
A Proof of Convergence for Delayed Block Proximal Gradient

For the proof of Theorem 2 we need several technical lemmas. Denote by b ⊆ {1, . . . p} a subset of
coordinates and let xb ∈ Rp be the vector obtained by setting the entries of x which are not in block
b to 0. We first show that under Assumption 1 the objective is well behaved under subspace shifts.

Lemma 3 Assume block b is chosen at time t, then the following holds under Assumption 1 for any
fi and for any time t, for any x, y ∈ Rp

fi(x+ yb) ≤ fi(x) + 〈∇fi(x), yb〉+
Lvar,i

2
‖yb‖2 , (6)

Proof. By the mean value theorem it follows that

fi(x+ yb) = fi(x) + 〈∇fi(x+ ξyb), yb〉 for some ξ ∈ [0, 1]. (7)

Using the Lipschitz property of Assumption 1 it follows that the gradient at x+ ξyb can be bounded
via |∇fi(x+ ξyb)−∇fi(x)| ≤ Lvar,iξ ‖yb‖. Combining this with ξ ≤ 1 proves the claim.

Next we prove that for block separable regularizers the solutions also satisfy an appropriate decom-
position property:

Lemma 4 Assume that h is block separable and 0 ∈ ∂h(0) and that U is diagonal. For any x
and for γ > 0 we denote by z = ProxUγ (x) and by zb = ProxUγ (xb) the solutions of the proximal
operator to the full vector, and only a subset, respectively. Then for any block b the following holds:

U (xb − zb) ∈ γ∂h(zb) (8)

Proof. Since 0 ∈ ∂h(0) it follows that Proxγ(0) = 0. Further since h is block separable, the prox-
imity function h(y) + 1

2γ ‖x− y‖
2
U is also block separable. zb = Proxγ(xb) follows from this by

setting all entries of x except those in block b to 0. Finally, (8) follows by taking derivatives on both
sides of the definition of proximal operator.

Denote by g̃(t) and ũ(t) the aggregated gradients and scaling coefficients at server nodes respectively.
Assume that each worker randomly skips a coordinate with probability 1− q, where 0 < q < 1. Let
g(t) := q−1g̃(t) and u(t) := q−1ũ(t)) be the unbiased inexact gradient and scaling coefficient esti-
mates respectively (note that more sophisticated subsampling techniques such as reservoir sampling
could be employed, too).

The next step is to bound the changes of the objective function between subsequent iterations t and
t+1 using the updates ∆(t) = w(t+1)−w(t) together with the difference between g(t) and∇f(w(t)).

Lemma 5 Let g(t) be the unbiased inexact gradient aggregated by servers at time t. Under the
assumptions of Theorem 2 we have

E
[
F (w(t+1))− F (w(t))

]
≤
(
Lvar −

Mt

γt

)∥∥∥∆(t)
∥∥∥2 +

∥∥∥∆(t)
∥∥∥∥∥∥∇btf(w(t))−E

[
g(t)
]∥∥∥ (9)

where the expectation is taken with respect to the random skip filter.

Proof. For notation simplicity, we drop the index t for the block indicator bt, scaling matrix U (t),
learning rate γt and constant Mt (recall that Mt = mini U

(t)
i is the smallest coefficient-specific

learning rate as induced by the Mahalanobis metric in the proximal operator).

First note that g(t)b = g(t) because the gradients are computed in block b. Hence it follows that also
the update ∆(t) is restricted to block b. By Lemma 4 we have that

∆
(t)
b = ProxUγ

[
w

(t)
b − γU

−1g(t)
]
− w(t)

b = ∆(t)

10

and therefore w(t+1)
b = ProxUγ (w

(t)
b − γU−1g(t)). Using Lemma 4 again, we have

U

γ

(
w

(t)
b − γg

(t) − w(t+1)
b

)
∈ ∂h(w

(t+1)
b)

Since h is block separable we can decompose the updates to obtain

h(w(t+1))− h(w(t)) = h(w
(t+1)
b)− h(w

(t)
b)

≤
〈
U

γ

(
w

(t)
b − γU

−1g(t) − w(t+1)
b

)
, w

(t+1)
b − w(t)

b

〉
= − 1

γ

∥∥∥∆(t)
∥∥∥2
U
−
〈
g(t),∆(t)

〉
≤ −M

γ

∥∥∥∆(t)
∥∥∥2 − 〈g(t),∆(t)

〉
(10)

On the other hand, only the entries of w(t+1) in block b has been changed comparing to w(t), which
satisfies the requirement of Assumption 1, therefore, by Lemma 3,

f(w(t+1))− f(w(t)) ≤

〈
w(t+1) − w(t),

m∑
i=1

∇bfi(w(t))

〉
+

m∑
i=1

Lvar,i

∥∥∥∆(t)
∥∥∥2

=
〈

∆(t),∇bf(w(t))
〉

+ Lvar

∥∥∥∆(t)
∥∥∥2 (11)

Combining (10) and (11), we have

E
[
F (w(t+1))− F (w(t))

]
≤
(
Lvar −

M

γ

)∥∥∥∆(t)
∥∥∥2 + E

[〈
∆(t),∇bf(w(t))− g(t)

〉]
≤
(
Lvar −

M

γ

)∥∥∥∆(t)
∥∥∥2 +

∥∥∥∆(t)
∥∥∥∥∥∥∇bf(w(t))−E

[
g(t)
]∥∥∥

In other words, the amount of change between objective functions is bounded from above both by
the amount of change in parameters ∆(t) and by the discrepancy in the block gradient.

Proof of Theorem 2. We now have all ingredients to prove convergence to a stationary point. In
a nutshell we must bound

∥∥∆(t)
∥∥ and all else follows. Given time t, denote by the chosen block

b = bt. We first upper bound the term
∥∥∇bf(w(t))−E

[
g(t)
]∥∥ in (9). By Assumption 1 we have

for 1 ≤ k ≤ τ that∥∥∥∇bfi(w(t−k+1))−∇bfi(w(t−k))
∥∥∥ ≤ Lcov,i

∥∥∥w(t−k+1) − w(t−k)
∥∥∥ = Lcov,i

∥∥∥∆(t−k)
∥∥∥ .

Due to the bounded delay, worker i’s model is only out of date at time t in the range t− τ ≤ ti ≤ t.
The significantly modified filter places an additional noise term σ(ti) on the model. By design of the
filter we use ∥∥∥σ(ti)

∥∥∥
∞
≤ δti = O

(
1

ti

)
.

Futhermore by the random skip filter, the expectation of the unbiased inexact gradient aggregated at
time t is given by

E
[
g(t)
]

=

m∑
i=1

∇bfi(w(ti) + σ(ti)).

11

Then we have∥∥∥∇bf(w(t))−E
[
g(t)
]∥∥∥

=

∥∥∥∥∥
m∑
i=1

t−ti∑
k=1

(
∇bfi(w(t−k+1))−∇bfi(w(t−k))

)
+∇bfi(w(ti))−∇bfi(w(ti) + σ(ti))

∥∥∥∥∥
≤

m∑
i=1

t−ti∑
k=1

∥∥∥∇bfi(w(t−k+1))−∇bfi(w(t−k))
∥∥∥+

∥∥∥∇bfi(w(ti))−∇bfi(w(ti) + σ(ti))
∥∥∥

≤
m∑
i=1

t−ti∑
k=1

Lcov,i

∥∥∥∆(t−k)
∥∥∥+ Lcov,i

∥∥∥σ(ti)
∥∥∥

≤
m∑
i=1

τ∑
k=1

Lcov,i

∥∥∥∆(t−k)
∥∥∥+ Lcov,i

√
pδt−τ

=

τ∑
k=1

Lcov

∥∥∥∆(t−k)
∥∥∥+ Lcov

√
pδt−τ (12)

where we used the fact that σ(ti) = σ
(ti)
bti

so that Assumption 1 can be applied and ‖x‖ ≤ √p‖x‖∞.
Substitute (12) into (9) in Lemma 5, we have

E
[
F (w(t+1))− F (w(t))

]
≤
(
Lvar −

Mt

γt

)∥∥∥∆(t)
∥∥∥2 +

τ∑
k=1

Lcov

∥∥∥∆(t)
∥∥∥(∥∥∥∆(t−k)

∥∥∥+
√
pδt−τ

)
≤
(
Lvar +

Lcovτ

2
− Mt

γt

)∥∥∥∆(t)
∥∥∥2 +

τ∑
k=1

Lcov

2

∥∥∥∆(t−k)
∥∥∥2 + Lcovpδ

2
t−τ

Summing over t yields

E
[
F (w(T+1))− F (w(1))

]
≤

T∑
t=1

(
Lvar + Lcovτ −

Mt

γt

)∥∥∥∆(t)
∥∥∥2 + Lcovpδ

2
t−τ (13)

Denote by ct = Mt

γt
− Lvar − Lcovτ , since γt ≤ Mt

Lvar+Lcovτ+ε
for all t, then all ct ≥ ε > 0. So

ε

T∑
t=1

∥∥∥∆(t)
∥∥∥2 ≤ T∑

t=0

c(t)
∥∥∥∆(t)

∥∥∥2 ≤ E
[
F (w(1))− F (w(T+1))

]
+ Lcovpδ

2
t−τ (14)

for any T . Since δt = O(1
t), and by the fact that 1 + 1

22 + 1
32 + . . . = π2

6 . Then the RHS of (14) is
constant when T → ∞, which implies limt→∞∆(t) → 0. So limt→∞ ProxUt

γt (w(t)) − w(t) → 0,
thus we find a local minimal point.

12

B Sparse Logistic Regression

In addition to the largest experiment reported in Section 5, we present more experimental results on a
range of sparse training data, as listed below. URL and KDDa are public sparse text datasets 2, while
the click-through rate datasets CTRa and CTRb are subsampled from the dataset used in Section 5.

URL KDDa CTRa CTRb
of examples 2M 8M 4M 0.34B
of coordinates 3M 20M 60M 2.2B
of nnz entries 277M 305M 400M 31B

We focus on the convergence of the objective value and runtime. More precisely, we report the
relative objective values calculated via F (w(t))

F (w∗) −1 for each data pass, consisting of several iterations.
An estimate of the optimal value w∗ is obtained by performing 4× as many iterations as needed for
convergence.

B.1 Comparison to other algorithms

Since we were unable to identify distributed multi-machine sparse logistic regression algorithms
capable of scaling to the dataset sizes in our research we compared to other solvers available for
the multicore setting. This meant limiting ourselves to a relatively small dataset containing only
millions of observations, as described in the table above.

More specifically, we compared our solver to shotgun3 [7] on a single machine with 32
threads/workers. The results of CDN4 (single thread shotgun) are also reported for reference. Fig-
ure 7 shows the objective values versus time. As can be seen, all three algorithms obtain similar
objective values after 50 data passes, however, the parameter server is 4 times faster than both shot-
gun and CDN in terms of runtime.

The main reason can be found in the data partitioning strategies. Each thread of shotgun processes
a single coordinate at a time, which often has irregular pattern of non-zero entries and therefore it
is hard to perform load balancing. On the most high-dimensional dataset, CTRa, shotgun is even
slower than the single thread version. On the other hand, the parameter server uses multi-thread
linear algebra operators on a large block of the training data. This coarse-grained parallelization
leads to better speedup.

B.2 Scalability

We investigate scalability by increasing the number of workers from 16 to 256. The speedups
of running times comparing to 16 workers are reported. A nine-fold speedup is observed when
increasing the number of workers by 16 times.

C Reconstruction ICA

C.1 Problem

Reconstruction ICA aims to find a sparse representation of the raw dataset. It relaxes Independent
Component Analysis by allowing for an overcomplete solution [18]. Denote by {xi}ni=1 ∈ Rp the
observations. The objective function of RICA has a nonconvex loss function f(W) and convex but
nonsmooth penalty h(W).

minimize
W∈R`×p

n∑
i=1

1

2

∥∥WW>xi − xi
∥∥2
2

+ λ ‖Wxi‖1 , (15)

2www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
3www.select.cs.cmu.edu/projects/shotgun/
4www.csie.ntu.edu.tw/∼cjlin/liblinear

13

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.select.cs.cmu.edu/projects/shotgun/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/

0 200 400 600 800 1000

10
−1

10
0

time (sec.)

re
la

ti
v
e

 o
b

je
c
ti
v
e

 v
a

lu
e

dataset: URL

CDN
Shotgun
Parameter Server

0 10 20 30 40 50

0.5

1

1.5

2

2.5

3

3.5
x 10

5

data passes

#
 o

f
n
o
n
z
e
ro

 p
a
ra

m
e
te

rs

dataset: URL

CDN
Shotgun
Parameter Server

0 200 400 600

10
−2

10
−1

time (sec.)

re
la

ti
v
e
 o

b
je

c
ti
v
e
 v

a
lu

e

dataset: KDDa

CDN
Shotgun
Parameter Server

0 10 20 30 40 50

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

6

data passes

#
 o

f
n
o
n
z
e
ro

 p
a
ra

m
e
te

rs
dataset: KDDa

CDN
Shotgun
Parameter Server

0 200 400 600 800 1000
10

−3

10
−2

10
−1

time (sec.)

re
la

ti
v
e
 o

b
je

c
ti
v
e
 v

a
lu

e

dataset: CTRa

CDN
Shotgun
Parameter Server

0 10 20 30 40 50

0.5

1

1.5

2
x 10

6

data passes

#
 o

f
n
o
n
z
e
ro

 p
a
ra

m
e
te

rs

dataset: CTRa

CDN
Shotgun
Parameter Server

Figure 7: Both shotgun and our algorithm use 32 threads on a single machine. Each point indicates
one pass through the data. In total 50 passes are shown.

We denote by X = (x1, . . . , xn)> ∈ Rn×p the data matrix. The gradient of the smooth loss f is

∇f(W) = W
(
(W>W − I)X>X +X>X(W>W − I)

)
(16)

14

16 32 64 128 256
1

2

4

8

16

workers

s
p
e
e
d
u
p
 (

x
)

Parameter Server
Ideal

Figure 8: We tested scalability of the algorithm
when increasing the number of clients (for a
fixed number of servers) from 16 to 256. We
achieve almost a perfect speedup. Much of the
delay is likely due to the increased network load
for the servers.

This can be seen by rewriting the objective function f(W) by using a number of trace identities:

f(W) =
1

2

∥∥XW>W −X∥∥2
F

=
1

2
tr
(
W>WX>XW>W − 2X>XW>W +X>X

)
(‖A‖2F = tr(A>A))

=
1

2
tr
(
W>WX>XW>W

)
− trX>XW>W +

1

2
trX>X (tr(A+B) = tr(A) + tr(B))

=
1

2
tr
(
XW>WW>WX>

)
− tr

(
WX>XW>

)
+

1

2
tr
(
X>X

)
(tr(AB) = tr(BA))

Applying (112) and (100) of [24] directly we obtain (16).

Unfortunately, invoking the proximal operator is nontrivial in the above case, since ‖WX‖1 has
non-separable components (but it is block separable). This means that we need to solve each of the
following n independent optimization problems, e.g., using ADMM, simultaneously:

minimize
ui

1

2γ
‖ui − zi‖2Hi

+ λ ‖Xui‖1 , for i = 1 . . . n (17)

where wi ∈ Rp denotes the i-th row of W and we set zi = wi − γH−1i ∇if(W). Here γ is the
learning rate and Hi ∈ Rd×d is a scaling matrix to adjust the metric of the space. Following [10],
we choose the scaling matrices by

Hi(t+ 1)
2

= Hi(t)
2

+ diag(w
(t)
i − wi(t− 1))2 for t ≥ 0 and Hi(0) = 1

which can be computed locally. For convenience we drop the subscript i from the proximal step of
(17). Augmenting it with an auxiliary variable y := Xu the augmented Lagrangian is given by

L(u, y, µ) =
1

2γ
‖u− z‖2H + λ ‖y‖1 + 〈µ,Xu− y〉+

1

2θ
‖Xu− y‖2 . (18)

Correspondingly we obtain the update rules

u←
(
γ−1H + θ−1X>X

)−1 (
γ−1Hz +X>

(
θ−1y − µ

))
(19a)

y ← Sλ
(
θ−1Xu+ µ

)
(19b)

µ← µ+ θ−1 (Xu− y) , (19c)

where Sλ(·) is the soft-thresholding function. Note that a worker can update its parameters inde-
pendently if it has all observations and W>W , which is typically much smaller than W . Therefore
we use partitioning by parameters for RICA. The server maintains W>W , while each worker has
X and a part of rows of W . In other words, the workers compute and retain parts of the parameter
space.

C.2 Experiment

Since most computations are dense matrix operations, we implemented the proposed algorithm on
GPUs using CUBLAS. The latter uses all of the computational units within the GPU by default.

15

0 10 20 30 40

10
0

time (hour)

re
la

ti
v
e
 o

b
je

c
ti
v
e
 v

a
lu

e

delay=0

delay=1

delay=2

delay=4

0 2 4 8
0

10

20

30

40

50

60

maximal delay (τ)

ti
m

e
 (

h
o
u
r)

Total time
Computational time

1 2 4 8 16
1

2

4

8

16

workers

s
p

e
e

d
u

p
 (

x
)

Parameter Server
Ideal

Figure 9: Reconstruct ICA on dataset Ima-
geNet. Left: Varying delays on 16 GPU ma-
chines. Right: Decomposition of running times.
Bottle: Scalability when increasing the number
of workers from 1 to 16.

We run a single worker on each GPU card. We run the experiments on a cluster with each ma-
chine equipped with an Nvidia Tesla K20. The dataset used is ImageNet, which contains 100,000
randomly selected and resized 100× 100 pixel images5.

The experimental results are shown in Figure 9. Similar to `1-regularized logistic regression, the
clear improvement by asynchrony is also observed. Unlike the former, increasing the delay affects
both runtime time and convergence only little. This is because the actual update delay of RICA is
typically 1. When increasing the number of workers by 16 times, we see a 13.5 fold acceleration for
RICA in Figure 9. The main reason why the speedup of RICA is better than `1-regularized logistic
regression is that RICA mainly consists of dense matrix operations. They are easier to balance than
sparse matrices, and hence offer better scalability.

5www.image-net.org

16

http://www.image-net.org

