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Abstract

By exploiting the duality between boosting and online learning, we present a
boosting framework which proves to be extremely powerful thanks to employing
the vast knowledge available in the online learning area. Using this framework,
we develop various algorithms to address multiple practically and theoretically
interesting questions including sparse boosting, smooth-distribution boosting, ag-
nostic learning and, as a by-product, some generalization to double-projection
online learning algorithms.

1 Introduction

A boosting algorithm can be seen as a meta-algorithm that maintains a distribution over the sample
space. At each iteration a weak hypothesis is learned and the distribution is updated, accordingly.
The output (strong hypothesis) is a convex combination of the weak hypotheses. Two dominant
views to describe and design boosting algorithms are “weak to strong learner” (WTSL), which is
the original viewpoint presented in [1, 2], and boosting by “coordinate-wise gradient descent in the
functional space” (CWGD) appearing in later works [3, 4, 5]. A boosting algorithm adhering to the
first view guarantees that it only requires a finite number of iterations (equivalently, finite number of
weak hypotheses) to learn a (1− ǫ)-accurate hypothesis. In contrast, an algorithm resulting from the
CWGD viewpoint (usually called potential booster) may not necessarily be a boosting algorithm in
the probability approximately correct (PAC) learning sense. However, while it is rather difficult to
construct a boosting algorithm based on the first view, the algorithmic frameworks, e.g., AnyBoost
[4], resulting from the second viewpoint have proven to be particularly prolific when it comes to
developing new boosting algorithms. Under the CWGD view, the choice of the convex loss function
to be minimized is (arguably) the cornerstone of designing a boosting algorithm. This, however, is
a severe disadvantage in some applications.

In CWGD, the weights are not directly controllable (designable) and are only viewed as the values
of the gradient of the loss function. In many applications, some characteristics of the desired dis-
tribution are known or given as problem requirements while, finding a loss function that generates
such a distribution is likely to be difficult. For instance, what loss functions can generate sparse
distributions?1 What family of loss functions results in a smooth distribution?2 We even can go
further and imagine the scenarios in which a loss function needs to put more weights on a given
subset of examples than others, either because that subset has more reliable labels or it is a prob-
lem requirement to have a more accurate hypothesis for that part of the sample space. Then, what

1In the boosting terminology, sparsity usually refers to the greedy hypothesis-selection strategy of boost-
ing methods in the functional space. However, sparsity in this paper refers to the sparsity of the distribution
(weights) over the sample space.

2A smooth distribution is a distribution that does not put too much weight on any single sample or in other
words, a distribution emulated by the booster does not dramatically diverge from the target distribution [6, 7].
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loss function can generate such a customized distribution? Moreover, does it result in a provable
boosting algorithm? In general, how can we characterize the accuracy of the final hypothesis?

Although, to be fair, the so-called loss function hunting approach has given rise to useful boosting
algorithms such as LogitBoost, FilterBoost, GiniBoost and MadaBoost [5, 8, 9, 10] which (to some
extent) answer some of the above questions, it is an inflexible and relatively unsuccessful approach
to addressing the boosting problems with distribution constraints.

Another approach to designing a boosting algorithm is to directly follow the WTSL viewpoint
[11, 6, 12]. The immediate advantages of such an approach are, first, the resultant algorithms
are provable boosting algorithms, i.e., they output a hypothesis of arbitrary accuracy. Second, the
booster has direct control over the weights, making it more suitable for boosting problems subject to
some distribution constraints. However, since the WTSL view does not offer any algorithmic frame-
work (as opposed to the CWGD view), it is rather difficult to come up with a distribution update
mechanism resulting in a provable boosting algorithm. There are, however, a few useful, and al-
beit fairly limited, algorithmic frameworks such as TotalBoost [13] that can be used to derive other
provable boosting algorithms. The TotalBoost algorithm can maximize the margin by iteratively
solving a convex problem with the totally corrective constraint. A more general family of boost-
ing algorithms was later proposed by Shalev-Shwartz et. al. [14], where it was shown that weak
learnability and linear separability are equivalent, a result following from von Neumann’s minmax
theorem. Using this theorem, they constructed a family of algorithms that maintain smooth distribu-
tions over the sample space, and consequently are noise tolerant. Their proposed algorithms find an
(1− ǫ)-accurate solution after performing at most O(log(N)/ǫ2) iterations, where N is the number
of training examples.

1.1 Our Results

We present a family of boosting algorithms that can be derived from well-known online learning
algorithms, including projected gradient descent [15] and its generalization, mirror descent (both
active and lazy updates, see [16]) and composite objective mirror descent (COMID) [17]. We prove
the PAC learnability of the algorithms derived from this framework and we show that this framework
in fact generates maximum margin algorithms. That is, given a desired accuracy level ν, it outputs a
hypothesis of margin γmin − ν with γmin being the minimum edge that the weak classifier guarantees
to return.

The duality between (linear) online learning and boosting is by no means new. This duality was first
pointed out in [2] and was later elaborated and formalized by using the von Neumann’s minmax
theorem [18]. Following this line, we provide several proof techniques required to show the PAC
learnability of the derived boosting algorithms. These techniques are fairly versatile and can be used
to translate many other online learning methods into our boosting framework. To motivate our boost-
ing framework, we derive two practically and theoretically interesting algorithms: (I) SparseBoost
algorithm which by maintaining a sparse distribution over the sample space tries to reduce the space
and the computation complexity. In fact this problem, i.e., applying batch boosting on the successive
subsets of data when there is not sufficient memory to store an entire dataset, was first discussed by
Breiman in [19], though no algorithm with theoretical guarantee was suggested. SparseBoost is the
first provable batch booster that can (partially) address this problem. By analyzing this algorithm,
we show that the tuning parameter of the regularization term ℓ1 at each round t should not exceed
γt

2
ηt to still have a boosting algorithm, where ηt is the coefficient of the tth weak hypothesis and γt is

its edge. (II) A smooth boosting algorithm that requires only O(log 1/ǫ) number of rounds to learn a
(1− ǫ)-accurate hypothesis. This algorithm can also be seen as an agnostic boosting algorithm3 due
to the fact that smooth distributions provide a theoretical guarantee for noise tolerance in various
noisy learning settings, such as agnostic boosting [21, 22].

Furthermore, we provide an interesting theoretical result about MadaBoost [10]. We give a proof
(to the best of our knowledge the only available unconditional proof) for the boosting property of
(a variant of) MadaBoost and show that, unlike the common presumption, its convergence rate is of
O(1/ǫ2) rather than O(1/ǫ).

3Unlike the PAC model, the agnostic learning model allows an arbitrary target function (labeling function)
that may not belong to the class studied, and hence, can be viewed as a noise tolerant learning model [20].
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Finally, we show our proof technique can be employed to generalize some of the known online
learning algorithms. Specifically, consider the Lazy update variant of the online Mirror Descent
(LMD) algorithm (see for instance [16]). The standard proof to show that the LMD update scheme
achieves vanishing regret bound is through showing its equivalence to the FTRL algorithm [16] in
the case that they are both linearized, i.e., the cost function is linear. However, this indirect proof is
fairly restrictive when it comes to generalizing the LMD-type algorithms. Here, we present a direct
proof for it, which can be easily adopted to generalize the LMD-type algorithms.

2 Preliminaries

Let {(xi, ai)}, 1 ≤ i ≤ N , be N training samples, where xi ∈ X and ai ∈ {−1,+1}. Assume
h ∈ H is a real-valued function mapping X into [−1, 1]. Denote a distribution over the training data
by w = [w1, . . . , wN ]⊤ and define a loss vector d = [−a1h(x1), . . . ,−aNh(xN )]⊤. We define
γ = −w⊤d as the edge of the hypothesis h under the distribution w and it is assumed to be positive
when h is returned by a weak learner. In this paper we do not consider the branching program based
boosters and adhere to the typical boosting protocol (described in Section 1).

Since a central notion throughout this paper is that of Bregman divergences, we briefly revisit some
of their properties. A Bregman divergence is defined with respect to a convex function R as

BR(x,y)= R(x) −R(y) −∇R(y)(x − y)⊤ (1)

and can be interpreted as a distance measure between x and y. Due to the convexity of R, a
Bregman divergence is always non-negative, i.e., BR(x,y) ≥ 0. In this work we consider R to
be a β-strongly convex function4 with respect to a norm ||.||. With this choice of R, the Bregman

divergence BR(x,y) ≥ β
2
||x− y||2. As an example, if R(x) = 1

2
x⊤x (which is 1-strongly convex

with respect to ||.||2), then BR(x,y) = 1
2
||x − y||22 is the Euclidean distance. Another example

is the negative entropy function R(x) =
∑N

i=1 xi log xi (resulting in the KL-divergence) which is
known to be 1-strongly convex over the probability simplex with respect to ℓ1 norm.

The Bregman projection is another fundamental concept of our framework.

Definition 1 (Bregman Projection). The Bregman projection of a vector y onto a convex set S with
respect to a Bregman divergence BR is

ΠS(y) = argmin
x∈S

BR(x,y) (2)

Moreover, the following generalized Pythagorean theorem holds for Bregman projections.

Lemma 1 (Generalized Pythagorean) [23, Lemma 11.3]. Given a point y ∈ R
N , a convex set S

and ŷ= ΠS(y) as the Bregman projection of y onto S, for all x ∈ S we have

Exact: BR(x,y) ≥ BR(x, ŷ) +BR(ŷ,y) (3)

Relaxed: BR(x,y) ≥ BR(x, ŷ) (4)

The relaxed version follows from the fact that BR(ŷ,y)≥0 and thus can be ignored.

Lemma 2. For any vectors x,y, z, we have

(x− y)⊤(∇R(z) −∇R(y)) = BR(x,y) −BR(x, z) +BR(y, z) (5)

The above lemma follows directly from the Bregman divergence definition in (1). Additionally, the
following definitions from convex analysis are useful throughout the paper.

Definition 2 (Norm & dual norm). Let ||.||A be a norm. Then its dual norm is defined as

||y||A∗ = sup{y⊤x, ||x||A ≤ 1} (6)

For instance, the dual norm of ||.||2 = ℓ2 is ||.||2∗ = ℓ2 norm and the dual norm of ℓ1 is ℓ∞ norm.
Further,

Lemma 3. For any vectors x,y and any norm ||.||A, the following inequality holds:

x⊤y ≤ ||x||A||y||A∗ ≤
1

2
||x||2A +

1

2
||y||2A∗ (7)

4That is, its second derivative (Hessian in higher dimensions) is bounded away from zero by at least β.
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Throughout this paper, we use the shorthands ||.||A = ||.|| and ||.||A∗ = ||.||∗ for the norm and its
dual, respectively.

Finally, before continuing, we establish our notations. Vectors are lower case bold letters and their
entries are non-bold letters with subscripts, such as xi of x, or non-bold letter with superscripts if the
vector already has a subscript, such as xi

t of xt. Moreover, an N-dimensional probability simplex is

denoted by S = {w|
∑N

i=1 wi = 1, wi ≥ 0}. The proofs of the theorems and the lemmas can be
found in the Supplement.

3 Boosting Framework

Let R(x) be a 1-strongly convex function with respect to a norm ||.|| and denote its as-
sociated Bregman divergence BR. Moreover, let the dual norm of a loss vector dt

be upper bounded, i.e., ||dt||∗ ≤ L. It is easy to verify that for dt as defined
in MABoost, L = 1 when ||.||∗ = ℓ∞ and L = N when ||.||∗ = ℓ2. The
following Mirror Ascent Boosting (MABoost) algorithm is our boosting framework.

Algorithm 1: Mirror Ascent Boosting (MABoost)

Input: R(x) 1-strongly convex function, w1 = [ 1
N
, . . . , 1

N
]⊤ and z1 = [ 1

N
, . . . , 1

N
]⊤

For t = 1, . . . , T do

(a) Train classifier with wt and get ht, let dt = [−a1ht(x1), . . . ,−aNht(xN )]
and γt = −w⊤

t dt.

(b) Set ηt =
γt

L

(c) Update weights: ∇R(zt+1) = ∇R(zt) + ηtdt (lazy update)

∇R(zt+1) = ∇R(wt) + ηtdt (active update)

(d) Project onto S: wt+1 = argmin
w∈S

BR(w, zt+1)

End

Output: The final hypothesis f(x)= sign

(

∑T
t=1 ηtht(x)

)

.

This algorithm is a variant of the mirror descent algorithm [16], modified to work as a boosting
algorithm. The basic principle in this algorithm is quite clear. As in ADABoost, the weight of
a wrongly (correctly) classified sample increases (decreases). The weight vector is then projected
onto the probability simplex in order to keep the weight sum equal to 1. The distinction between
the active and lazy update versions and the fact that the algorithm may behave quite differently
under different update strategies should be emphasized. In the lazy update version, the norm of the
auxiliary variable zt is unbounded which makes the lazy update inappropriate in some situations.
In the active update version, on the other hand, the algorithm always needs to access (compute) the
previous projected weight wt to update the weight at round t and this may not be possible in some
applications (such as boosting-by-filtering).

Due to the duality between online learning and boosting, it is not surprising that MABoost (both
the active and lazy versions) is a boosting algorithm. The proof of its boosting property, however,
reveals some interesting properties which enables us to generalize the MABoost framework. In the
following, only the proof of the active update is given and the lazy update is left to Section 3.4.

Theorem 1. Suppose that MABoost generates weak hypotheses h1, . . . , hT whose edges are
γ1, . . . , γT . Then the error ǫ of the combined hypothesis f on the training set is bounded and
yields for the following R functions:

R(w) =
1

2
||w||22 : ǫ ≤

1
∑T

t=1
1
2
γ2
t + 1

(8)

R(w)=

N
∑

i=1

wi logwi : ǫ ≤ e−
∑

T

t=1

1

2
γ2

t (9)
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In fact, the first bound (8) holds for any 1-strongly convex R, though for some R (e.g., negative
entropy) a much tighter bound as in (9) can be achieved.

Proof : Assume w∗ = [w∗
1 , . . . , w∗

N ]⊤ is a distribution vector where w∗
i = 1

Nǫ
if f(xi) 6= ai,

and 0 otherwise. w∗ can be seen as a uniform distribution over the wrongly classified samples by
the ensemble hypothesis f . Using this vector and following the approach in [16], we derive the

upper bound of
∑T

t=1 ηt(w
∗⊤dt−w⊤

t dt) where dt = [d1t , . . . ,d
N
t ] is a loss vector as defined in

Algorithm 1.

(w∗−wt)
⊤ηtdt= (w∗ −wt)

⊤(∇R(zt+1)−∇R(wt)
)

(10a)

= BR(w∗,wt)−BR(w∗, zt+1) +BR(wt, zt+1) (10b)

≤ BR(w∗,wt)−BR(w∗,wt+1) +BR(wt, zt+1) (10c)

where the first equation follows Lemma 2 and inequality (10c) results from the relaxed version of
Lemma 1. Note that Lemma 1 can be applied here because w∗∈ S.

Further, the BR(wt, zt+1) term is bounded. By applying Lemma 3

BR(wt, zt+1) +BR(zt+1,wt) = (zt+1 −wt)
⊤ηtdt ≤

1

2
||zt+1 −wt||

2 +
1

2
η2t ||dt||

2
∗ (11)

and since BR(zt+1,wt) ≥
1
2
||zt+1 −wt||

2 due to the 1-strongly convexity of R, we have

BR(wt, zt+1) ≤
1

2
η2t ||dt||

2
∗ (12)

Now, replacing (12) into (10c) and summing it up from t = 1 to T , yields

T
∑

t=1

w∗⊤ηtdt−w⊤
t ηtdt ≤

T
∑

t=1

1

2
η2t ||dt||

2
∗ +BR(w∗,w1)−BR(w∗,wT+1) (13)

Moreover, it is evident from the algorithm description that for mistakenly classified samples

−aif(xi)= −aisign

( T
∑

t=1

ηtht(xi)

)

= sign

( T
∑

t=1

ηtd
i
t

)

≥ 0 ∀xi ∈ {x|f(xi) 6= ai} (14)

Following (14), the first term in (13) will be w∗⊤ ∑T
t=1 ηtdt ≥ 0 and thus, can be ignored. More-

over, by the definition of γ, the second term is
∑T

t=1 −w⊤
t ηtdt =

∑T
t=1 ηtγt. Putting all these

together, ignoring the last term in (13) and replacing ||dt||
2
∗ with its upper bound L, yields

−BR(w∗,w1) ≤ L
T
∑

t=1

1

2
η2t −

T
∑

t=1

ηtγt (15)

Replacing the left side with −BR = −||w∗− w1||
2 = ǫ−1

Nǫ
for the case of quadratic R, and with

−BR = log(ǫ) when R is a negative entropy function, taking the derivative w.r.t ηt and equating
it to zero (which yields ηt =

γt

L
) we achieve the error bounds in (8) and (9). Note that in the case

of R being the negative entropy function, Algorithm 1 degenerates into ADABoost with a different
choice of ηt.

Before continuing our discussion, it is important to mention that the cornerstone concept of the
proof is the choice of w∗. For instance, a different choice of w∗ results in the following max-margin
theorem.

Theorem 2. Setting ηt =
γt

L
√
t
, MABoost outputs a hypothesis of margin at least γmin − ν, where ν

is a desired accuracy level and tends to zero in O( log T√
T
) rounds of boosting.

Observations: Two observations follow immediately from the proof of Theorem 1. First, the re-
quirement of using Lemma 1 is w∗ ∈ S, so in the case of projecting onto a smaller convex set
Sk⊆S, as long as w∗∈Sk holds, the proof is intact. Second, only the relaxed version of Lemma 1
is required in the proof (to obtain inequality (10c)). Hence, if there is an approximate projection

operator Π̂S that satisfies the inequality BR(w∗, zt+1) ≥ BR
(

w∗, Π̂S(zt+1)
)

, it can be substituted

5



for the exact projection operator ΠS and the active update version of the algorithm still works. A
practical approximate operator of this type can be obtained by using the double-projection strategy
as in Lemma 4.

Lemma 4. Consider the convex sets K and S, where S ⊆ K. Then for any x ∈ S and

y ∈ R
N , Π̂S(y) = ΠS

(

ΠK(y)
)

is an approximate projection operator that satisfies BR(x,y) ≥

BR
(

x, Π̂S(y)
)

.

These observations are employed to generalize Algorithm 1. However, we want to emphasis that the
approximate Bregman projection is only valid for the active update version of MABoost.

3.1 Smooth Boosting

Let k > 0 be a smoothness parameter. A distribution w is smooth w.r.t a given distribution D if
wi ≤ kDi for all 1≤ i≤ N . Here, we consider the smoothness w.r.t to the uniform distribution,
i.e., Di =

1
N

. Then, given a desired smoothness parameter k, we require a boosting algorithm

that only constructs distributions w such that wi ≤
k
N

, while guaranteeing to output a (1− 1
k
)-

accurate hypothesis. To this end, we only need to replace the probability simplex S with Sk =

{w|
∑N

i=1 wi = 1, 0≤ wi ≤
k
N
} in MABoost to obtain a smooth distribution boosting algorithm,

called smooth-MABoost. That is, the update rule is: wt+1 = argmin
w∈Sk

BR(w, zt+1).

Note that the proof of Theorem 1 holds for smooth-MABoost, as well. As long as ǫ≥ 1
k

, the error

distribution w∗ (w∗
i =

1
Nǫ

if f(xi) 6= ai, and 0 otherwise) is in Sk because 1
Nǫ

≤ k
N

. Thus, based

on the first observation, the error bounds achieved in Theorem 1 hold for ǫ≥ 1
k

. In particular, ǫ= 1
k

is reached after a finite number of iterations. This projection problem has already appeared in the
literature. An entropic projection algorithm (R is negative entropy), for instance, was proposed
in [14]. Using negative entropy and their suggested projection algorithm results in a fast smooth
boosting algorithm with the following convergence rate.

Theorem 3. Given R(w) =
∑N

i=1 wi logwi and a desired ǫ, smooth-MABoost finds a (1 − ǫ)-
accurate hypothesis in O(log(1

ǫ
)/γ2) of iterations.

3.2 Combining Datasets

Let’s assume we have two sets of data. A primary dataset A and a secondary dataset B. The goal
is to train a classifier that achieves (1− ǫ) accuracy on A while limiting the error on dataset B to
ǫB ≤ 1

k
. This scenario has many potential applications including transfer learning [24], weighted

combination of datasets based on their noise level and emphasizing on a particular region of a sam-
ple space as a problem requirement (e.g., a medical diagnostic test that should not make a wrong
diagnosis when the sample is a pregnant woman). To address this problem, we only need to replace

S in MABoost with Sc= {w|
∑N

i=1 wi= 1, 0≤ wi ∀i ∈ A ∧ 0≤ wi≤
k
N

∀i ∈ B} where i ∈ A
shorthands the indices of samples in A. By generating smooth distributions on B, this algorithm
limits the weight of the secondary dataset, which intuitively results in limiting its effect on the final
hypothesis. The proof of its boosting property is quite similar to Theorem 1 and can be found in the
Supplement.

3.3 Sparse Boosting

Let R(w)= 1
2
||w||22. Since in this case the projection onto the simplex is in fact an ℓ1-constrained

optimization problem, it is plausible that some of the weights are zero (sparse distribution), which
is already a useful observation. To promote the sparsity of the weight vector, we want to directly
regularize the projection with the ℓ1 norm, i.e., adding ||w||1 to the objective function in the projec-
tion step. It is, however, not possible in MABoost, since ||w||1 is trivially constant on the simplex.
Therefore, following the second observation, we split the projection step into two consecutive pro-
jections. The first projection is onto K, an N -dimensional unit hypercubeK = {y|0≤ yi ≤1}. This
projection is regularized with the ℓ1 norm and the solution is then projected onto a simplex. Note
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that the second projection can only make the solution sparser (look at the projection onto simplex
algorithm in [25]).

Algorithm 2: SparseBoost

Let K be a hypercube and S a probability simplex; Set w1 = [ 1
N
, . . . , 1

N
]⊤;

At t = 1, . . . , T , train ht with wt, set ηt =
γt

N
and 0≤ αt<

γt

2
, and update

zt+1 = wt + ηtdt

yt+1 = argmin
y∈K

||y − zt+1||
2 + αtηt||y||1

wt+1 = argmin
w∈S

||w − yt+1||
2

Output the final hypothesis f(x)= sign

(

∑T
t=1 ηtht(x)

)

.

αt is the regularization factor at round t. Since αtηt controls the sparsity of the solution, it is natural
to investigate the maximum value that αt can take, provided that the boosting property still holds.
This bound is implicit in the following theorem.

Theorem 4. Suppose that SparseBoost generates weak hypotheses h1, . . . , hT whose edges are
γ1, . . . , γT . Then, as long as αt ≤

γt

2
, the error ǫ of the combined hypothesis f on the training set is

bounded as follows:
ǫ ≤

1
∑T

t=1
1
2
γt(γt − 2αt) + 1

(16)

See the Supplement for the proof. It is noteworthy that SparseBoost can be seen as a variant of the
COMID algorithm [17] with the difference that SparseBoost uses a double-projection or as called in
Lemma 4, approximate projection strategy.

3.4 Lazy Update Boosting

In this section, we present the proof for the lazy update version of MABoost (LAMABoost) in
Theorem 1. The proof technique is novel and can be used to generalize several known online learning
algorithms such as OMDA in [26] and Meta algorithm in [27]. Moreover, we show that MadaBoost
[10] can be presented in the LAMABoost setting. This gives a simple proof for MadaBoost without
making the assumption that the edge sequence is monotonically decreasing (as in [10]).

Proof : Assume w∗ = [w∗
1 , . . . , w

∗
N ]⊤ is a distribution vector where w∗

i = 1
Nǫ

if f(xi) 6= ai, and 0
otherwise. Then,

(w∗−wt)
⊤ηtdt= (wt+1 −wt)

⊤(∇R(zt+1)−∇R(zt)
)

+ (zt+1 −wt+1)
⊤(∇R(zt+1)−∇R(zt)

)

+ (w∗ − zt+1)
⊤(∇R(zt+1)−∇R(zt)

)

≤
1

2
||wt+1 −wt||

2 +
1

2
η2t ||dt||

2
∗ +BR(wt+1, zt+1)−BR(wt+1, zt) +BR(zt+1, zt)

−BR(w∗, zt+1) +BR(w∗, zt)−BR(zt+1, zt)

≤
1

2
||wt+1 −wt||

2 +
1

2
η2t ||dt||

2
∗ −BR(wt+1,wt)

+BR(wt+1, zt+1)−BR(wt, zt)−BR(w∗, zt+1) +BR(w∗, zt) (17)

where the first inequality follows applying Lemma 3 to the first term and Lemma 2 to the rest
of the terms and the second inequality is the result of applying the exact version of Lemma 1 to
BR(wt+1, zt). Moreover, since BR(wt+1,wt)−

1
2
||wt+1−wt||

2 ≥ 0, they can be ignored in (17).
Summing up the inequality (17) from t = 1 to T , yields

−BR(w∗, z1) ≤ L
T
∑

t=1

1

2
η2t −

T
∑

t=1

ηtγt (18)

where we used the facts that w∗⊤ ∑T
t=1 ηtdt ≥ 0 and

∑T
t=1 −w⊤

t ηtdt =
∑T

t=1 ηtγt. The above

inequality is exactly the same as (15), and replacing −BR with ǫ−1
Nǫ

or log(ǫ) yields the same
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error bounds in Theorem 1. Note that, since the exact version of Lemma 1 is required to obtain
(17), this proof does not reveal whether LAMABoost can be generalized to employ the double-
projection strategy. In some particular cases, however, we may show that a double-projection variant
of LAMABoost is still a provable boosting algorithm.

In the following, we briefly show that MadaBoost can be seen as a double-projection LAMABoost.

Algorithm 3: Variant of MadaBoost

Let R(w) be the negative entropy and K a unit hypercube; Set z1 = [1, . . . , 1]⊤;

At t = 1, . . . , T , train ht with wt, set ft(x)= sign

(

∑t
t′=1 ηt′ht′(x)

)

and calculate

ǫt =

∑N
i=1

1
2
|ft(xi)− ai|
N

, set ηt = ǫtγt and update

∇R(zt+1) = ∇R(zt) + ηtdt → zit+1 = zite
ηtd

i

t

yt+1 = argmin
y∈K

BR(y, zt+1) → yit+1 = min(1, zit+1)

wt+1 = argmin
w∈S

BR(w,yt+1) → wi
t+1 =

yit+1

||yt+1||1

Output the final hypothesis f(x)= sign

(

∑T
t=1 ηtht(x)

)

.

Algorithm 3 is essentially MadaBoost, only with a different choice of ηt. It is well-known that the
entropy projection onto the probability simplex results in the normalization and thus, the second
projection of Algorithm 3. The entropy projection onto the unit hypercube, however, maybe less
known and thus, its proof is given in the Supplement.

Theorem 5. Algorithm 3 yields a (1− ǫ)-accurate hypothesis after at most T = O( 1

ǫ2γ2 ).

This is an important result since it shows that MadaBoost seems, at least in theory, to be slower than
what we hoped, namely O( 1

ǫγ2 ).

4 Conclusion and Discussion

In this work, we provided a boosting framework that can produce provable boosting algorithms.
This framework is mainly suitable for designing boosting algorithms with distribution constraints.
A sparse boosting algorithm that samples only a fraction of examples at each round was derived
from this framework. However, since our proposed algorithm cannot control the exact number of
zeros in the weight vector, a natural extension to this algorithm is to develop a boosting algorithm
that receives the sparsity level as an input. However, this immediately raises the question: what is
the maximum number of examples that can be removed at each round from the dataset, while still
achieving a (1− ǫ)-accurate hypothesis?

The boosting framework derived in this work is essentially the dual of the online mirror descent
algorithm. This framework can be generalized in different ways. Here, we showed that replacing the
Bregman projection step with the double-projection strategy, or as we call it approximate Bregman
projection, still results in a boosting algorithm in the active version of MABoost, though this may
not hold for the lazy version. In some special cases (MadaBoost for instance), however, it can be
shown that this double-projection strategy works for the lazy version as well. Our conjecture is that
under some conditions on the first convex set, the lazy version can also be generalized to work with
the approximate projection operator. Finally, we provided a new error bound for the MadaBoost
algorithm that does not depend on any assumption. Unlike the common conjecture, the convergence
rate of MadaBoost (at least with our choice of η) is of O(1/ǫ2).
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[13] M. K. Warmuth, J. Liao, and G. Rätsch. Totally corrective boosting algorithms that maximize the margin.
In ICML, 2006.

[14] S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear separability: new
relaxations and efficient boosting algorithms. In COLT, 2008.

[15] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML, 2003.

[16] E. Hazan. A survey: The convex optimization approach to regret minimization. Working draft, 2009.

[17] J. C. Duchi, S. Shalev-shwartz, Y. Singer, and A. Tewari. Composite objective mirror descent. In COLT,
2010.

[18] Y. Freund and R. E. Schapire. Game theory, on-line prediction and boosting. In COLT, 1996.

[19] L. Breiman. Pasting bites together for prediction in large data sets and on-line. Technical report, Dept.
Statistics, Univ. California, Berkeley, 1997.

[20] M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward efficient agnostic learning. In COLT, 1992.

[21] A. Kalai and V. Kanade. Potential-based agnostic boosting. In NIPS. 2009.

[22] S. Ben-David, P. Long, and Y. Mansour. Agnostic boosting. In COLT. 2001.

[23] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.

[24] W. Dai, Q. Yang, G. Xue, and Y. Yong. Boosting for transfer learning. In ICML, 2007.
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Supplement

Before proceeding with the proofs, some definitions and facts need to be reminded.

Definition: Margin

Given a final hypothesis f(x) =
∑T

t=1 ηtht(x), the margin of a sample (xj , aj) is defined as m(xj) =

ajf(xj)/
∑T

t=1 ηt. Moreover, the margin of a set of examples denoted by mD is the minimum of margins over
the examples, i.e., mD=minx m(xj).

Fact: Duality between max-margin and min-edge

The minimum edge γmin that can be achieved over all possible distributions of the training set is equal to the
maximum margin (m∗ = maxη mD) of any linear combination of hypotheses from the hypotheses space.

This fact is discussed in details in [28] and [29]. It is the direct result of von Neumann’s minmax theorem and
simply means that the maximum achievable margin is γmin.

Proof of Theorem 2

The proof for the maximum margin property of MABoost, is almost the same as the proof of Theorem 1.

Let’s assume the ith sample has the worst margin, i.e., mD = m(xi). Let all entries of the error vector w∗ to

be zero except its ith entry which is set to be 1. Following the same approach as in Theorem 1, (see equation
(13)), we get

T
∑

t=1

w
∗⊤ηtdt−w

⊤
t ηtdt ≤

T
∑

t=1

1

2
η2
t ||dt||2∗ +BR(w∗,w1)−BR(w∗,wT+1) (19)

With our choice of w∗ it is easy to verify that the first term on the left side of the inequality is mD
∑T

t=1 ηt=

−∑T

t=1w
∗⊤ηtdt. By setting C = BR(w∗,w1), ignoring the last term BR(w∗,wT+1), replacing ||dt||2∗

with its upper bound L and using the identity
∑T

t=1 w
⊤
t ηtdt= −∑T

t=1 ηtγt the above inequality is simplified
to

−mD

T
∑

t=1

ηt ≤ L
T
∑

t=1

1

2
η2
t −

T
∑

t=1

ηtγt + C (20)

Replacing ηt with the value suggested in Theorem 2, i.e., ηt =
γt

L
√
t

and dividing both sides by
∑T

t=1 ηt, gives

∑T

t=1(
1√
t
− 1

t
)γ2

t

∑T

t=1
1√
t
γt

− LC
∑T

t=1
1√
t
γt

≤ mD (21)

The first term is minimized when γt=γmin . Similarly to the first term, the second term is maximized when γt
is replaced by its minimum value. This gives the following lower bound for mD:

γmin

∑T

t=1
1√
t
− 1

t
∑T

t=1
1√
t

− LC

γmin

∑T

t=1
1√
t

≤ mD (22)

Considering the facts that
∫ T+1

1
dx√
x
≤ ∑T

t=1
1√
t

and 1 +
∫ T

1
dx
x

≥ ∑T

t=1
1
t
, we get

γmin − 1 + log T

2
√
T + 1− 2

γmin − LC

γmin(
√
T + 1− 1)

≤ mD (23)

Now by taking ν = 1+log T

2
√

T+1−2
γmin + LC

γmin(
√
T+1−1)

, we have γmin − ν ≤ γmin. It is clear from (23) that ν

approaches zero as T tends to infinity with a convergence rate proportional to log T√
T

. It is noteworthy that this

convergence rate is slightly worse than of TotalBoost which is O( 1√
T
).

Proof of Lemma 4

Remember that Π̂S(y)= ΠS
(

ΠK(y)
)

. Our goal is to show that BR(x,y) ≥ BR
(

x, Π̂S(y)
)

.

To this end, we only need to repeatedly apply Lemma 1, as follows

BR(x,y) ≥ BR
(

x,ΠK(y)
)

(24)

BR
(

x,ΠK(y)
)

≥ BR
(

x, Π̂S(y)
)

(25)

which completes the proof.
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Proof of combining datasets boosting algorithm

We have to show that when the convex set is defined as

Sc= {w|
N
∑

i=1

wi= 1, 0≤ wi ∀i ∈ A ∧ 0≤ wi≤ k

N
∀i ∈ B} (26)

the error of the final hypothesis on A, i.e., ǫA, converges to zero while the error on B is guaranteed to be
ǫB ≤ 1

k
.

First, we show the convergence of ǫA to zero. This is easily obtained by setting w∗ to be an error vector with
zero weights over the training samples from B and 1

ǫANA
weights over the training set A. One can verify that

w∗ ∈ Sc, thus the proof of Theorem 1 holds and subsequently, the error bounds in (8) stating that ǫA → 0 as
the number of iterations increases.

To show the second part of the theorem that is ǫB ≤ 1
k

, vector w∗ is selected to be an error vector with zero

weights over the training samples from A and 1
ǫBNB

weights over the training set B. Note that, as long as ǫB

is greater than 1
k

, this w∗ ∈ Sc. Thus, for all 1
k
≤ ǫB the proof of Theorem 1 holds and as the bounds in (8)

show, the error decreases as the number of iterations increases. In particular in a finite number of rounds, the
classification error on B reduces to 1

k
which completes the proof.

Proof of Theorem 4

The proof is almost identical to the proof given in [17], with a slight change to take the double-projection
strategy into account. Let w∗ to be the same error vector as defined in Theorem 1. We start this proof by again
bounding the

(w∗−wt)
⊤ηtdt = BR(w∗,wt)−BR(w∗, zt+1) +BR(wt, zt+1) (27)

Remember that yt+1 is the solution of an optimization problem (Bregman projection). By writing the optimality
condition at yt+1 we have

(w∗ − yt+1)
⊤(∇R(yt+1)−∇R(zt+1)) + αtηtŕ(yt+1)

⊤(w∗ − yt+1) ≥ 0 (28)

where ŕ(y) is a sub-gradient vector of the ℓ1 norm function r(y) =
∑N

i=1 yi. By applying the three point
identity in Lemma 2, we get

BR(w∗, zt+1) ≥ BR(w∗,yt+1) +BR(yt+1, zt+1)− αtηtŕ(yt+1)
⊤(w∗ − yt+1) (29)

To bound the ŕ(yt+1)
⊤(w∗ − yt+1) in the above expression, we use the fact that r(y) is a convex function

and thus satisfies

αtηt ŕ(yt+1)
⊤(w∗ − yt+1) ≤ αtηt

(

r(w∗)− r(yt+1)
)

(30)

Hence,

−BR(w∗, zt+1) ≤ −BR(w∗,yt+1)−BR(yt+1, zt+1) + αtηt
(

r(w∗)− r(yt+1)
)

(31)

Be applying Lemma 1 (generalized Pythagorean theorem) to BR(wt, zt+1) in (27), and replacing
BR(w∗, zt+1) with its upper bound from (31), we get the following bound:

T
∑

t=1

w
∗⊤ηtdt ≤

T
∑

t=1

w
⊤
t ηtdt +

T
∑

t=1

1

2
η2
t ||dt||2∗ +BR(w∗,w1) +

T
∑

t=1

αtηt
(

1− r(yt+1)
)

(32)

Now, replacing r(yt+1) with its lower bound, i.e, 0 and using the fact that
∑T

t=1w
∗⊤ηtdt ≥ 0 (as shown in

(14)) and
∑T

t=1w
⊤
t ηtdt= −∑T

t=1 ηtγt, yields

0 ≤ −
T
∑

t=1

ηtγt +

T
∑

t=1

1

2
η2
t ||dt||2∗ +BR(w∗,w1) +

T
∑

t=1

αtηt (33)

Since in SparseBoost R(w)= 1
2
||w||22, the Bregman divergence BR(w∗,w1) = 1−ǫ

Nǫ
and ||dt||2∗ ≤ N .

Replacing them in (33) and setting ηt =
γt
N

, gives the bound in Theorem 4.
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Proof of Entropy Projection onto Hypercube (Second Update Step in MadaBoost)

Lemma 5. Let R(w)=
∑N

i=1 wi logwi−wi. Then the Bregman projection of a positive vector z ∈ R
N
+ onto

the unit hypercube K = [0, 1]N is yi = min(1, zi), i = 1, . . . , N .

To show the correctness of the above lemma, i.e., that the solution of the Bregman projection

y = argmin
y∈K

BR(y, z) (34)

is yi = min(1, zi), we only need to show that y satisfies the optimality condition

(v− y)⊤∇BR(y, z) ≥ 0 ∀v ∈ K (35)

Given R(w)=
∑N

i=1 wi logwi−wi, the gradient of BR is

∇BR(y, z) =

T
∑

i=1

log
yi
zi

(36)

Hence,

(v − y)⊤∇BR(y, z) =
∑

i∈{i:zi≥1}
(vi − yi) log

yi
zi

+
∑

i∈{i:zi<1}
(vi − yi) log

yi
zi

(37)

For zi ≥ 1, yi is equal to 1. That is, log yi
zi

= log 1
zi

< 0. On the other hand, since vi ≤ 1, (vi − yi) =

(vi − 1) ≤ 0. Thus, the first sum in (37) is always non-negative. The second sum is always zero since
log yi

zi
= log 1 = 0. That is, the optimality condition (37) is non-negative for all v which completes the proof.

Proof of Theorem 5

Its proof is essentially the same as the proof of the lazy version of MABoost with a few differences. Before
proceeding further, some definitions and facts should be re-emphasized.

First of all, since R(w) =
∑N

i=1 wi logwi − wi is 1
N

-strongly convex (see [30, p. 136]) with respect to ℓ1
norm (and not 1-strongly as in Theorem 1), the following inequality holds for the Bregman divergence:

BR(x,y) ≥ 1

2N
||x− y||21 (38)

Moreover, the following lemma which bounds ||yt|| is essential for our proof.

Lemma 6. For all t, ||yt||1 ≥ Nǫt where ǫt is the error of the ensemble hypothesis Ht(x) =
∑t

l=1 ηlhl(x)
at round t.

This lemma holds due to the fact that

yi
t = min(1, zit) = min(1, e

∑
t

l=1
ηld

i

l ) = min(1, e−aiHt(xi)) (39)

where Ht(x) =
∑t

l=1 ηlhl(x) is the output of the algorithm at round t. If Ht(xi) makes a mistake on classi-

fying xi, −aiHt(xi) will be greater than zero and thus, yi
t = 1. For the samples that are classified correctly,

−aiHt(xi) ≤ 0 and thus, 0 ≤ yi
t ≤ 1. That is, Nǫt = number of wrongly classified samples at round t ≤

∑N

i=1 y
i
t = ||yt||1 .

We are now ready to proceed with the proof of Theorem 5. Let w∗ = [w∗
1 , · · ·, w∗

N ]⊤ to be a vector where
w∗

i = 1 if f(xi) 6= ai, and 0 otherwise. Similar to the proof of the lazy update, we are going to bound the
∑T

t=1(w
∗− yt)

⊤ηtdt.

(w∗− yt)
⊤ηtdt= (yt+1 − yt)

⊤(∇R(zt+1)−∇R(zt)
)

+ (zt+1 − yt+1)
⊤(∇R(zt+1)−∇R(zt)

)

+ (w∗ − zt+1)
⊤(∇R(zt+1)−∇R(zt)

)

≤ 1

2N
||yt+1 − yt||2 +

N

2
η2
t ||dt||2∗ +BR(yt+1, zt+1)−BR(yt+1, zt) +BR(zt+1, zt)

−BR(w∗, zt+1) +BR(w∗, zt)−BR(zt+1, zt)

≤ 1

2N
||yt+1 − yt||2 +

N

2
η2
t ||dt||2∗ −BR(yt+1,yt)

+BR(yt+1, zt+1)−BR(yt, zt)−BR(w∗, zt+1) +BR(w∗, zt) (40)
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where the first inequality follows from applying Lemma 3 to the first term and Lemma 2 to the rest of the terms
and the second inequality is the result of applying the exact version of Lemma 1 to BR(yt+1, zt). Moreover,
since according to inequality (38) BR(yt+1,yt)− 1

2N
||yt+1−yt||2 ≥ 0 and hence these terms can be ignored

in (40). Summing up the inequality (40) from t = 1 to T , yields:

−BR(w∗, z1) ≤
T
∑

t=1

N

2
η2
t −

T
∑

t=1

ηtγt||yt||1 (41)

It is important to remark that ||yt||1 appearing in the last term is due to the fact that wt = yt

||yt||1 and thus,

y⊤
t ηtdt = w⊤

t ηtdt||yt||1 = ηtγt||yt||1.

Now, by replacing ηt = ǫtγt in the above equation and noting that BR(w∗, z1) = N −Nǫ, we get:

−N(1− ǫ) ≤
T
∑

t=1

N

2
ǫ2tγ

2
t −

T
∑

t=1

ǫtγ
2
t ||yt||1 (42)

From Lemma 6, it is evident that ||yt||1 ≥ Nǫt. Moreover, since ǫ ≤ ǫt, it can be replaced b ǫ, as well (though
very pessimistic). As usuall, γt is also replaced with the min edge, denoted by γ. Applying these lower bounds
in (42), yields

ǫ2 ≤ 2(1− ǫ)γ2

T
≤ γ2

T
(43)

which indicates that the proposed version of MadaBoost needs at most O( 1

ǫ2γ2 ) iterations to converge.
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