Supplementary Material

A Miscellaneous proofs

A.1 Proof of Corollary 3.2

The proof is standard and uses the self-reducibility of the hard-core model, meaning that condition-
ing on o; = 0 amounts to removing node i from the graph. Fix a graph G and parameters 6 = 0.
We show that given an algorithm to approximately compute the marginals for induced subgraphs
H C G, itis possible to approximate the partition function e®(®), denoted here by Z. We first claim
that

1
Z = . A.l

=i .
The graph G \ [i — 1] is obtained by removing nodes labeled 1,2,...,7 — 1, and p; (G \ [¢ — 1]) is
the marginal at node ¢ for this graph. We use induction on the number of nodes. The base case with
one node is trivial: Z = 1+ €% = 2 = 1/(1 — u). Suppose now that the formula (A.1) holds for
graphs on k nodes and that |[V| = k + 1. Let Z; and Z; denote the partition function summation
restricted to 03 = 0 or o3 = 1, respectively. Thus

Zo+ 721
Zy

)= 2

Z=Zy+ Zy = Zo( R

Now Z is the partition function of a new graph obtained by deleting vertex ¢, and the inductive
assumption proves the formula.

From (A.1) we see that in order to compute a y-approximation to Z ~!, it suffices to compute a v/p
approximation to each of the marginals. Now for small 7, a v approximation to Z~! gives a 27
approximation to Z, and this completes the proof.

A.2 Proof of Lemma 4.2

We wish to show that 1(0) € M, for a graph G = (V, E) of maximum degree d and p > 2¢+1.
Consider a particular node ¢ € V with neighbors N (i), and let d; = |N(¢)| denote its degree.
We use the notation S;, .S, , SZ@ defined in Subsection 5.1. A collection of independent set vectors
S C Z(G) is assigned probability P(S) = |S|/|Z(G)| for our choice § = 0, so it suffices to argue
about cardinalities.

We first claim that |S;| > 27¢|S?|. This follows by observing that each set in S’ gets mapped to
a set in S; by removing the neighbors N;, and moreover at most 2¢ sets are mapped to the same
set in S;. Next, we note that |S;| = |S; | since the removal of node ¢ is a bijection from S; to
S, and hence they are of the same cardinality. Combining these observations with the fact that
P(S;) + P(S;) + P(S?) = 1, we get the estimate ; = P(S;) > 1/(27¢ +2) > 2741,

Next, we show for each coordinate 7 that the vector 1/ = 1+ 279" e; is in M, which will complete
the proof that 4(0) is M. Let 1, = Po (o) denote the probability assigned to o under the distribu-
tion with parameters 6 = 0, so that = > _ ez lo * 0- Similarly to the proof of Lemma 5.2, we

define a new probability measure

ne +27971 ifo € S
n=4n,—2791 ifoesS;
No otherwise .

This is a valid probability distribution because 7, > 297! for ¢ € S;. One can check that

W = sz Nyo has p; = p; foreach j # i and pj = p; + 27971, The point 1/, being a convex
combination of independent set vectors, must be in M, and hence so must x + 2—d-lg..
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B Proofs for projected gradient method

B.1 Proof of Lemma 4.4

The proof here is a slight modification of the proof of Theorem 3.1 in [22].

Observe first that if PP is the projection onto a convex set, then P is a contraction: ||7?(x) y;||2
||z —yl|2 (cf. Prop 2.1.3 in [24]). Using the the convexity inequality G(z) — G(z*) < VG(z

x*), the definition = sup, ¢ IVG(2)— VG(z)||1, and the update formula xt“ =at— sVG( b,
it follows that

(
= VG (2! — %) + (VG ()T — VG (H)T)(a! — 2*)
(@) (2" = 2*) +nllz" — 2"||oo

(Z‘t _ Z‘H_l)T(.Z‘t _ 33*) +7

(o = 2™|I3 + [l = 23 — & —2"[3) +n

t *

S
= 5" =25 = [l = 2™ [13) + S VG5 +n.

Adding the preceding inequality for ¢ = 1 to ¢ = T, the sum telescopes and we get

RQ

> IGE") - G < o + §L2T+nT:RL\/T+nT. (B.1)
s

t=1

Here we used the definitions R = ||z! — 2*|| and L = sup, ¢ ||§Z’(x) || and the last equality is by

the choice s = %. Now defining 27 = % ZtT=1 z¢, dividing (B.1) through by 7" and using the

convexity of G to apply Jensen’s inequality gives

GET) - G < ]i; +ap.

Thus in order to make the right hand side smaller than ¢ it suffices to take T = 4R%L? /6% and
n=24/2.

B.2 Proof of Lemma 4.5

We start by showing that the gradient V® is p2-Lipschitz. Recall that V®(0) = (). We
prove a bound on |u;(#) — pi(6')| by changing one coordinate of 6 at a time. Let (") =

(01,...,0r,0,41,...,0,). The triangle inequality gives

|14 (6) o) = Zlu (07 — (0 +V)].

A direct calculation shows that
0
MZ(Q) P<Ui =0r = 1) - /’Li(e>ur(9) :
00,
Since this is uniformly bounded by one in absolute value, we obtain the inequality |u;(0) — p; (6")] <
|6 — 6|1 or
[1(0) = u(@)]lx < pl|0 = 0']l1
Hence ,
114(8) = (012 < [11(0) = p(0)]lx < pll0 = O'[l1 < P20 — 0|2,

ie., Vois p%-Lipschitz.
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Now the function V& being p%-Lipschitz implies that @ is p%-strongly smooth, where ® is -
strongly smooth if

Bz + A) = B() < (VO(z), A) + SHAI

To see this, we write

D(z+A)—d(z) = /01<V<I>(x + 7A), A)dr = (VO®(z),A) + /01 (VO(z +7A) — VO(z))dr

< (VO(), A) + p} / (rA, A)dr
— (VO(2),A) + Lpt A2,

Now Theorem 6 from [25] or Chapter 5 of [26] imply that ®*, being the Fenchel conjugate of ®, is
p*% -strongly convex, meaning

(@ +A) = @7 (2) 2 (VO (), A) + $p7 7| A
This gives the desired bound on ||z — 2*|| in terms of ®*(x) — <I>*( ).

C Proofs of gradient bounds

C.1 Proof of Lemma 5.3

We suppose for the sake of deriving a contradiction that ; > p/d. Let i = p+ 6 - e;, and let
7' be a probability measure such that i = > 1, 0. Now 7'(S;) = ji; > 6, and we define the
non-negative measure y (summing to less than one) with support .S; as

5 .
n 75 ifocesS;

0 otherwise .

In this way, v, < n}, and (.S;) = d. We define a new probability measure

7]:7 — Yo ifo € 5;
Mo = 1> +Yougiy ifo €S, (C.1)
., otherwise ,

and one may check that y = ) ;7,0 and n(S;") > (S;) = 6. We use the definitions in
Subsection 5.1 to get

F.(0) 2 p-0—1log ( Zexp(a -9))

ocl
exp(p - 0)
—;% > o exp(o-0)
exp(p - 0)
2 > 8 TS+ 0 F(5) + 1(57)
pES;
f(57)
< Z 1, log ———
s P e f(S))

) (d)
< —n(S;)0; < —p < —log|Z| = F(0).

Here (a) follows by restricting the sum to .S;7 € Z(G) and from the fact that ) _exp(o - 0) =
F(S7) + €% £(S7) + £(S?), (b) follows by retaining only the term €% f(.S;”) in the denominator
and replacing exp(p 0) for p € S; with f(S;) = > pes- exp(p - 0), thereby increasing the

argument to the logarithm, (c) uses the fact that (.S;”) > ¢ and the assumption that 6, > p/d, and
(d) follows from the crude bound on number of independent sets |Z| < 2P and log2 < 1.

Finally, the relation 6(p) = arg max, F,(¢) from Section 3 contradicts F),(#) < F(0).
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C.2 Proof of Lemma 5.4

We suppose for the sake of contradiction that §; < —p/d and show that 6 cannot be the vector of
canonical parameters corresponding to .

Since 1 € M, there exists a non-negative measure 7 so that y = Y __;7,0, and furthermore
n(S;) = p; > 6. Now arguments similar to the proof of Lemma 5.3 above give

Fu(0) = p- 0 —log (Zcxp<a -0))

ex 0
—anlog p(p-0)

et > s exp(o-0)
exp(p - 0)
< 1
p; T8 TS + P (S ) + 1(SD)
e’ f(S;)
< I L
,,; T8 (S + P (S )+ £(ST)
<> mpbi =n(S:)0; < —0p/5 = —p < —log|Z| = F(0).
pES;

As before, this contradicts the relation §(p) = arg maxy F),(6).

D Proof of Proposition 4.6

Starting with z* in M, our goal is to show that z/t? = Ps (2! — sf(z')) remains in M. The
proof will then follow by induction, because our initial point ' is in M, by the hypothesis.

We will use the fact that all hyperplane constraints for M, except for the non-negativity constraints
x; > 0, can be written as (h, z) < 1 for a vector h € [0, 1]. This can be justified using the fact that
e; € M for each ¢ together with the property that for any ;» € M, any coordinate of 4 can be set to
zero while remaining in M.

Given our current iterate 2, we call a constraint (h, z) < 1 active if

1 — 2¢||h]loo < (h,2") <1 —€|lhloo (D.1)

and critical if
1 —€|lhlloo < (hy2'). (D.2)
Observe that an active constraint has a coordinate i (namely i with h; = ||h]|) with (h, zt + 2¢ -

e;) = (h,z') + 2h;e > 1 and similarly a critical constraint has a coordinate ¢ with (h, x* +¢€-¢;) =
<h,1’t> —+ hiG > 1.

For xt € M there are (by definition) no critical constraints, but there may be active constraints.
We will first show that inactive constraints can at worst become active for the next iterate z**1!,
which requires only that the step-size is not too large relative to the magnitude of the gradient. Then
we show that the active constraints have a repulsive property and that z**! is no closer than ! to
any active constraint, that is, (h, z'*1) < (h,zt). Thus, if 2 is in M, then there are no critical
constraints for z'™! and every coordinate i satisfies (h, /71 + € - e;) < 1 for all constraint vectors
h. Since the projection P> ensures that x’é“ > ge, the update 2'*! is in M;. We now focus on
inactive constraints.

Inactive constraint. We consider an inactive constraint 5, meaning that (h, x?) + 2¢||h]|o < 1.

By assumption the step size s = (ﬁ) so the increment in any coordinate j is bounded as

2t —afh < 50 (a")]
< 510 (x") — 0;(a")] + 516, (2")]
< (1+7)s10;(=")]

<e€/p

A
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using Lemma 5.3 and fact that v < 1. These bounds give
(h, 2ty = (h,2?) + (b, 2T — (h,z') + Zh gt

< (h,a") + p(e/p)Ihlloe <1 ellhllo

which shows that the constraint is not critical for 2+ and at worst becomes active.

Active constraint. The rough idea is that if a coordinate ¢ cannot be increased by 2¢ while remain-
ing in M, then the parameter #; must be sufﬁciently large, and the next iterate z'*! will decrease
enough to overcome the possible i 1ncrease in other coordinates. This argument does not work, how-
ever, because it might be the case that x! = ge, which prevents any decrease (i.., xt+ > zt) due to
the projection P>. Instead, we start by showmg that if some coordinate cannot be 1ncreased by 2e,
then there must be a reasonably large coordinate which cannot be increased by 4pe.

Lemma D.1. If h is an active constraint, then there is a coordinate £ € V with z* + (4pe)e, ¢ M
and x} > 2qe.

Proof. If h is active then 1 — 2€||h| < (h,z"). Using the fact that h; < 1 for all j we have
1—2¢ <1—2¢||hlloc < (h,2"). (D.3)

Let B C V consist of coordinates j with small entries xt» < 2¢q. Then

=Y hjat + 3 hjat < |Bl(2eq) + Y hyat < = +Zhjz] (D.4)

jeB jeBe jeBe° jeB°
The last inequality used the crude estimate |B| < p. Combining (D.3) and (D.4) and rearranging
gives
> hjal>1-2e—2/p>1-3/p,
jeBe
and it follows that there is an ¢ € B¢ for which hy > hea} > 1/2p. Adding hy - (4pe) > 2e to both

sides of (D.3) shows that o + (4pe)e, violates the inequality (h,x) < 1. This proves the lemma,
since ), > 2qe for £ € B°. O

We are now ready to prove that (h,z‘*!) < (h,z'). Let ¢ be the coordinate promised by
Lemma D.1, with 2* + (4pe)e; ¢ M and z}, > 2ge. From Lemma 5.2, we know that 6,(z*) >
log (& — 1) > 3logp, for p large enough. By definition of # being a «-approximation to 6,
Oo(z') > (1 — v)0,(2"). Therefore, since v — 0 as p — oo, it follows that for p large enough
0¢(z') > logp. This implies

it — 2t < —min(sf(zt), slogp) < —slogp. (D.5)

Here we used the fact that 2} > ge + slog p so the projection P> does not affect this coordinate.
Denote by D the set of coordinates
D={je[p: (ha’)+ Leh; > 1}.
These coordinates hAave non-positive increment: since x; > ge for x € M;, Lemma 5.1 implies that
6; > 0, and hence 6; > (1 —)8; > 0, or
m§-+1—x§ <0 forjeD.

In contrast, coordinates in D¢ might increase, but by a limited amount: since =t € M, all coordi-
nates j € D€ satisfy x§ > ge, and Lemma 5.4 gives the bound 6; > —p/qe, or

acé“ — x§ < (1+7)| — s8] <2sp/qe forall j € D°. (D.6)

Additionally, by the definition of D and the fact that increasing coordinate ¢ by 4pe violates (h, x) <
1,if j € D¢, then 4pehy > qeh; /2, or

hj < 8phe/q forall j € D°. (D.7)
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Using the crude bound |D€| < p together with (D.6) and (D.7) gives

Sphe 2 4p?
3 hi(attt —at) < D91 T < s py < dshy. (D.8)
= ¢ g T g

Counting the contributions from D€ in (D.8) in addition to D (none) and ¢ (negative as per (D.5)),

it follows that
(¢, a"™) = (h,a") + (h,a"*! —a") ) + she(4 — 6e)

< (h,z!
< (h,x") + shy(4 — Inp)
<

Here we have used the fact that p is large enough (p > e* suffices for this last step). In words, we
move away from any active hyperplane constraint. This completes the proof.
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