A Proofs for Section

Proof of Lemmal[l] Without loss of generality, assume that we have reordered coordinates such that

|z1] > |z2] > ... > |z7|. Since the projection operator Ps(-) operates by selecting the largest
elements by magnitude, we have 61 = 21,...,0, = z;and 0,11 =052 = ... = 0|7 = 0.
Also define % = P,-(z). By the above argument, we have 7 = z1,...,0% = z,- and 6% | =
0% 5 =...= 67 = 0. Now we have
0 =2 0=z __1 g (1 Z
— = z> Z
(Il =5 =5 [I|-s, ANV III
i=s*+1 i=s+1
5—s* s —s
z+ (1] = 8)241 > 0, ©)

> 5 ;
[l =s* % ([ = )] = s)
since the coordinates of z are arranged in decreasing order of magnitude. Combining the above with
the observation that, due to the projection property ||0* — z|| > ||6* O

Proof of Theorem([l} Recall that 8't! = P, (6" — —/g ) where ' = 2 < 1. Let S* = supp(0?),
S* = supp(0*), and ST = supp(0'*1). Also, let It S*uStu S’“rl

Now, using the RSS property and the fact that supp(6¢) C I* and supp(8**1) C I, we have:
L
FOF) —f(6) < (6" —6',g") + §||‘9t+1 - 0",
77/ ,17/ 2
7 U0 gt 3+ (1 - ) (0™~ 0'.g). (10)

As supp(0') = S, supp(9*+1) = StHL and St\ St St are disjoint, we have:

L
= S5 — 05+ 7 g3 -
(64! = 0',g) = ~(B5\sren,son) + (O3 = Ofrer ).
& {0hsrir gose) — Llghenl3

n n n
< 57 lgben g3 = 37 gk s ll3 — Fllghenl3,

Ui ¢ n Moyt

= —ﬁ||gf5t+1\stH§ - EHQtSt\smH% - f||9§tm5t+1 H%

n' 2
< =57 lgsiuse 2, (11)

where the equality (; follows from the gradient step, i.e., 0?;}1 =0L.. — %/ 9%+ The inequality
(2 follows using the fact that '™ is obtained using hard thresholding and the fact that |S*\ S**!| =
|SEHI\ S, as follows:

)?

HetSt\St+1 - LQSt\St+1||2 <le f+1\stH2 T2 ||gfgt+1\st||§- (12)

The equality (3 follows from Hgst+1 ||2 = ||gst+1\st ||2 + Hgstmstﬂ ||%

Hence, using (T0) and (TT)), we have:

s (n')? n'(1—1n)
f(ﬂ”l)—f(et)éfIIﬂt+1 O + 7 - ginls = 57 lgh s — =57 llgsuwse [,
' (n')* (n')?
=f||9t+1 O + 7 ginlls = 57| = 57 lgseus-1I3
n"(1—7n)
— 57 lgsuse 2 (13)

Next, let us try to upper bound the first two terms on the right hand side above Since I*\ (StUS*) =
S\ (St U S*) C S, we have 01t\ siusey = O\ (stuse) — Lgp\(stus*) However, as
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efrf\st = 0, we actually have 9§t+\1(stus*) = —%gﬁt\(stus*). Now let us choose a set R C S*\ S+1
such that |R| = |S*™1\(S* U S*)|. Such a choice is possible since | ST\ (ST US*)| = |SH\ S| —
|(STH1 N S*)\S?| (which itself is a consequence of the fact that |[S'™!| = |S?|). Moreover, since

01 is obtained by hard-thresholding (Ot - "f/ gt), for any choice of R made above, we have:

') '
T2 1g7e\(stuslla = 5> 16k — +gkll5- (14)

0t+1
|| !

Using above equation, and the fact that 8% = 0 (since R C S+1), we have:

/ \2
70t+1 ot, n tt2_(77)
l e+ 91 ll5 2L
' L, n
o R L A N
noo
= *||0§j\13 —07\p + i -grn\rll3- (15)

We can bound the size of I'\R as [I'\R| < [S*F1] + |[(S\STT\R| + |S*| < s+ (ST n

S*)\S?| + s* < s+ 2s*. Also, since S+ C (I*\R), we have Oﬁf\lR = Py(071\p — LgIt\R)

Using the above observation with (I3)) and Lemmal [T} we get:

U4 (n')?
*||‘9t+1 07+ — - gh 5 — ||g§t\(5tu5*)||§

t L 2L /

Sg M”BP\R 0§t\3+%-g§t\3||§,

%gi =565 - 9§t+%’-g§tllé7

B siss ' (’7’<0* _ 0" + §||9* 0'13 + ( ||gn||2>

22 (s —ason+ B0 -0+ Ul grig) . ao

where the inequality (q

is a positive and increasing function on the interval x > a if @ > b > 0. Note that since we have
St C (I'\R), we get |I"\R| > s. The inequality ( follows by using RSC.

Using (13), (T6)), and using ST\ (St U S*) C (St U SY), we get:

fo ) - 8 < 2 (507 - s et + 0~ 03+ S g3
~ 54 s* 2L
(n')? n'(1-1n)
— Tl gk 18 = T lghers seuse I3 a7
We now set 7’ = 2/3 as per our earlier choice and set s = 32 (5)2 , so that we have +; <
Win,a). Since L > «, we also have WZ_HW) < 1%. Using these inequalities, we now
rearrange the terms in (T7) above.
2s*
0t+1 _ 0t < A 0* _ 0t 0* at 2 .
FOU) 50 < 2l (1(0%) — £(0) + a8~ 015 + g
2 1
- 97||g§tug*||§ - 97||9§t+1\(stu5*)||§~ (18)
Splitting [|g7: 13 = llg&: - 115 + ||gfgt+1\(5tus*) 5 gives us
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FOH) = 10 < 2y (100 = 10) - 5= (2 gts. 13— 0" — 073
= sts 2L \ 3679795712 16 2
1 4 1 " 9
9. \9 12 HgSHl\(StUS*) 25
2s* 13 a?
< A 0%) — et Y tt *2_70*_0t2
< 2 (1007 - 167) ~ oy (Igbeus- I3 - Sl — 011
< 2 (7(67) - 1(8Y) - ror (7(6) - (6") (19)
= s+ s* 12L ’
where the last inequality above follows using Lemma 5] The result now follows by observing that
25** > 0. ]
s+s
Lemma 5.
t s oF t2 «@ t *
lgseus- 12 = 116" = 6°llz ) > 5 - (£(6") — £(67))

Proof. Using the RSC property, we have:
* * a *
f(6") — f(67) < (g",6" — 67) — [|0" — 0[5

«
= (g5 Osius — O5ius-) — 51107 = 0[5,

* a *
< llgseus-l12116" — 7|2 — 516" — 63, (20)
Now,
lgeus- 15— 110" = 6113 = (lghews- 12 = 510" = 0'll2) (llgheus-ll2 + 516" = 6°112) .
(f(6") — £(67)) ( ¢ a ¢
> tUS —|je* -0 )
=6t — 6|2 lgs:us-ll2 + B | ll2
« *
> 5 (f(8) = 1(67), @n
where the first inequality above follows from ([20). O

B Proofs for Section 4
Proof of Theorem[3] Let 8* be the empirical loss minimizer over the set of s-sparse vectors. Then
invoking Theorem|l|with f = L(-; Z1.,,), we get
L(OTa Zl:n) —€e< ‘C(o*a Zl:n) < ['(éa Zl:n)
A A Algys* ||~ T
< 5(07" Zl:n) + <V£(0, Zl:n)7 (0 - 07)) - %”0 ) ||§

where the 2nd inequality is by definition of 8* and 3rd is by RSC (since 8*,0" are s*, s sparse).
Duality gives us the upper bound

<V£(é; Z1in), (é —07)) < ||V[,(é; Zl:n)HOOHé —071 < Vs+ s*||V£(§; Zl:n)”ooné — 07
Combining the last two inequalities and rearranging gives a quadratic inequality in ||@ — 07 ||,:
2
that immediately yields the result. O

0 — 073 — Vs + 55 VLO; Zun) ][0 — 07]|2 — € < 0
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C Proofs for Section 3]

Proof of Lemma[3] We will start by proving a more general result of which the claimed result will
be a corollary. More specifically, we shall prove that for any v > —, we have

21(£(6)-16) < 20 (116 - 56+ 5 - (1= - ) et - 9*||§)§’Y29§tu5*

Setting v = L will yield the claimed result. It is easy to see that the following inequality holds

(03
trivially since v > =

* * 1 *
(716 - £6) <29 (500 - ) + 5+ (1- L) 1ot - o13).
For the second inequality, we first use the RSC condition to obtain:
F(67) = f(6) = (6" — 0", g") + T]j6" — 673

Now let M D; = S*\S be the set of true support elements missing from 8% and FA; = S\ S*
be the set of incorrect elements included in the support of 8%. Since 8% is obtained by a “fully
corrective” process (recall 8" = arg ming ,pp(0ycst f(0)), we have g, = 0. Thus (6*—0', g*) =

(1050 s- 113,

<0§/1Dt ) QRJDJ-

Putting this into the above expansion gives

* * « *

(0D, 9huip,) < f(07) — (6") — 510" — 673 (22)
We now present some simple inequalities that will help us get our desired bounds. Firstly, we have
103D, + '79§V[Dt|‘% = 0% p, I3+ 72“95\/111 13+ 2v(6%p,, 94 p,) =0, (23)

since the first expression is a norm. Next, since M D; N FA; = (), we have
16 — 0113 > 1103, 13 + 116%4,II3- (24)

Putting equations [22]and 23] we have:
* o * *

7 (£6") = £67) + 516" = 0°3) < 16310, I3 + 1 9e, I ©5)

Now, using (24)), we get:
2 (#6910 + 5 (1= =) 16"~ 6°18) < +*lghun, I3~ 1650

We finish off the proof by noticing that since g%, = 0, we have ||gh;p, 15 = llgk - I3 O
Proof of Theoremf} Let 2, = 0%, tht\St = _%tht\Sts and 227 =0.
Then, using the RSS property, we have:
L
F(2') = £(6") < (' = 6".g") + S |Iz' = 0|13,
¢
< EHgtzt\stH% + gHztzt\stH%,
¢ 1
2 oL ||gtzt\st||§7
(3 1
£ gkl
G4
< -7 (76" - 1), (26)
where (; follows by observing g%, = 0, and S* C Z'. (, follows by ztzt\st = f%gtzt\st. (3
follows by £ > s*, and Z*\ S are the ¢ largest elements of | gtzt\ gtl-
Now, using Lemma@and along with f(8+1) < f(8") and f(B!) < f(2'), we have:
L l
0 )~ fo) < (1-5) (142 ) - (F(6") - £(67)) . 27
o) -p0y<(1-9)- (1B ) ey o). e

. . . . 2
Theorem now follows by using the above equation with the assumption that s ¢ — s* > %2'5. O
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D Supplementary Experimental Results

Below we present plots that were not included in the main text.
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Figure 2: Counterparts of Figure T|for OMPR, CoSaMP and L1.

Figure 3: The effect of increasing sample sizes relative to the base value s* - log p on runtime.
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