
Supplementary Material

A Miscellaneous proofs

A.1 Proof of Corollary 3.2

The proof is standard and uses the self-reducibility of the hard-core model, meaning that condition-
ing on �

i

= 0 amounts to removing node i from the graph. Fix a graph G and parameters ✓ = 0.
We show that given an algorithm to approximately compute the marginals for induced subgraphs
H ✓ G, it is possible to approximate the partition function e�(0), denoted here by Z. We first claim
that

Z =

p

Y

i=1

1

1� µ
i

(G \ [i� 1])

. (A.1)

The graph G \ [i� 1] is obtained by removing nodes labeled 1, 2, . . . , i� 1, and µ
i

(G \ [i� 1]) is
the marginal at node i for this graph. We use induction on the number of nodes. The base case with
one node is trivial: Z = 1 + e0 = 2 = 1/(1 � µ). Suppose now that the formula (A.1) holds for
graphs on k nodes and that |V | = k + 1. Let Z0 and Z1 denote the partition function summation
restricted to �1 = 0 or �1 = 1, respectively. Thus

Z = Z0 + Z1 = Z0(
Z0 + Z1

Z0
) =

Z0

1� µ1
.

Now Z0 is the partition function of a new graph obtained by deleting vertex i, and the inductive
assumption proves the formula.

From (A.1) we see that in order to compute a �-approximation to Z�1, it suffices to compute a �/p
approximation to each of the marginals. Now for small �, a � approximation to Z�1 gives a 2�
approximation to Z, and this completes the proof.

A.2 Proof of Lemma 4.2

We wish to show that µ(0) 2 M1 for a graph G = (V,E) of maximum degree d and p � 2

d+1.
Consider a particular node i 2 V with neighbors N(i), and let d

i

= |N(i)| denote its degree.
We use the notation S

i

, S�
i

, S↵
i

defined in Subsection 5.1. A collection of independent set vectors
S ✓ I(G) is assigned probability P(S) = |S|/|I(G)| for our choice ✓ = 0, so it suffices to argue
about cardinalities.

We first claim that |S
i

| � 2

�d|S↵
i

|. This follows by observing that each set in S↵
i

gets mapped to
a set in S

i

by removing the neighbors N
i

, and moreover at most 2d sets are mapped to the same
set in S

i

. Next, we note that |S
i

| = |S�
i

| since the removal of node i is a bijection from S
i

to
S�
i

and hence they are of the same cardinality. Combining these observations with the fact that
P(S

i

) + P(S�
i

) + P(S↵
i

) = 1, we get the estimate µ
i

= P(S
i

) � 1/(2�d

+ 2) � 2

�d�1.

Next, we show for each coordinate i that the vector µ0
= µ+2

�d�1e
i

is in M, which will complete
the proof that µ(0) is M1. Let ⌘

�

= P0(�) denote the probability assigned to � under the distribu-
tion with parameters ✓ = 0, so that µ =

P

�2I(G) ⌘� · �. Similarly to the proof of Lemma 5.2, we
define a new probability measure

⌘0
�

=

8

<

:

⌘
�

+ 2

�d�1 if � 2 S
i

⌘
�

� 2

�d�1 if � 2 S�
i

⌘
�

otherwise .

This is a valid probability distribution because ⌘
�

� 2

�d�1 for � 2 S�
i

. One can check that
µ0

=

P

�2I ⌘0
�

� has µ0
j

= µ
j

for each j 6= i and µ0
i

= µ
i

+ 2

�d�1. The point µ0, being a convex
combination of independent set vectors, must be in M, and hence so must µ+ 2

�d�1e
i

.
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B Proofs for projected gradient method

B.1 Proof of Lemma 4.4

The proof here is a slight modification of the proof of Theorem 3.1 in [22].

Observe first that if P is the projection onto a convex set, then P is a contraction: kP(x)�P(y)k2 
kx�yk2 (cf. Prop 2.1.3 in [24]). Using the the convexity inequality G(x)�G(x⇤

)  rG(x)T (x�
x⇤

), the definition ⌘ = sup

x2C

kdrG(x)�rG(x)k1, and the update formula xt+1
= xt�sdrG(xt

),
it follows that

G(xt

)�G(x⇤
)  rG(xt

)

T

(xt � x⇤
)

=

drG(xt

)

T

(xt � x⇤
) + (

drG(xt

)

T �rG(xt

)

T

)(xt � x⇤
)

 drG(xt

)

T

(xt � x⇤
) + ⌘kxt � x⇤k1

=

1

s
(xt � xt+1

)

T

(xt � x⇤
) + ⌘

=

1

2s
(kxt � x⇤k22 + kxt � xt+1k22 � kxt+1 � x⇤k22) + ⌘

=

1

2s
(kxt � x⇤k22 � kxt+1 � x⇤k22) +

s

2

k drG(xt

)k22 + ⌘ .

Adding the preceding inequality for t = 1 to t = T , the sum telescopes and we get

T

X

t=1

[G(xt

)�G(x⇤
)]  R2

2s
+

s

2

L2T + ⌘T = RL
p
T + ⌘T . (B.1)

Here we used the definitions R = kx1 � x⇤k and L = sup

x2C

kdrG(x)k and the last equality is by
the choice s =

R

L

p
T

. Now defining x̄T

=

1
T

P

T

t=1 x
t, dividing (B.1) through by T and using the

convexity of G to apply Jensen’s inequality gives

G(x̄T

)�G(x⇤
)  RLp

T
+ ⌘ .

Thus in order to make the right hand side smaller than � it suffices to take T = 4R2L2/�2 and
⌘ = �/2.

B.2 Proof of Lemma 4.5

We start by showing that the gradient r� is p
3
2 -Lipschitz. Recall that r�(✓) = µ(✓). We

prove a bound on |µ
i

(✓) � µ
i

(✓0)| by changing one coordinate of ✓ at a time. Let ✓(r) =

(✓1, . . . , ✓r, ✓0
r+1, . . . , ✓

0
p

). The triangle inequality gives

|µ
i

(✓)� µ
i

(✓0)| =
p�1
X

r=0

|µ
i

(✓(r))� µ
i

(✓(r+1)
)| .

A direct calculation shows that

@

@✓
r

µ
i

(✓) = P(�
i

= �
r

= 1)� µ
i

(✓)µ
r

(✓) .

Since this is uniformly bounded by one in absolute value, we obtain the inequality |µ
i

(✓)�µ
i

(✓0)| 
k✓ � ✓0k1 or

kµ(✓)� µ(✓0)k1  pk✓ � ✓0k1
Hence

kµ(✓)� µ(✓0)k2  kµ(✓)� µ(✓0)k1  pk✓ � ✓0k1  p
3
2 k✓ � ✓0k2 ,

i.e., r� is p 3
2 -Lipschitz.
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Now the function r� being p
3
2 -Lipschitz implies that � is p

3
2 -strongly smooth, where � is �-

strongly smooth if

�(x+�)� �(x)  hr�(x),�i+ 1

2

�k�k2 .
To see this, we write

�(x+�)� �(x) =

Z 1

0
hr�(x+ ⌧�),�id⌧ = hr�(x),�i+

Z 1

0

�

r�(x+ ⌧�)�r�(x)
�

d⌧

 hr�(x),�i+ p
3
2

Z 1

0
h⌧�,�id⌧

= hr�(x),�i+ 1
2p

3
2 k�k2 .

Now Theorem 6 from [25] or Chapter 5 of [26] imply that �⇤, being the Fenchel conjugate of �, is
p�

3
2 -strongly convex, meaning

�

⇤
(x+�)� �

⇤
(x) � hr�

⇤
(x),�i+ 1

2p
� 3

2 k�k2 .
This gives the desired bound on kx� x⇤k in terms of �⇤

(x)� �

⇤
(x⇤

).

C Proofs of gradient bounds

C.1 Proof of Lemma 5.3

We suppose for the sake of deriving a contradiction that ✓
i

> p/�. Let µ̄ = µ + � · e
i

, and let
⌘0 be a probability measure such that µ̄ =

P

�2I ⌘0
�

�. Now ⌘0(S
i

) = µ̄
i

� �, and we define the
non-negative measure � (summing to less than one) with support S

i

as

�
�

=

(

⌘0
�

· �

⌘

0(Si)
if � 2 S

i

0 otherwise .

In this way, �
�

 ⌘0
�

and �(S
i

) = �. We define a new probability measure

⌘
�

=

8

<

:

⌘0
�

� �
�

if � 2 S
i

⌘0
�

+ �
�[{i} if � 2 S�

i

⌘0
�

otherwise ,
(C.1)

and one may check that µ =

P

�2I ⌘
�

� and ⌘(S�
i

) � �(S
i

) = �. We use the definitions in
Subsection 5.1 to get

F
µ

(✓) , µ · ✓ � log

�

X

�2I
exp(� · ✓)

�

=

X

⇢2I
⌘
⇢

log

exp(⇢ · ✓)
P

�

exp(� · ✓)

(a)
=

X

⇢2S

�
i

⌘
⇢

log

exp(⇢ · ✓)
f(S�

i

) + e✓if(S�
i

) + f(S↵
i

)

(b)


X

⇢2S

�
i

⌘
⇢

log

f(S�
i

)

e✓if(S�
i

)

 �⌘(S�
i

)✓
i

(c)
< �p

(d)
 � log |I| = F (0) .

Here (a) follows by restricting the sum to S�
i

✓ I(G) and from the fact that
P

�

exp(� · ✓) =

f(S�
i

) + e✓if(S�
i

) + f(S↵
i

), (b) follows by retaining only the term e✓if(S�
i

) in the denominator
and replacing exp(⇢ · ✓) for ⇢ 2 S�

i

with f(S�
i

) =

P

⇢2S

�
i
exp(⇢ · ✓), thereby increasing the

argument to the logarithm, (c) uses the fact that ⌘(S�
i

) � � and the assumption that ✓
i

> p/�, and
(d) follows from the crude bound on number of independent sets |I|  2

p and log 2 < 1.

Finally, the relation ✓(µ) = argmax

✓

F
µ

(✓) from Section 3 contradicts F
µ

(✓) < F (0).
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C.2 Proof of Lemma 5.4

We suppose for the sake of contradiction that ✓
i

< �p/� and show that ✓ cannot be the vector of
canonical parameters corresponding to µ.

Since µ 2 M, there exists a non-negative measure ⌘ so that µ =

P

�2I ⌘
�

�, and furthermore
⌘(S

i

) = µ
i

� �. Now arguments similar to the proof of Lemma 5.3 above give

F
µ

(✓) = µ · ✓ � log

�

X

�

exp(� · ✓)
�

=

X

⇢2I
⌘
⇢

log

exp(⇢ · ✓)
P

�

exp(� · ✓)


X

⇢2Si

⌘
⇢

log

exp(⇢ · ✓)
f(S�

i

) + e✓if(S�
i

) + f(S⇤
i

)


X

⇢2Si

⌘
⇢

log

e✓if(S�
i

)

f(S�
i

) + e✓if(S�
i

) + f(S⇤
i

)


X

⇢2Si

⌘
⇢

✓
i

= ⌘(S
i

)✓
i

< ��p/� = �p  � log |I| = F (0) .

As before, this contradicts the relation ✓(µ) = argmax

✓

F
µ

(✓).

D Proof of Proposition 4.6

Starting with xt in M1, our goal is to show that xt+1
= P�(xt � sˆ✓(xt

)) remains in M1. The
proof will then follow by induction, because our initial point x1 is in M1 by the hypothesis.

We will use the fact that all hyperplane constraints for M, except for the non-negativity constraints
x
i

� 0, can be written as hh, xi  1 for a vector h 2 [0, 1]p. This can be justified using the fact that
e
i

2 M for each i together with the property that for any µ 2 M, any coordinate of µ can be set to
zero while remaining in M.

Given our current iterate xt, we call a constraint hh, xi  1 active if
1� 2✏khk1 < hh, xti  1� ✏khk1 (D.1)

and critical if
1� ✏khk1 < hh, xti . (D.2)

Observe that an active constraint has a coordinate i (namely i with h
i

= khk1) with hh, xt

+ 2✏ ·
e
i

i = hh, xti+2h
i

✏ > 1 and similarly a critical constraint has a coordinate i with hh, xt

+ ✏ · e
i

i =
hh, xti+ h

i

✏ > 1.

For xt 2 M1 there are (by definition) no critical constraints, but there may be active constraints.
We will first show that inactive constraints can at worst become active for the next iterate xt+1,
which requires only that the step-size is not too large relative to the magnitude of the gradient. Then
we show that the active constraints have a repulsive property and that xt+1 is no closer than xt to
any active constraint, that is, hh, xt+1i  hh, xti. Thus, if xt is in M1, then there are no critical
constraints for xt+1 and every coordinate i satisfies hh, xt+1

+ ✏ · e
i

i  1 for all constraint vectors
h. Since the projection P� ensures that xt+1

i

� q✏, the update xt+1 is in M1. We now focus on
inactive constraints.

Inactive constraint. We consider an inactive constraint h, meaning that hh, xti + 2✏khk1  1 .

By assumption the step size s =
�

✏

2p

�2 so the increment in any coordinate j is bounded as

xt+1
j

� xt

j

 s|ˆ✓
j

(xt

)|

 s|ˆ✓
j

(xt

)� ✓
j

(xt

)|+ s|✓
j

(xt

)|
 (1 + �)s|✓

j

(xt

)|
 ✏/p
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using Lemma 5.3 and fact that �  1. These bounds give

hh, xt+1i = hh, xti+ hh, xt+1 � xti  hh, xti+
X

j

h
j

(xt+1
j

� xt

j

)

 hh, xti+ p(✏/p)khk1  1� ✏khk1
which shows that the constraint is not critical for xt+1 and at worst becomes active.

Active constraint. The rough idea is that if a coordinate i cannot be increased by 2✏ while remain-
ing in M, then the parameter ✓

i

must be sufficiently large, and the next iterate xt+1 will decrease
enough to overcome the possible increase in other coordinates. This argument does not work, how-
ever, because it might be the case that xt

i

= q✏, which prevents any decrease (i.e., xt+1
i

� xt

i

) due to
the projection P�. Instead, we start by showing that if some coordinate cannot be increased by 2✏,
then there must be a reasonably large coordinate which cannot be increased by 4p✏.
Lemma D.1. If h is an active constraint, then there is a coordinate ` 2 V with xt

+ (4p✏)e
`

/2 M
and xt

`

� 2q✏.

Proof. If h is active then 1� 2✏khk1 < hh, xti. Using the fact that h
j

 1 for all j we have

1� 2✏  1� 2✏khk1 < hh, xti . (D.3)

Let B ✓ V consist of coordinates j with small entries xt

j

 2✏q. Then

hh, xti =
X

j2B

h
j

xt

+

X

j2B

c

h
j

xt  |B|(2✏q) +
X

j2B

c

h
j

xt  2

p
+

X

j2B

c

h
j

xt

j

. (D.4)

The last inequality used the crude estimate |B|  p. Combining (D.3) and (D.4) and rearranging
gives

X

j2B

c

h
j

xt

j

� 1� 2✏� 2/p � 1� 3/p ,

and it follows that there is an ` 2 Bc for which h
`

� h
`

xt

`

� 1/2p. Adding h
`

· (4p✏) � 2✏ to both
sides of (D.3) shows that xt

+ (4p✏)e
`

violates the inequality hh, xi  1. This proves the lemma,
since xt

`

> 2q✏ for ` 2 Bc.

We are now ready to prove that hh, xt+1i  hh, xti. Let ` be the coordinate promised by
Lemma D.1, with xt

+ (4p✏)e
`

/2 M and xt

`

� 2q✏. From Lemma 5.2, we know that ✓
`

(xt

) �
log

�

q

4p � 1

�

� 3 log p, for p large enough. By definition of ˆ✓ being a �-approximation to ✓,
ˆ✓
`

(xt

) � (1 � �)✓
`

(xt

). Therefore, since � ! 0 as p ! 1, it follows that for p large enough
ˆ✓
`

(xt

) � log p. This implies

xt+1
`

� xt

`

 �min(sˆ✓(xt

), s log p)  �s log p . (D.5)

Here we used the fact that xt

`

� q✏+ s log p so the projection P� does not affect this coordinate.

Denote by D the set of coordinates

D = {j 2 [p] : hh, xti+ q

2✏hj

> 1} .
These coordinates have non-positive increment: since x

j

� q✏ for x 2 M1, Lemma 5.1 implies that
✓
j

� 0, and hence ˆ✓
j

� (1� �)✓
j

� 0, or

xt+1
j

� xt

j

 0 for j 2 D .

In contrast, coordinates in Dc might increase, but by a limited amount: since xt 2 M1, all coordi-
nates j 2 Dc satisfy xt

j

� q✏, and Lemma 5.4 gives the bound ✓
j

� �p/q✏, or

xt+1
j

� xt

j

 (1 + �)|� s✓
j

|  2sp/q✏ for all j 2 Dc . (D.6)

Additionally, by the definition of D and the fact that increasing coordinate ` by 4p✏ violates hh, xi 
1, if j 2 Dc, then 4p✏h

`

> q✏h
j

/2, or

h
j

< 8ph
`

/q for all j 2 Dc . (D.7)
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Using the crude bound |Dc|  p together with (D.6) and (D.7) gives

X

j2D

c

h
j

(xt+1
j

� xt

j

)  |Dc|8ph`

q
· 2sp
q✏

 s
4p2

q2✏
h
`

 4sh
`

. (D.8)

Counting the contributions from Dc in (D.8) in addition to D (none) and ` (negative as per (D.5)),
it follows that

hc, xt+1i = hh, xti+ hh, xt+1 � xti  hh, xti+ sh
`

(4� ✓
`

)

 hh, xti+ sh
`

(4� ln p)

 hh, xti .

Here we have used the fact that p is large enough (p � e4 suffices for this last step). In words, we
move away from any active hyperplane constraint. This completes the proof.
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