “tournament” over the hy-
potheses, and all have the guarantee that with high probability they will output a hypothesis from
the pool of candidates which has L

1

error (with respect to the target distribution p) not much worse
than that of the best candidate in the pool. We use the classic Scheffé algorithm (see [DL01]) as
described and analyzed in [AJOS14] (see Algorithm SCHEFFE⇤ in Appendix B of that paper).
Adapted to our context, this algorithm has the following performance guarantee:

Proposition A.2. Let p be a target distribution over [0, 1) and let D
⌧

= {p
j

}N
j=1

be a collection of
N distributions over [0, 1) with the property that there exists i 2 [N] such that kp�p

i

k
1

 ⌧ . There
is a procedure SCHEFFE which is given as input a parameter " > 0 and a confidence parameter
� > 0, and is provided with access to

(i) i.i.d. draws from p and from p
i

for all i 2 [N], and

(ii) an evaluation oracle eval
pi for each 2 [N]. This is a procedure which, on input r 2 [0, 1),

outputs the value p
i

(r) of the pdf of p
i

at the point r.

The procedure SCHEFFE has the following behavior: It makes s =

O
�
(1/"2) · (logN + log(1/�))

�
draws from p and from each p

i

, i 2 [N], and O(s) calls to
each oracle eval

pi , i 2 [N], and performs O(sN2

) arithmetic operations. With probability at least
1� � it outputs an index i? 2 [N] that satisfies kp� p

i

?k
1

 10max{⌧, "}.

The algorithm A0 runs the procedure SCHEFFE using the N = O(log(1/")) hypotheses h
i,`

, with
its “"” parameter set to 1

10

·(the input parameter " that is given to A0
) and its “�” parameter set to

1/40. By Proposition A.2, with overall probability at least 19/20 the output is a hypothesis h
i,`

satisfying kp � h
i,`

k
1

 10(↵ + 2)optC(p) + ". The overall running time and sample complexity
are easily seen to be as claimed, and the theorem is proved.

B Proof of Theorem 7

We write U
2N

to denote the uniform distribution over [2N]. The following proposition shows that
U
2N

has L
1

distance from p
S1,S2,t almost twice that of the optimal 2-flat distribution:

Proposition B.1. Fix any 0 < t < 1/2.

1. For any distribution p
S1,S2,t in the support of D

t

, we have

kU
2N

� p
S1,S2,tk1 = t.

2. For any distribution p
S1,S2,t in the support of D

t

, we have

opt

2

(p
S1,S2,t)

t

2

✓
1 +

t

1� t

◆
.

Proof. Part (1.) is a simple calculation. For part (2.), consider the 2-flat distribution

q(i) =

8
<

:

1

2N

⇣
1 +

t

2(1�t)

⌘
if i 2 [N]

1

2N

⇣
1� t

2(1�t)

⌘
if i 2 [N + 1, . . . , 2N]

It is straightforward to verify that kp
S1,S2,t � qk

1

=

t

2

⇣
1 +

t

1�t

⌘
as claimed.

For a distribution p we write Ap to indicate that algorithm A is given access to i.i.d. points drawn
from p.

The following simple proposition states that no algorithm can successfully distinguish between a
distribution p

S1,S2,t ⇠ D
t

and U
2N

using fewer than (essentially)
p
N draws:

13

Proposition B.2. There is an absolute constant c > 0 such that the following holds: Fix any
0 < t < 1/2, and let B be any “distinguishing algorithm” which receives c

p
N i.i.d. draws from a

distribution over [2N] and outputs either “uniform” or “non-uniform”. Then
��Pr[BU[2N] outputs “uniform”]�Pr

pS1,S2,t⇠Dt [B
pS1,S2,t outputs “uniform”]

�� 0.01. (2)

The proof is an easy consequence of the fact that in both cases (the distribution is U
[2N]

, or the
distribution is p

S1,S2,t ⇠ D
t

), with probability at least 0.99 the c
p
N draws received by A are a

uniform random set of c
p
N distinct elements from [2N] (this can be shown straighforwardly using

a birthday paradox type argument).

Now we use Proposition B.2 to show that any (2 � �)-semi-agnostic learning algorithm even for
2-flat distributions must use a sample of size ⌦(

p
N), and thereby prove Theorem 7:

Theorem 7. Fix any � > 0 and any function f(·). There is no algorithm A with the following
property: given " > 0 and access to independent points drawn from an unknown distribution p over
[2N], algorithm A makes o(

p
N) · f(") draws from p and with probability at least 51/100 outputs

a hypothesis distribution h over [2N] satisfying kh� pk
1

 (2� �)opt
2

(p) + ".

Proof. Fix a value of � > 0 and suppose, for the sake of contradiction, that there exists such an
algorithm A. We describe how the existence of such an algorithm A yields a distinguishing algorithm
B that violates Proposition B.2.

The algorithm B works as follows, given access to i.i.d. draws from an unknown distribution p. It
first runs algorithm A with its “"” parameter set to " := �

3

12(2+�)

, obtaining (with probability at least
51/100) a hypothesis distribution h over [2N] such that kh � pk

1

 (2 � �)opt
2

(p) + ". It then
computes the value kh � U

2N

k
1

of the L
1

-distance between h and the uniform distribution (note
that this step uses no draws from the distribution). If kh� U

2N

k
1

< 3"/2 then it outputs “uniform”
and otherwise it outputs “non-uniform.”

Since � (and hence ") is independent of N , the algorithm B makes fewer than c
p
N draws from p

(for N sufficiently large). To see that the above-described algorithm B violates (2), consider first the
case that p is U

[2N]

. In this case opt

2

(p) = 0 and so with probability at least 51/100 the hypothesis
h satisfies kh � U

2N

k
1

 ", and hence algorithm B outputs “uniform” with probability at least
51/100.

On the other hand, suppose that p = p
S1,S2,t is drawn from D

t

, where t = �

2+�

. In this case, with
probability at least 51/100 the hypothesis h satisfies

kh� p
S1,S2,tk1 (2� �)opt

2

(p
S1,S2,t) + " (2� �) · t

2

·
✓
1 +

t

1� t

◆
+ ",

by part (2.) of Proposition B.1. Since by part (1.) of Proposition B.1 we have kU
2N

�p
S1,S2,tk1 = t,

the triangle inequality gives that

kh� U
2N

k
1

� t� (2� �) · t
2

·
✓
1 +

t

1� t

◆
� " = 2",

where to obtain the final equality we recalled the settings " =

�

3

12(2+�)

, t = �

2+�

. Hence algorithm
B outputs “uniform” with probability at most 49/100. Thus we have

��Pr[BU[2N] outputs “uniform”]�Pr
pS1,S2,t⇠Dt [B

pS1,S2,t outputs “uniform”]
�� � 0.02

which contradicts (2) and proves the theorem.

14

	Introduction
	Preliminaries
	The algorithm and its analysis
	The main algorithm
	Intuition for the algorithm
	The algorithm
	Analysis of the algorithm and proof of Theorem 4

	A general reduction to the case of small opt for semi-agnostic learning
	Dealing with distributions that are not well behaved

	Lower bounds on agnostic learning
	Omitted Proofs from Section 3
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Theorem 6

	Proof of Theorem 7

