Appendix

A Omitted Proofs from Section 3

A.1 Proof of Lemma 3.2

Observe that in iteration t, two consecutive intervals $I_{t-1,i}$ and $I_{t-1,i+1}$ correspond to two unions of consecutive intervals $I_a \cup \cdots \cup I_b$ and $I_{b+1} \cup \cdots \cup I_c$ respectively from the original partition \mathcal{P}_0 . Moreover, since each interval in $\mathcal{P}_{t-1} \setminus \mathcal{F}_{t-1}$, t > 1, is formed by merging two consecutive intervals from $\mathcal{P}_{t-2} \setminus \mathcal{F}_{t-2}$, it must be the case that b - a + 1, $c - b + 1 \leq 2^{t-1} < 2^{s-1} \leq 1/(2\varepsilon')$. Hence, by Lemma 3.1, we have

$$|p(I_{t-1,i}) - \widehat{p}_m(I_{t-1,i}))| \le \sqrt{\varepsilon' \cdot 2^{s-1}} \cdot \frac{\varepsilon'}{10k} \le \frac{\varepsilon'}{10\sqrt{2k}}$$

and similarly,

$$|p(I_{t-1,i+1}) - \hat{p}_m(I_{t-1,i+1}))| \le \frac{\varepsilon'}{10\sqrt{2}k}$$

To simplify notation, let $I = I_{t-1,i}$ and $J = I_{t-1,i+1}$. By definition of α ,

$$\alpha_{p}(I,J) = \left| \frac{p(I)}{|I|} - \frac{p(I) + p(J)}{|I| + |J|} \right| |I| + \left| \frac{p(J)}{|J|} - \frac{p(I) + p(J)}{|I| + |J|} \right| |J|$$

$$= \frac{2}{|I| + |J|} |p(I)|J| - p(J)|I||.$$
(1)

A straightforward calculation now gives that

$$\begin{aligned} |\alpha_{p}(I,J) - \alpha_{\widehat{p}_{m}}(I,J)| &= \frac{2}{|I| + |J|} \Big| |p(I)|J| - p(J)|I| \Big| - \Big| \widehat{p}_{m}(I)|J| - \widehat{p}_{m}(J)|I| \Big| \Big| \\ &\leq \frac{2}{|I| + |J|} \Big(\Big| p(I) - \widehat{p}_{m}(I) \Big| |J| + \Big| p(J) - \widehat{p}_{m}(J) \Big| |I| \Big) \\ &\leq 2\varepsilon'/(5k). \end{aligned}$$

A.2 Proof of Lemma 3.3

We start by recording a basic fact that will be useful in the proof of the lemma. Let p be a distribution over an interval I and let q be any sub-distribution over I. Perhaps contrary to initial intuition, the optimal scaling $c \cdot q$, c > 0, of q to approximate p (with respect to the L_1 -distance) is not necessarily obtained by scaling q so that $c \cdot q$ is a distribution over I. However, a simple argument (see e.g., Appendix A.1 of [CDSS14]) shows that scaling so that $c \cdot q$ is a distribution cannot result in L_1 -error more than twice that of the optimal scaling:

Claim A.1. Let $p, g: I \to \mathbb{R}^{\geq 0}$ be probability distributions over I (so $\int_I p(x)dx = \int_I g(x)dx = 1$). Then, writing $||f||_1$ to denote $\int_I |f(x)|dx$, for every a > 0 we have that $||p - g||_1 \leq 2||p - ag||_1$.

We now proceed with the proof of Lemma 3.3.

We first show that a total of at most $O(k \log(1/\varepsilon'))$ intervals are ever added into \mathcal{F}_t across all executions of Step 4(b).

Suppose that intervals $I_{t-1,i}$, $I_{t-1,i+1}$ are added into \mathcal{F}_t in some execution of Step 4(b). We consider the following two cases:

- **Case 1:** $I_{t-1,i} \cup I_{t-1,i+1}$ contains at least one breakpoint of Q. Since Q has at most k breakpoints, this can happen at most k times in total.
- **Case 2:** $I_{t-1,i} \cup I_{t-1,i+1}$ does not contain any breakpoint of \mathcal{Q} . Then $I_{t-1,i} \cup I_{t-1,i+1}$ is a subset of an interval in \mathcal{Q} . Recalling that intervals $I_{t-1,i}, I_{t-1,i+1}$ were added into \mathcal{F}_t in an execution of Step 4(b), we have that $\alpha_{\widehat{p}_m}(I_{t-1,i}, I_{t-1,i+1}) > \varepsilon'/(2k)$, and hence by Lemma 3.2, we have that $\alpha_p(I_{t-1,i}, I_{t-1,i+1}) \ge \frac{1}{5} \cdot \frac{\varepsilon'}{k}$. Claim A.1 now implies that the contribution to the

 L_1 distance between p and q from $I_{t-1,i} \cup I_{t-1,i+1}$, i.e., $\int_{I_{t-1,i} \cup I_{t-1,i+1}} |p(x) - q(x)| dx$, is at least $\frac{1}{10} \frac{\varepsilon'}{k}$.

Since $||p - q||_1 = \operatorname{opt}_k(p)$, there can be at most

$$k + O\left(\frac{\operatorname{opt}_k(p) \cdot k}{\varepsilon'}\right) = O\left(k \cdot \log \frac{1}{\varepsilon}\right)$$

intervals ever added into \mathcal{F}_t across all executions of Step 4(b) (note that for the last equality we have used the assumption that $\operatorname{opt}_k(p) \leq \varepsilon$).

Next, we argue that each \mathcal{F}_t satisfies $|\mathcal{F}_t| \leq O(k \log^2(1/\varepsilon))$. We have bounded the number of intervals added into \mathcal{F}_t in Step 4(b) by $O(k \log(1/\varepsilon'))$, so it remains to bound the number of intervals added in Step 4(c)(Case 3) and 4(c)(Case 4). It is clear that a total of at most $O(\log(1/\varepsilon'))$ intervals are ever added in 4(c)(Case 4). Inspection of Step 4(c)(Case 3) shows that for a given value of t, the number of intervals that this step adds to \mathcal{F}_t is at most the number of "blocks" of consecutive \mathcal{F}_t -intervals. Since each interval added in Step 4(c)(Case 3) extends some blocks of consecutive \mathcal{F}_t -intervals but does not create a new one (and hence does not increase their number), across the $s = \log(1/\varepsilon')$ stages, the total number of intervals that can be added in executions of Step 4(c)(Case 3) is at most $O(k \log^2(1/\varepsilon'))$. It follows that we have $|\mathcal{F}_s| = O(k \log^2(1/\varepsilon))$ as claimed.

To bound $|\mathcal{P}_t \setminus \mathcal{F}_t|$, we observe that by inspection of the algorithm, for each t we have $|\mathcal{P}_t \setminus \mathcal{F}_t| \leq \frac{1}{2}|\mathcal{P}_{t-1} \setminus \mathcal{F}_{t-1}|$. Since $|\mathcal{P}_0| = \Theta(k/\varepsilon')$, it follows that $|\mathcal{P}_s \setminus \mathcal{F}_s| = O(k)$, and the lemma is proved.

A.3 Proof of Lemma 3.4

Fix an interval I in \mathcal{P} . If there does not exist an interval J in \mathcal{Q} such that $I \subseteq J$, then I must contain a breakpoint of \mathcal{Q} , and hence since \mathcal{P} is ε' -good for (p,q), we have $p(I) \leq \varepsilon'/(2k)$. This implies that the contribution to $||(p)^{\mathcal{P}} - q||_1$ that comes from I, namely $\int_I |(p)^{\mathcal{P}}(x) - q(x)| dx$, satisfies

$$\begin{split} \int_{I} |(p)^{\mathcal{P}}(x) - q(x)| dx &\leq \int_{I} |(p)^{\mathcal{P}}(x) - p(x)| dx + \int_{I} |p(x) - q(x)| dx \\ &\leq \int_{I} |p(x) - q(x)| dx + 2p(I) \\ &\leq \int_{I} |p(x) - q(x)| dx + \frac{\varepsilon'}{k}. \end{split}$$

The other possibility is that there exists an interval J in Q such that $I \subseteq J$. In this case, we have that

$$\int_{I} |(p)^{\mathcal{P}}(x) - q(x)| dx \le \int_{I} |p(x) - q(x)| dx.$$

Since there are at most k intervals in \mathcal{P} containing breakpoints of \mathcal{Q} , summing the above inequalities over all intervals I in \mathcal{P} , we get that

$$||(p)^{\mathcal{P}} - q||_1 \le ||p - q||_1 + \varepsilon' = \operatorname{opt}_k(p) + \varepsilon',$$

and hence

$$||(p)^{\mathcal{P}} - p||_1 \le ||(p)^{\mathcal{P}} - q||_1 + ||p - q||_1 \le 2\mathrm{opt}_k(p) + \varepsilon'.$$

A.4 Proof of Lemma 3.5

We construct the claimed \mathcal{R} based on $\mathcal{P}_s, \mathcal{P}_{s-1}, \ldots, \mathcal{P}_0$ as follows:

- (i) If I is an interval in \mathcal{P}_s not containing a breakpoint of \mathcal{Q} , then I is also in \mathcal{R} .
- (ii) If I is an interval in \mathcal{P}_s that does contain a breakpoint of \mathcal{Q} , then we further partition I into a set of intervals S by calling procedure Refine-partition(s, I). This recursive procedure exploits the local structure of the earlier, finer partitions $\mathcal{P}_{s-1}, \mathcal{P}_{s-2}, \ldots$ as described below.

Procedure Refine-partition:
Input: Integer t, Interval J
Output: S, a partition of interval J
1. If t = 0, then output {J}.
2. If J is an interval in Pt, then

(a) If J contains a breakpoint of Q, then output Refine-partition(t - 1, J).
(b) Otherwise output {J}.

3. Otherwise, J is a union of two intervals in Pt. Let J1 and J2 denote the two intervals in Pt such that J1 ∪ J2 = J. Output Refine-partition(t, J1) ∪ Refine-partition(t, J2).

We claim that $|\mathcal{R}|$ (the number of intervals in \mathcal{R}) is at most $|\mathcal{P}_s| + O(k \cdot \log \frac{1}{\varepsilon})$. To see this, note that each interval $I \in \mathcal{P}_s$ not containing a breakpoint of \mathcal{Q} (corresponding to (i) above) translates directly to a single interval of \mathcal{R} . For each interval of type (ii) in \mathcal{P}_s , inspection of the Refine-Partition procedure shows that that these intervals are partitioned into at most $O(k \log(1/\varepsilon))$ intervals in \mathcal{R} .

In the rest of the proof, we show that for any interval J in \mathcal{P}_s containing at least one breakpoint of \mathcal{Q} , the contribution to the L_1 distance between $(p)^{\mathcal{P}_s}$ and $(p)^{\mathcal{R}}$ coming from interval J is at most $|b_J| \cdot \frac{\varepsilon' \log \frac{1}{\varepsilon}}{k}$, where b_J is the set of breakpoints of \mathcal{Q} in J.

Consider a fixed breakpoint v of Q. Let $I_{t,v}$ denote the interval containing v in the partition \mathcal{P}_t . If $I_{t,v}$ merges with another interval in \mathcal{P}_t in Case 1 of Step 4(c), we denote that other interval as $I'_{t,v}$. Since $I_{t,v}$ merges with $I'_{t,v}$ in Case 1 of Step 4(c), these intervals are both not in \mathcal{F}_t and hence were both not in \mathcal{F}_{t-1} in Step 4(b). Consequently when t > 1 it must be the case that condition (ii) of Step 4(b) does not hold for these intervals, i.e. $\alpha_{\widehat{p}_m}(I_{t,v}, I'_{t,v}) \leq \varepsilon'/(2k)$. It follows that by Lemma 3.2, we have that $\alpha_p(I_{t,v}, I'_{t,v})$ is at most $\frac{4\varepsilon'}{5k}$. When t = 1, we have a similar bound $\alpha_p(I_{t,v}, I'_{t,v}) \leq \varepsilon'/k$, by using (1) and the fact that $p(I_{t,v}), p(I'_{t,v}) \leq \varepsilon'/2k$ when $I_{t,v}, I'_{t,v} \in \mathcal{P}_0$.

On the other hand, inspection of the procedure Refine-Partition gives that if two intervals in \mathcal{P}_t are unions of some intervals in Refine-partition(*s*, *I*), and their union is an interval in \mathcal{P}_{t+1} , then there exists *v* which is a breakpoint of \mathcal{Q} such that the two intervals are $I_{t,v}$ and $I'_{t,v}$.

Thus, the contribution to the L_1 distance between $(p)^{\mathcal{P}_s}$ and $(p)^{\mathcal{R}}$ coming from interval J is at most $\frac{\varepsilon'}{k} \cdot \log \frac{1}{\varepsilon'} \cdot |b_J|$. Summing over all intervals J that contain at least one breakpoint and recalling that the total number of breakpoints is at most k, we get that the overall L_1 distance between $(p)^{\mathcal{P}_s}$ and $(p)^{\mathcal{R}}$ is at most ε .

A.5 Proof of Theorem 6

Proof. The algorithm A' works in two stages, which we describe and analyze below.

In the first stage, A' iterates over $\lceil \log(20/\varepsilon) \rceil$ "guesses" for the value of $\operatorname{opt}_{\mathcal{C}}(p)$, where the *i*-th guess g_i is $\frac{\varepsilon}{10} \cdot 2^{i-1}$ (so $g_1 = \frac{\varepsilon}{10}$ and $g_{\lceil \log(20/\varepsilon) \rceil} \ge 1$). For each value of g_i , it performs r = O(1) runs of Algorithm A (using a fresh sample from p for each run) using parameter g_i as the " ε " parameter for each run; let $h_{1,i}, \ldots, h_{r,i}$ be the r hypotheses thus obtained for the *i*-th guess. It is clear that this stage uses $O(m(\varepsilon/10) + m(2\varepsilon/10) + \cdots) = O(m(\varepsilon))$ draws from p, and similarly that it runs in time $O(t(\varepsilon))$. If $\operatorname{opt}_{\mathcal{C}}(p) \le \varepsilon$, then (for a suitable choice of r = O(1)) we get that with probability at least 39/40, some hypothesis $h_{1,\ell}$ satisfies $||p - h_{1,\ell}|| \le \alpha \cdot \operatorname{opt}_{\mathcal{C}}(p) \le g_i$; in this case, for a suitable choice of r = O(1) we get that with probability at least 39/40, some $i \in \{2, \ldots, \lceil \log(20/\varepsilon) \rceil\}$ such that $g_i/2 < \operatorname{opt}_{\mathcal{C}}(p) \le g_i$; in this case, for a suitable choice of r = O(1) we get that with probability at least 39/40, some $h_{i,\ell} ||_1 \le \alpha \cdot \operatorname{opt}_{\mathcal{C}}(p) + g_i \le (\alpha + 2) \cdot \operatorname{opt}_{\mathcal{C}}(p) + \varepsilon/10$.

In the second stage, A' runs a hypothesis selection procedure to choose one of the candidate hypotheses $h_{i,\ell}$. A number of such procedures are known (see e.g. Section 6.6 of [DL01] or

[DDS12, DK14, AJOS14]); all of them work by running some sort of "tournament" over the hypotheses, and all have the guarantee that with high probability they will output a hypothesis from the pool of candidates which has L_1 error (with respect to the target distribution p) not much worse than that of the best candidate in the pool. We use the classic Scheffé algorithm (see [DL01]) as described and analyzed in [AJOS14] (see Algorithm SCHEFFE* in Appendix B of that paper). Adapted to our context, this algorithm has the following performance guarantee:

Proposition A.2. Let p be a target distribution over [0, 1) and let $\mathcal{D}_{\tau} = \{p_j\}_{j=1}^N$ be a collection of N distributions over [0, 1) with the property that there exists $i \in [N]$ such that $||p - p_i||_1 \leq \tau$. There is a procedure SCHEFFE which is given as input a parameter $\varepsilon > 0$ and a confidence parameter $\delta > 0$, and is provided with access to

- (i) i.i.d. draws from p and from p_i for all $i \in [N]$, and
- (ii) an evaluation oracle $eval_{p_i}$ for $each \in [N]$. This is a procedure which, on input $r \in [0, 1)$, outputs the value $p_i(r)$ of the pdf of p_i at the point r.

The procedure SCHEFFE has the following behavior: It makes $s = O\left((1/\varepsilon^2) \cdot (\log N + \log(1/\delta))\right)$ draws from p and from each p_i , $i \in [N]$, and O(s) calls to each oracle $eval_{p_i}$, $i \in [N]$, and performs $O(sN^2)$ arithmetic operations. With probability at least $1 - \delta$ it outputs an index $i^* \in [N]$ that satisfies $\|p - p_{i^*}\|_1 \le 10 \max\{\tau, \varepsilon\}$.

The algorithm A' runs the procedure SCHEFFE using the $N = O(\log(1/\varepsilon))$ hypotheses $h_{i,\ell}$, with its " ε " parameter set to $\frac{1}{10}$ (the input parameter ε that is given to A') and its " δ " parameter set to 1/40. By Proposition A.2, with overall probability at least 19/20 the output is a hypothesis $h_{i,\ell}$ satisfying $\|p - h_{i,\ell}\|_1 \le 10(\alpha + 2) \operatorname{opt}_{\mathcal{C}}(p) + \varepsilon$. The overall running time and sample complexity are easily seen to be as claimed, and the theorem is proved.

B Proof of Theorem 7

We write \mathcal{U}_{2N} to denote the uniform distribution over [2N]. The following proposition shows that \mathcal{U}_{2N} has L_1 distance from $p_{S_1,S_2,t}$ almost twice that of the optimal 2-flat distribution:

Proposition B.1. *Fix any* 0 < t < 1/2*.*

1. For any distribution $p_{S_1,S_2,t}$ in the support of \mathcal{D}_t , we have

$$\|\mathcal{U}_{2N} - p_{S_1,S_2,t}\|_1 = t.$$

2. For any distribution $p_{S_1,S_2,t}$ in the support of \mathcal{D}_t , we have

$$\operatorname{opt}_2(p_{S_1,S_2,t}) \le \frac{t}{2} \left(1 + \frac{t}{1-t} \right).$$

Proof. Part (1.) is a simple calculation. For part (2.), consider the 2-flat distribution

$$q(i) = \begin{cases} \frac{1}{2N} \left(1 + \frac{t}{2(1-t)} \right) & \text{if } i \in [N] \\ \frac{1}{2N} \left(1 - \frac{t}{2(1-t)} \right) & \text{if } i \in [N+1, \dots, 2N] \end{cases}$$

It is straightforward to verify that $||p_{S_1,S_2,t} - q||_1 = \frac{t}{2} \left(1 + \frac{t}{1-t}\right)$ as claimed.

For a distribution p we write A^p to indicate that algorithm A is given access to i.i.d. points drawn from p.

The following simple proposition states that no algorithm can successfully distinguish between a distribution $p_{S_1,S_2,t} \sim \mathcal{D}_t$ and \mathcal{U}_{2N} using fewer than (essentially) \sqrt{N} draws:

Proposition B.2. There is an absolute constant c > 0 such that the following holds: Fix any 0 < t < 1/2, and let B be any "distinguishing algorithm" which receives $c\sqrt{N}$ i.i.d. draws from a distribution over [2N] and outputs either "uniform" or "non-uniform". Then

 $\left|\mathbf{Pr}[B^{\mathcal{U}_{[2N]}} \text{ outputs "uniform"}] - \mathbf{Pr}_{p_{S_1,S_2,t} \sim \mathcal{D}_t}[B^{p_{S_1,S_2,t}} \text{ outputs "uniform"}]\right| \le 0.01.$ (2)

The proof is an easy consequence of the fact that in both cases (the distribution is $\mathcal{U}_{[2N]}$, or the distribution is $p_{S_1,S_2,t} \sim \mathcal{D}_t$), with probability at least 0.99 the $c\sqrt{N}$ draws received by A are a uniform random set of $c\sqrt{N}$ distinct elements from [2N] (this can be shown straighforwardly using a birthday paradox type argument).

Now we use Proposition B.2 to show that any $(2 - \delta)$ -semi-agnostic learning algorithm even for 2-flat distributions must use a sample of size $\Omega(\sqrt{N})$, and thereby prove Theorem 7:

Theorem 7. Fix any $\delta > 0$ and any function $f(\cdot)$. There is no algorithm A with the following property: given $\varepsilon > 0$ and access to independent points drawn from an unknown distribution p over [2N], algorithm A makes $o(\sqrt{N}) \cdot f(\varepsilon)$ draws from p and with probability at least 51/100 outputs a hypothesis distribution h over [2N] satisfying $||h - p||_1 \le (2 - \delta) \operatorname{opt}_2(p) + \varepsilon$.

Proof. Fix a value of $\delta > 0$ and suppose, for the sake of contradiction, that there exists such an algorithm A. We describe how the existence of such an algorithm A yields a distinguishing algorithm B that violates Proposition B.2.

The algorithm B works as follows, given access to i.i.d. draws from an unknown distribution p. It first runs algorithm A with its " ε " parameter set to $\varepsilon := \frac{\delta^3}{12(2+\delta)}$, obtaining (with probability at least 51/100) a hypothesis distribution h over [2N] such that $||h - p||_1 \le (2 - \delta) \operatorname{opt}_2(p) + \varepsilon$. It then computes the value $||h - \mathcal{U}_{2N}||_1$ of the L_1 -distance between h and the uniform distribution (note that this step uses no draws from the distribution). If $||h - \mathcal{U}_{2N}||_1 < 3\varepsilon/2$ then it outputs "uniform" and otherwise it outputs "non-uniform."

Since δ (and hence ε) is independent of N, the algorithm B makes fewer than $c\sqrt{N}$ draws from p (for N sufficiently large). To see that the above-described algorithm B violates (2), consider first the case that p is $\mathcal{U}_{[2N]}$. In this case $\operatorname{opt}_2(p) = 0$ and so with probability at least 51/100 the hypothesis h satisfies $||h - \mathcal{U}_{2N}||_1 \leq \varepsilon$, and hence algorithm B outputs "uniform" with probability at least 51/100.

On the other hand, suppose that $p = p_{S_1,S_2,t}$ is drawn from \mathcal{D}_t , where $t = \frac{\delta}{2+\delta}$. In this case, with probability at least 51/100 the hypothesis h satisfies

$$\|h - p_{S_1, S_2, t}\|_1 \le (2 - \delta) \operatorname{opt}_2(p_{S_1, S_2, t}) + \varepsilon \le (2 - \delta) \cdot \frac{t}{2} \cdot \left(1 + \frac{t}{1 - t}\right) + \varepsilon,$$

by part (2.) of Proposition B.1. Since by part (1.) of Proposition B.1 we have $\|U_{2N} - p_{S_1,S_2,t}\|_1 = t$, the triangle inequality gives that

$$\|h - \mathcal{U}_{2N}\|_1 \ge t - (2 - \delta) \cdot \frac{t}{2} \cdot \left(1 + \frac{t}{1 - t}\right) - \varepsilon = 2\varepsilon,$$

where to obtain the final equality we recalled the settings $\varepsilon = \frac{\delta^3}{12(2+\delta)}$, $t = \frac{\delta}{2+\delta}$. Hence algorithm *B* outputs "uniform" with probability at most 49/100. Thus we have

$$\left|\mathbf{Pr}[B^{U_{[2N]}} \text{ outputs "uniform"}] - \mathbf{Pr}_{p_{S_1,S_2,t} \sim \mathcal{D}_t}[B^{p_{S_1,S_2,t}} \text{ outputs "uniform"}]\right| \ge 0.02$$

which contradicts (2) and proves the theorem.