
1 Deconvolution of High Dimensional Mixtures via Boosting, with
Application to Diffusion-Weighted MRI of Human Brain: Supplemental
Material

1.1 Definitions

In this paper, we restrict our attention to the use of squared-error loss; resulting in penalized least-
squares problem

minimize K̂,ŵ,θ̂

∥∥∥∥∥∥yi −
K̂∑
k=1

ŵkfθ̂k(xi)

∥∥∥∥∥∥
2

+ λPθ(w) (1)

where Pθ(w) is a convex penalty function of (θ, w).

Recall that one can define convex functions on (w,θ) ∈
⋃∞
K=1[0,∞)K × ΘK in the following

manner. First, define a sum of wi = (wii, . . . , w
i
Ki) ,θi = (θi1, . . . , θ

i
Ki) for i = 1, . . . , L by

L∑
i=1

(wi,θi) = (w,θ) (2)

w = (w1
1, . . . , w

1
K1 , w2

1, . . . , w
2
K2 , . . . , . . . , wL1 , . . . , w

L
KL) (3)

θ = (θ1
1, . . . , θ

1
K1 , θ2

1, . . . , θ
2
K2 , . . . , . . . , θL1 , . . . , θ

L
KL) (4)

and scalar product by

α(w1,θ1) = (w,θ1) (5)

w = (αw1
1, . . . , αw

1
K1) (6)

for α ≥ 0. Then a convex function G((w,θ)) satisfies

G

(
L∑
i=1

αi(w
i,θi)

)
≤

L∑
i=1

αiG((wi,θi))

For our convergence results to hold, we require an oracle function τ : Rn → Θ which satisfies〈
r̃,

f̃τ(r̃)

||f̃τ(r̃)||

〉
≥ αρ(r̃) (7)

where

ρ(r̃) = sup
θ∈Θ

〈
r̃,

f̃θ

||f̃θ||

〉
(8)

for some fixed α > 0. Our algorithm will also work with a stochastic oracle that satisfies (7) with
fixed probability p > 0 for every input r.

1.2 Regularization

(An expanded version of the section 2.1 of the main paper.)

A variety of L1-norm based penalty functions can be accommodated by EBP, by using a modified
input ỹ and kernel function family f̃θ, so that

argminK,w,θ

∥∥∥∥∥ỹ −
K∑
i=1

f̃θ

∥∥∥∥∥
2

= argminK,w,θ

∥∥∥∥∥y −
K∑
i=1

~fθ

∥∥∥∥∥
2

+ λPθ(w)

We will use our modified L2Boost algorithm to produce a path of solutions for objective function
on the left side, which results in a solution path for the penalized objective function (1).
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Firstly, it is possible to embed the penalty Pθ(w) = ||w||21 in the optimization problem (1). One
can show that solutions obtained by using the penalty function Pθ(w) = ||w||21 have a one-to-one
correspondence with solutions of obtained using the usual L1 penalty ||w||1. The penalty ||w||21
is implemented by calling EBP on modified input ỹ =

(
y
0

)
and using modified kernel vectors

f̃θ =

(
~fθ√
λ

)
.

While the L1 penalization imposes the same penalty for every θ, a useful alternative can be useful
to impose a “roughness” penalty g(θ) on the kernel functions, so that smoother kernel functions are
preferred. For example, one might consider the first derivative penalty

g(θ) =

∫
x

‖∇xfθ(x)‖2dx

or an approximation

g(θ) =
1

n

n∑
i=1

||∇xfθ(xi)||2

The mixture model can be fit using the penalty Pθ(w) =
∥∥∥∑K

i=1 g(θi)wi

∥∥∥2

. This is done by setting

ỹ =

(
y
0

)
and f̃θ =

(
~fθ√
λg(θ)

)
For unweighted mixture problems, one can enforce the constraint ||w||1 = 1 by means of the penalty

Pθ(w) = (1 − ||w||1)2. This is implemented using ỹ =

(
y√
λ

)
, f̃θ =

(
~fθ√
λ

)
. As λ → ∞, one

obtains a hard constraint.

For all of the above penalties, the sample size in the transformed problem ñ, is one plus the sample
size of the original problem, n.

Finally, nonnegative kernel functions satisfying fθ(x) ≥ 0 satisfy a self-regularizing property
[Slawski], so that additional penalization is optional. If no penalization is added, we take ỹ = y

and f̃θ = ~fθ, so ñ = n. For our fast convergence results, either nonnegativity of the kernel function
or imposition of one of the above penalties will suffice.

In the following sections, define
F̃θ =

[
f̃θ1 , . . . , f̃θK

]
(9)

1.3 EBP Pseudocode

Here we present our elastic basis pursuit algorithm for producing a path of solutions (w(1),θ(1)), . . .
which progressively minimize

minimizeK,w>0,θ

∥∥∥∥∥ỹ −
K∑
i=1

wif̃θi

∥∥∥∥∥
2

(10)

Inputs

• Input vector ỹ ∈ Rñ.
• Validation function Errval(w,θ) which uses a validation set to estimate the prediction error

of the model (w,θ),
• Oracle τ : Rñ → Θ satisfying (7)

• Function f̃θ : Θ→ Rñ mapping parameters to regressors

• Initial estimate (w(0),θ(0)) and residual r̃(0) obtained by using NNLS to solve (10) and
then discarding any zero weights and corresponding parameters. Let K(0) be the number
of components in w(0).
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• Maximum number of iterations, M .

Elastic Basis Pursuit
1: for m = 1, . . . ,M do
2: θ(m− 1

2 ) ← (τ(r̃(m−1)), θ
(m−1)
1 , . . . , θ

(m−1)

K(m−1))

3: K(m− 1
2 ) ← K(m−1) + 1

4: Using NNLS, set β(m) ← argminβ>0||ỹ − F̃
θ
(m−

1
2 )
β||2 and r̃(m) ← ỹ − F̃

θ
(m−

1
2 )
β(m)

5: K(m) ← ||β(m)||0
6: {i(m)

1 , . . . , i
(m)

K(m)} ← {i ∈ {1, . . . ,K(m− 1
2 )} : β

(m)
i 6= 0}

7: θ(m) ←
(
θ

(m−1)

i
(m)
1

, . . . , θ
(m−1)

i
(m)

K(m)

)
8: w(m) ←

(
w

(m−1)

i
(m)
1

, . . . , w
(m−1)

i
(m)

K(m)

)
9: Err(m)

val ← Errval(w(m),θ(m))
10: end for

Step 2 calls the oracle to find θnew = τ(r̃), and adds θnew to the active set θ. Step 4 refits the
weights w and updates the residual r̃. Step 7 prunes the active set θ by removing any parameter
θ whose weight is zero. This ensures that the active set θ remains sparse in each iteration. Step 9
computes an estimated prediction error at each iteration, via an independent validation set. Option-
ally, one can add a command to stop the algorithm early when the prediction error begins to climb
(indicating overfitting).

1.4 Proofs of Convergence

(An expanded version of the section 2.3 of the main paper.)

Proposition 1 establishes regularization, smoothness and compactness assumptions which ensure the
existence of a maximally saturated model (w∗,θ∗) of size K∗ ≤ ñ. Indeed, if a saturated model
exists, then a saturated model with at most ñ terms also exists: this is a consquence of the properties
of nonnegative least squares [Lawson] . This fact is stated in Lemma 1.

Lemma 1. Fix ỹ ∈ Rñ function f̃ → Rñ. For any positive integerK ≥ ñ, and for anyw ∈ [0,∞)K ,
θ ∈ ΘK , there exists w̃, θ̃ ∈ Θñ such that∥∥∥ỹ − F̃θ̃w̃

∥∥∥2

≤
∥∥∥ỹ − F̃θw

∥∥∥2

Proof. By [Lawson], we can find β = argmin||ỹ − F̃θβ||2 with ||β||0 ≤ ñ. Clearly,∥∥∥ỹ − F̃θβ
∥∥∥2

≤
∥∥∥ỹ − F̃θw

∥∥∥2

Let s = ||β||0 and let
{i1, . . . , is} = {i ∈ {1, . . . ,K} : βi > 0}

If s ≤ ñ, choose is, . . . , iñ so that {i1, . . . , iñ} has ñ unique elements. Define w̃ = (βi1 , . . . , βiñ)

and θ̃ = (θi1 , . . . , θiñ). Then∥∥∥ỹ − F̃θ̃w̃
∥∥∥2

=
∥∥∥ỹ − F̃θβ

∥∥∥ ≤ ∥∥∥ỹ − F̃θw
∥∥∥2

�

Having proved lemma 1, we have reduced the problem of showing the existence of a maximally
saturated model to that of showing the existence of a maximally saturated model with ñ components.
However, we will need additional regularization assumptions.

Proposition 1. Let ỹ be a vector in Rñ, let Θ be a compact set in RD, and let f̂θ : Θ → Rñ be
a continuous vector-valued function with respect to θ. Furthermore, assume that f̃θ is adequately
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regularized in the sense that there exists ε > 0, v ∈ Rn such that

inf
θ∈Θ
〈v, f̃θ〉 ≥ ε (11)

Then there exists a nonnegative integer K∗ ≤ ñ and w∗ = (w∗1 , . . . , w
∗
K∗) and θ∗ = (θ∗1 , . . . , θ

∗
K∗)

, with w∗ ∈ [0,∞)ñ and θ∗ ∈ Θñ such that the residual r̃∗, defined by

r̃∗ = ỹ − F̃θ∗w
∗

satisfies

||r̃∗||2 = inf
w,θ,K∈N

∥∥∥∥∥ỹ −
K∑
i=1

wif̃θi

∥∥∥∥∥
2

(12)

The regularization condition (11) is satisfied either whenL1 regularization is imposed, or the kernels
satisfy a positivity condition, i.e. infθ∈Θ fθ(xi) ≥ 0 for i = 1, . . . , n and infθ∈Θ ||~fθ|| > 0. Under
L1 regularization, Pθ(w) = ||w||21, one can use v = (0, 0, . . . , 0, 1). Given positivity, one can use
v = (1, 1, . . . , 1).

Before proving proposition 1, we will first prove a lemma stating that the regularization condition
implies that any w, θ for which ||w||1 is large, also has a large residual.

Lemma 2. Fix ỹ ∈ Rñ function f̃ → Rñ. Furthermore, assume that the problem is adequately
regularized in the sense that there exist ε > 0, v ∈ Rn such that (11) holds. Define

U =
||ỹ|||v||+ 〈v, ỹ〉

ε
(13)

Then for all (w,θ) ∈ [0,∞)ñ ×Θñ with ||w||1 > U ,∥∥∥ỹ − F̃θw
∥∥∥2

≥ ||ỹ||2

Proof. Take (w,θ) ∈ [0,∞)ñ ×Θñ with ||w||1 > U . Then

〈v, F̃θw − ỹ〉 = −〈v, ỹ〉+

ñ∑
i=1

〈v, f̂θi〉wi

≥ −〈v, ỹ〉+

ñ∑
i=1

εwi

≥ −〈v, ỹ〉+ Uε

But by the Cauchy-Schwarz inequality∥∥∥ỹ − F̃θw
∥∥∥2

≥ 〈v, F̃θw − ỹ〉2

||v||2

which, by our first result, is bounded below by

≥ (Uε− 〈v, ỹ〉)2

||v||2

Now applying (13),

≥ ||ỹ||2

which completes the proof. �.

Having proved Lemma 2, we now know that any model which comes close to minimizing (10)
must have bounded L1 norm. This, in conjunction with compactness of the parameter space and
continuity of f̃θ, allows us to complete the proof of proposition 1, which establishes the existence
of a model which minimizes (10).
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Proof of proposition 1. From Lemma 1, there exists a sequence of models in (0,∞]ñ × Θñ,
(w[1],θ[1]), . . . so that

lim
m→∞

||r̃[m]||2 = inf
w,θ,K∈N

∥∥∥∥∥ỹ −
K∑
i=1

wif̃θi

∥∥∥∥∥
2

where
r̃[m] = ỹ − F̃θ[m]w[m]

Let U be as defined in Lemma 2, and choose j ∈ R so that for all m ≥ j, ||r̃[m]||2 < ||ỹ||2. Then
by Lemma 2, for all m > j, w[m] ∈ [0, U ]ñ. Since Θ is compact, so is [0, U ]ñ × Θñ. Hence
{(w[m],θ[m])}∞m=j has a convergent subsequence with limiting point w∞,θ∞. By the continuity of
f̃θ, ∥∥∥ỹ − F̃θ∞w

∞
∥∥∥2

= inf
w,θ,K∈N

∥∥∥∥∥ỹ −
K∑
i=1

wif̃θi

∥∥∥∥∥
2

Taking K∗ = ||w∞||0, and {i1, . . . , iK∗} = {i ∈ {1, . . . , ñ} : w∞i > 0}, define w∗ =
(w∞i1 , . . . , w

∞
iK∗

) and θ∗ = (θ∞i1 , . . . , θ
∞
iK∗

). Then

||r̃∗||2 =
∥∥∥ỹ − F̃θ∗w

∗
∥∥∥2

=
∥∥∥ỹ − F̃θ∞w

∞
∥∥∥2

= inf
w,θ,K∈N

∥∥∥∥∥y −
K∑
i=1

wif̃θi

∥∥∥∥∥
2

as desired. �

The existence of such a saturated model (w∗,θ∗), in conjunction with existence of the oracle τ ,
enables us to state fixed-iteration guarantees on the precision of EBP, which implies asymptotic
convergence to the global optimum.

To do so, recall the definition of the maximum correlation function ρ (8), and define the quantity
ρ(m) = ρ(r(m)). Proposition 2 uses the fact that the residuals r̃(m) are orthogonal to F̃ (m), thanks
to the NNLS fitting procedure in step 2. This allows us to bound the objective function gap in terms
of ρ(m). Proposition 3 uses properties of the oracle τ to lower bound the progress per iteration in
terms of ρ(m).

Proposition 2 Assume the conditions of Proposition 1. Take w∗,θ∗ satisfying (12). Then defining

B∗ = 2

K∗∑
i=1

w∗i ||f̃θ∗i || (14)

the mth residual of the EBP algorithm r̃(m) can be bounded in size by

||r̃(m)||2 ≤ ||r̃∗||2 +B∗ρ(m)

Proof. Define h(m) : RK(m) × RK∗ → R by

h(m)(a, b) =

∥∥∥∥∥∥r̃(m) −
K(m)∑
i=1

aif̃θ(m)
i
−

K∗∑
i=1

bif̃θ∗i

∥∥∥∥∥∥
2

Since h is a squared norm of a affine transformation of (a, b), h is convex in (a, b). Also check that
h(m)(0, 0) = ||r̃(m)||2 and h(m)(−w(m), w∗) = ||r̃∗||2.

Since r̃(m) is the least squares residual of regressing ỹ on F̃ (m), we have

〈r̃, f̃
θ
(m)
i
〉 = 0

for i = 1, . . . ,K(m).

Therefore,
∂h(m)

ai
(0, 0) = −2〈r̃, f̃

θ
(m)
i
〉 = 0
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Meanwhile,
∂h(m)

bi
(0, 0) = −2〈r̃(m), f̃θ∗i 〉 ≥ −2ρ(m)||f̃θ∗i ||

for i = 1, . . . ,K∗ by definition of ρ(m). Now due to the convexity of h, we have

||r̃∗||2 = h(−w(m), w∗) (15)

≥ h(0, 0)− w(m)∇ah(0, 0) + w∗∇bh(0, 0) (16)
= h(0, 0) + w∗∇bh(0, 0) (17)

= h(0, 0) +

K∗∑
i=1

w∗i
∂h

bi
(0, 0) (18)

≥ h(0, 0) +

K∗∑
i=1

w∗i (−2ρ(m)||f̃θ∗i ||) (19)

= h(0, 0) +−2ρ(m)
K∗∑
i=1

w∗i ||f̃θ∗i || (20)

= ||r̃(m)||2 −B∗ρ(m) (21)

as desired. �.

Proposition 3 is mainly a consequence of the fact that in a linearly constrained regression problem,
adding a new variable to the regression is at least as good as fitting that variable by itself to the
residual.

Proposition 3 Assume the conditions of Proposition 1. Then

||r̃(m)||2 − ||r̃(m+1)||2 ≥ (αρ(m))2

which also implies that the sequence ||r̃(0)||2, . . . is decreasing.

Proof.

We have

||r̃(m+1)||2 = min
β>0
||ỹ − F̃

θ
(m+

1
2 )
β||2 (22)

≤

∥∥∥∥∥∥∥∥ỹ − F̃θ(m)w(m) − f̃
θ
(m+

1
2 )

1

〈f̃
θ
(m+

1
2 )

1

, r̃(m)〉

||f̃
θ
(m+

1
2 )

1

||2

∥∥∥∥∥∥∥∥
2

(23)

=

∥∥∥∥∥∥∥∥r̃
(m) − f̃

θ
(m+

1
2 )

1

〈f̃
θ
(m+

1
2 )

1

, r̃(m)〉

||f̃
θ
(m+

1
2 )

1

||2

∥∥∥∥∥∥∥∥
2

(24)

= ||r̃(m)||2 −

∥∥∥∥∥∥∥∥
f̃
θ
(m+

1
2 )

1

||f̃
θ
(m+

1
2 )

1

||

〈f̃
θ
(m+

1
2 )

1

, r̃(m)〉

||f̃
θ
(m+

1
2 )

1

||

∥∥∥∥∥∥∥∥
2

(25)

= ||r̃(m)||2 −


〈f̃
θ
(m+

1
2 )

1

, r̃(m)〉

||f̃
θ
(m+

1
2 )

1

||


2

(26)

≤ ||r̃(m)||2 − (αρ(m))2 (27)
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Here, (23) follows from the fact that F̃
θ
(m+

1
2 )

=

[
f̃
θ
(m+

1
2 )

1

F̃θ(m)

]
and (24) follows from the fact

that r̃(m) = ỹ − F̃θ(m)w(m). Next, (25) is obtained by an application of the Pythagorean theorem,
and (27) by applying the definitions of ρ(m) and the condition (7) on τ . �

Combining Propositions 2 and 3 yields our main result for the non-asymptotic convergence rate.

Proposition 4 Assume the conditions of Proposition 1. Then for all m > 0,

||r̃(m)||2 − ||r̃∗||2 ≤ Bmin
√
||r̃(0)||2 − ||r̃∗||2||

α

1√
m

where
Bmin = inf

w∗,θ∗
B∗

for B∗ defined in (14)

Proof. Take (w∗,θ∗) satisfying (12), and define B∗ as in (14). Define gi = ||r̃(i)||2 − ||r̃∗||2 for
i = 0, . . . and fix m ∈ N. By Proposition 2,

gm = ||r̃(m)||2 − ||r̃∗||2 ≤ B∗ρ(m)

By Proposition 3, g0 ≥ g1 ≥ · · · , so that for all 0 ≤ i ≤ m,

ρ(i) ≥
gi
B∗
≥ gm
B∗

(28)

Now observe that
g0 = ||r̃(0)||2 − ||r̃∗||2

= ||r̃(0)||2 − ||r̃(m)||2 + ||r̃(m)||2 − ||r̃∗||2

= ||r̃(0)||2 − ||r̃(m)||2 + gm

= gm +

m−1∑
i=1

||r̃(i)||2 − ||r̃(i+1)||2

which by Proposition 3

≥ gm +

m−1∑
i=1

(αρ(i))2

Applying (28),

≥ gm +

m−1∑
i=1

( α

B∗
gm

)2

= gm +m
( α

B∗

)2

gm

Defining C = (α/B∗)2

= gm + Cmg2
m

Hence
g2
m +

gm
Cm

≤ g0

Cm

g2
m +

gm
Cm

+
1

(2Cm)2
≤ g0

Cm
+

1

(2Cm)2(
gm +

1

2Cm

)2

≤ g0

Cm
+

1

(2Cm)2
≤
(√

g0

Cm
+

1

2Cm

)2

gm +
1

2Cm
≤
√

g0

Cm
+

1

2Cm

gm ≤
√

g0

Cm
=

√
g0(B∗)2

α2m
=
B∗

α

√
g0√
m
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The proof follows by noting that gm ≤ B∗

α

√
g0√
m

holds for any choice of (w∗,θ∗). �
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