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1 HMM formulation

1.1 Definition of variables

• K - number of states

• L - number of gates (auxiliary latent variables) with L = K - 1

• T - number of time steps

• C - total number of cells

• s - state variable, 1-of-K vector

• y - target variable, C x 1 binary vector which indicates whether a cell spiked (1) or
not (0)

• x - vector of covariates (such as external stimulation, firing history)

• Ψ - gating parameters

• Φ - regression parameters

1.2 Model description

The standard representation of a first order input-output hidden Markov model [2, 3] can
be written as

p (S0:T−1,Y0:T−1|X0:T−1) = p (s0|x0) p (y0|s0,x0)

T−1∏
t=1

p (st|st−1,xt) p (yt|st,xt) . (1)

The current state st at time t depends on the previous state st−1 and some input xt. Specific
to the input-output hidden Markov model (IOHMM) compared to a homogeneous HMM
is the fact that state transitions and state emissions can be conditioned on some external
input xt as well.

We write the transition probabilities of the IOHMM as

p (st|st−1,xt,Ψ) =

K∏
i=1

K∏
j=1

p
(
s
(i)
t |s

(j)
t−1,xt,Ψ

)s(i)t s
(j)
t−1

(2)

The external input xt can e.g. consist of features representing a physical stimulus or the
filtered populating spiking activity as in [4].

Similarly, the emission probabilities are represented by conditioning on the current state st
and some input xt. Note here that the emission probabilities between neurons are assumed
to be conditionally independent given the current population state.

p (yt|xt, st,Φ) =

K∏
i=1

C∏
c=1

p
(
y
(c)
t |x

(c)
t ,φ

(c)
i

)s(i)t

(3)

The covariates x
(c)
t can contain features of the external stimulus, the neurons’ own spiking

history or the spike history of other neurons in the population [5, 6].

In order to represent a hierarchical organisation of population states, we introduce hierar-
chically organised auxiliary latent variables which represent the current state st. Here, st is
a 1-of-K vector which represents the unique active path within the hierarchy of zt’s (binary
variables). We can represent st in the form

s
(k)
t =

L∏
l=1

(
z
(l)
t

)A(l,k)
L

(
1− z(l)t

)A(l,k)
R

(4)
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Figure 1: Graphical model of the hierarchical Markov decision process with four
hidden states. The hidden states st are deterministic given the auxiliary latent variable
zt, which is organised in a hierarchical fashion.

where AL is a binary matrix with A
(l,i)
L = 1 if and only if the i-th state is in the left branch

of gate l and AR is a binary matrix with A
(l,i)
R = 1 if and only if the i-th state is in the right

branch of gate l.

The conditional probability of the population being in state s
(i)
t can be rewritten as

p
(
s
(i)
t |s

(j)
t−1,xt,Ψ

)
=

L∏
l=1

p
(
z
(l)
t = 1|s(j)t−1,x

(l)
t ,ψl

)A(l,i)
L

p
(
z
(l)
t = 0|s(j)t−1,x

(l)
t ,ψl

)A(l,i)
R

(5)

where p
(
z
(l)
t |s

(j)
t−1,x

(l)
t ,ψl

)
follows a Bernoulli distribution such that

p
(
z
(l)
t |s

(j)
t−1,x

(l)
t ,ψl

)
= g

(
s
(j)
t−1,x

(l)
t ,ψl

)z(l)
t
(

1− g
(
s
(j)
t−1,x

(l)
t ,ψl

))(1−z
(l)
t

)
. (6)

Here, g is an activation function which maps into the interval (0, 1).

1.3 Variational distribution

We can now write the joint distribution over observed and latent variables - including the
distribution over model parameters - as

p (Y,S,Φ,Ψ,λ,ν|X) =p (Y|S,X,Φ) p (S|X,Ψ) p (Φ|λ) p (λ) p (Ψ|ν) p (ν)

=p (Y|S,X,Φ) p (S|X,Ψ)

K∏
k=1

p (φk|λk) p (λk)

L∏
l=1

p (ψl|νl) p (νl) .

(7)

Here Y, is the set of yt’s, Φ and Ψ are the sets of parameters for the emission and gating
distributions, respectively, and λ and ν are the hyperparameters for the parameter priors.
Since there is no closed form solution for this distribution, we use a variational approximation
[7]. We assume that the posterior factorises as

q (S,Φ,Ψ,λ,ν) =q (S) q (Φ) q (Ψ) q (λ) q (ν) (8)

=q (S)

K∏
k=1

C∏
c=1

q
(
φ

(c)
k

)
q
(
λ
(c)
k

) L∏
l=1

q (ψl) q (νl) , (9)
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and find the variational approximation to the posterior over parameters, q (S,Φ,Ψ,λ,ν),
by optimising the variational lower bound L(q) on the evidence,

L(q) :=
∑
S

∫∫∫∫
q (S,Φ,Ψ,λ,ν) ln

p (Y,S,Φ,Ψ,λ,ν|X)

q (S,Φ,Ψ,λ,ν)
dΦdΨdλdν (10)

≤ ln
∑
S

∫∫∫∫
p (Y,S,Φ,Ψ,λ,ν|X) dΦdΨdλdν = ln p (Y|X) . (11)

We further assume that the approximate posterior is fully factorised:

q (S,Φ,Ψ,λ,ν) =q (S) q (Φ) q (Ψ) q (λ) q (ν)

=q (S)

K∏
k=1

C∏
c=1

q
(
φ

(c)
k

)
q
(
λ
(c)
k

) L∏
l=1

q (ψl) q (νl)
(12)

1.4 Variational Inference

We start by deriving the optimal factor of the latent variables ln q? (S). This is done in the
same fashion as in [3, Ch. 10.2.1], including the terminology used. The logarithm of the
optimal factor is given by the equation

ln q? (S) = EΦ,Ψ,λ,ν [ln p (t,S,Φ,Ψ,λ,ν|X)] . (13)

While deriving the optimal factor, we will ignore all terms that are not dependent on S for
now by summarising them in an additive constant term such that

ln q? (S) = EΦ,Ψ [ln p (t|S,X,Φ) p (S|X,Ψ)]− Z̃ (Y|X)

= EΦ [ln p (Y|S,X,Φ)] + EΨ [ln p (S|X,Ψ)]− Z̃ (Y|X) .
(14)

Here, the expectation of each term is only taken with respect to variables that are included in
the term. The normalisation constant Z̃ (Y|X) will play a role for calculating the variational
lower bound, as will be shown later [7]. It is estimated as a side product of the forward-
backward algorithm. By substituting 5 and 3 into the right-hand side of 14. we find

ln q? (S) =

T−1∑
t=0

K∑
i=1

K∑
j=1

s
(i)
t s

(j)
t−1EΨ

[
ln p

(
s
(i)
t |s

(j)
t−1,xt,Ψ

)]

+

T−1∑
t=0

K∑
i=1

s
(i)
t Eφi

[ln p (yt|Xt,φi)]− Z̃ (Y|X) .

(15)

This term takes a similar form as in the maximum likelihood framework, which is appro-
priate to perform the forward-backward algorithms (see [8, 7]). Instead of log-probabilities
however, we are dealing with expectations of log-probabilities. We therefore need to ap-
proximate the transition and emission probabilities.

We will approximate the transition and emission probabilities by (see [8, 7]):

p̃
(
s
(i)
t |s

(j)
t−1,xt,Ψ

)
:= exp

(
EΨ

[
ln p

(
s
(i)
t |s

(j)
t−1,xt,Ψ

)])
;

K∑
i=1

p̃
(
s
(i)
t |s

(j)
t−1,xt,Ψ

)
≤ 1 (16)

for the transition probabilities and

p̃
(
yt|s

(i)
t ,xt,φ

)
=

C∏
c=1

p̃
(
y
(c)
t |x

(c)
t ,φ

(c)
i

)
(17)
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with

p̃
(
y
(c)
t |x

(c)
t ,φ

(c)
i

)
:= exp

(
E
φ

(c)
i

[
ln p

(
y
(c)
t |x

(c)
t ,φ

(c)
i

)])
;

∫
p̃
(
y
(c)
t |x

(c)
t ,φ

(c)
i

)
dy

(c)
t ≤ 1

(18)

for the emission probabilities, where we have made use of the fact that Eφi
[ln p (yt|Xt,φi)]

factorises into independent emission factors for each cell. Note that those probabilities are
sub-normalised (do not sum to 1) [8, 7]. Since all probabilities we are dealing with for
the purpose of the main article are discrete it would be straightforward to normalise those
probabilities. In fact, doing so lead to very similar results as presented in the main article.
Here, we will however conform to [8, 7].

1.4.1 Forward-backward algorithm

We use the approximate transition and emission probabilities from above to calculate the
forward pass with

C̃tα
(
s
(i)
t

)
= α̃

(
s
(i)
t

)
= p̃

(
yt|s

(i)
t ,xt,φ

) K∑
j=1

α
(
s
(j)
t−1

)
p̃
(
s
(i)
t |s

(j)
t−1,xt,Ψ

)
(19)

where

C̃t =

K∑
k=1

α̃
(
s
(k)
t

)
.

is the normalisation constant which ensures that α
(
s
(i)
t

)
sums to one.

Similarly, we can calculate the backward pass where we utilise the normalisation constants
from the forward pass (see [3, Ch. 13.2]):

β
(
s
(i)
t

)
=

1

C̃t

K∑
j=1

βt

(
s
(j)
t+1

)
p̃
(
yt+1|s

(j)
t+1,xt+1,φ

)
p̃
(
s
(j)
t+1|s

(i)
t ,xt,Ψ

)
. (20)

with β
(
s
(i)
T−1

)
= 1 as the starting condition.

A further use of the normalisation constants C̃t is for calculating the normalisation constant
Z̃ (Y|X) of the approximate posterior q(S) such that

Z̃ (Y|X) = p̃ (Y|X) =

T∏
t=1

C̃t. (21)

This quantity will be useful for calculating the variational lower bound later.

Using the forward-backward recursions we can calculate the marginal E
[
s
(i)
t

]
and joint

probabilities E
[
s
(i)
t , s

(j)
t−1

]
- which we will also refer to as responsibilities - by

E
[
s
(i)
t

]
= α

(
s
(i)
t

)
β
(
s
(i)
t

)
, (22)

E
[
s
(i)
t , s

(j)
t−1

]
=

1

Zt
α
(
s
(j)
t−1

)
p̃
(
s
(i)
t |s

(j)
t−1,xt,Ψ

)
p̃
(
yt|s

(i)
t ,xt,φ

)
β
(
s
(i)
t

)
. (23)
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1.4.2 Posterior inference

Emission parameters We next find the form of the factor q? (φk) which approximates
the posterior over the parameters of state k. Following the same approach as above by
moving terms independent of φk into a constant term we find

ln q?
(
φ

(c)
k

)
=ES

[
ln p

(
y(c)|X(c),φ

(c)
k

)]
+ E

λ
(c)
k

[
ln p

(
φ

(c)
k |λ

(c)
k

)]
+ const.

=

T∑
t=1

E
[
s
(k)
t

]
ln p

(
y
(c)
t |x

(c)
t ,φ

(c)
k

)
+ E

λ
(c)
k

[
ln p

(
φ

(c)
k |λ

(c)
k

)]
+ const.

(24)

It can be seen that the log of factor q?
(
φ

(c)
k

)
is composed of the weighted log-likelihood

of the data plus the expectation of the model parameters with respect to q?
(
λ
(c)
k

)
. That

means the more data is observed, the less influence does the prior have on the approximate
posterior. Note that the log-likelihoods are weighted by the responsibilities of the respective
state as described above.

The approximate posterior over the hyper-parameters for state k can be written as

ln q?
(
λ
(c)
k

)
=E

φ
(c)
k

[
ln p

(
φ

(c)
k |λ

(c)
k

)]
+ ln p

(
λ
(c)
k

)
+ const. (25)

Gating parameters We now turn to the approximate posterior over gating parame-
ters. We will start with the posterior over all gating parameters Ψ and show that it nat-
urally factorises into approximate posteriors for each gating node such that ln q? (Ψ) =∑L

l=1 ln q? (ψl). The logarithm of the factor ln q? (Ψ) can be written as

ln q? (Ψ) = ES [ln p (S|X,Ψ)] + Eν [ln p (Ψ|ν)] + const. (26)

But as p (S|X,Ψ) is defined over the K states, some terms have to be rearranged to show

that in fact ln q? (Ψ) can be factorised into
∑L

l=1 ln q? (ψl). By substituting the definitions
for the conditional distributions of the equation above we find

ln q? (Ψ) =

T∑
t=1

K∑
i=1

K∑
j=1

E
[
s
(i)
t , s

(j)
t−1

]
ln p

(
s
(i)
t |s

(j)
t−1,Xt,Ψ

)
+

L∑
l=1

Eνl
[ln p (ψl|νl)] + const.

(27)
where it can be seen that the second part of the equation already factorises into L terms
due to the model description. We will inspect the first part of the equation which is
ES [ln p (S|X,Ψ)] more closely to show that it also factorises into L terms:

ES [ln p (S|X,Ψ)] =

T∑
t=1

K∑
i=1

K∑
j=1

E
[
s
(i)
t , s

(j)
t−1

]
ln p

(
s
(i)
t |s

(j)
t−1,Xt,Ψ

)

=

T∑
t=1

K∑
i=1

K∑
j=1

E
[
s
(i)
t , s

(j)
t−1

] L∑
l=1

A
(l,i)
L ln p

(
z
(l)
t = 1|s(j)t−1,x

(l)
t ,ψl

)
+A

(l,i)
R ln p

(
z
(l)
t = 0|s(j)t−1,x

(l)
t ,ψl

)
=

L∑
l=1

T∑
t=1

K∑
i=1

K∑
j=1

E
[
s
(i)
t , s

(j)
t−1

]
A

(l,i)
L ln p

(
z
(l)
t = 1|s(j)t−1,x

(l)
t ,ψl

)
+A

(l,i)
R ln p

(
z
(l)
t = 0|s(j)t−1,x

(l)
t ,ψl

)
,

(28)

where we have made use of the definition in 6 and rearranged the sums to show that the
equation factorises into L independent terms.
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Following this observation it is possible to derive the approximate posterior over the param-
eters for each gate separately with

ln q? (ψl) =

T∑
t=1

K∑
i=1

K∑
j=1

E
[
s
(i)
t , s

(j)
t−1

]
A

(l,i)
L ln p

(
z
(l)
t = 1|s(j)t−1,x

(l)
t ,ψl

)
+A

(l,i)
R ln p

(
z
(l)
t = 0|s(j)t−1,x

(l)
t ,ψl

)
+ Eνi

[ln p (ψi|νi)] + const.

=

T∑
t=1

K∑
j=1

ln p
(
z
(l)
t = 1|s(j)t−1,x

(l)
t ,ψl

)( K∑
i=1

E
[
s
(i)
t , s

(j)
t−1

]
A

(l,i)
L

)

ln p
(
z
(l)
t = 0|s(j)t−1,x

(l)
t ,ψl

)( K∑
i=1

E
[
s
(i)
t , s

(j)
t−1

]
A

(l,i)
R

)
+ Eνl

[ln p (ψl|νl)] + const.

=

T∑
t=1

K∑
j=1

r
(t,l)
L ln p

(
z
(l)
t = 1|s(j)t−1,x

(l)
t ,ψl

)
+ r

(t,l)
R ln p

(
z
(l)
t = 0|s(j)t−1,x

(l)
t ,ψl

)
+ Eνl

[ln p (ψl|νl)] + const.
(29)

where

r
(t,l,j)
L =

K∑
i=1

E
[
s
(i)
t , s

(j)
t−1

]
A

(l,i)
L and r

(t,l,j)
R =

K∑
i=1

E
[
s
(i)
t , s

(j)
t−1

]
A

(l,i)
R (30)

are the sums over the responsibilities of all states in the left subtree and in the right subtree
of gate l, respectively. By normalising those quantities the equation can be rewritten as

ln q? (ψl) =

K∑
j=1

T∑
t=1

E
[
z
pa(l)
t , s

(j)
t−1

]
ln p

(
E
[
z
(l)
t |z

pa(l)
t , s

(j)
t−1

]
|s(j)t−1,x

(l)
t ,ψl

)
+ Eνl

[ln p (ψl|νl)] + const.

(31)

where

E
[
z
pa(l)
t , s

(j)
t−1

]
= r

(t,l,j)
L + r

(t,l,j)
R (32)

is the sum over the responsibilities of all states in the subtrees of gate l which reflects the
joint probability of the subtree of gate l being active and the previous state being sj , and

E
[
z
(l)
t |z

pa(l)
t , s

(j)
t−1

]
=

r
(t,l,j)
L

E
[
z
pa(l)
t , s

(j)
t−1

] (33)

are the normalised responsibilities from above. Here E
[
z
(l)
t |z

pa(l)
t , s

(j)
t−1

]
represents the con-

ditional probability of the left subtree of gate l being active conditioned on the previous
state being sj and gate l being activated.

General form Following these findings we can formalise a general form for all nodes, be
it gating nodes or state nodes:

ln q? (ωn) =

T∑
t=1

η
(n)
t ln p

(
µ
(n)
t |x

(n)
t ,ωn, (. . . )

)
+ Eγn

[ln p (ωn|γn)] + const. (34)

where ωn are the parameters of the n-th node and p (ωn|γn) is the prior over the pa-

rameters. µ
(n)
t denotes the output of gate n with µ

(n)
t = y

(n)
t for emission nodes and

µ
(n)
t = E

[
z
(n)
t |z

pa(n)
t , s

(j)
t−1

]
for gate nodes. η

(n)
t denotes the influence or responsibility of
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node n on observation t with η
(n)
t = E

[
s
(n)
t

]
for state nodes and η

(n)
t = E

[
z
pa(n)
t , s

(j)
t−1

]
for

gate nodes. This observation simplifies the derivations which we will perform later, since
we can perform them on this general form. It should be noted that this equation holds for
any kind of regression problem as long as the conditional probabilities for the gating nodes
have the form as defined in 6.

1.5 Variational lower bound

For the HMDT we can evaluate the variational lower bound of the evidence. This bound is
useful for evaluating model convergence and model comparison. As the lower bound must
be monotonically increasing over iterations, a stopping criterion can be set by the amount
of change of the lower bound. Furthermore, the bound is a good way of evaluating if all
derivations have been performed and implemented correctly.

The lower bound of the hierarchical mixture of experts takes the form

L =
∑
S

∫∫∫∫
q (S,Φ,Ψ,λ,ν) ln

p (Y,S,Φ,Ψ,λ,ν|X)

q (S,Φ,Ψ,λ,ν)
dΦdΨdλdν

=E [ln p (Y,S,Φ,Ψ,λ,ν|X)]− E [ln q (S,Φ,Ψ,λ,ν)]

=E [ln p(Y,S|X,Φ,Ψ)]− E [ln q (S)]

+ E [ln p(Φ|λ)] + E [ln p(Ψ|ν)] + E [ln p(λ)] + E [ln p(ν)]

− E [ln q (Φ)]− E [ln q (Ψ)]− E [ln q (λ)]− E [ln q (ν)]

(35)

where all expectations are taken with respect to the approximate posteriors of their ar-
guments and the superscript ? is omitted. It can be seen that the expectations of the
distributions q are expectations of their log with respect to themselves (negative entropies).

We will only show expectations which can be generally derived for any type of HMDT
model. The expectations which are specific to the regression problem or the used prior will
be derived in a later section.

E [ln q (S)] =
∑
S

q (S) ln q (S)

=
∑
S

q (S)
(
Eq(Φ)q(Ψ) [ln p(Y,S|X,Φ,Ψ)]− ln Z̃ (Y|X)

)
=
∑
S

q (S)
(
Eq(Φ)q(Ψ) [ln p(Y,S|X,Φ,Ψ)]

)
− ln Z̃ (Y|X)

= E [ln p(Y,S|X,Φ,Ψ)]− ln Z̃ (Y|X)

(36)

where we see that

ln Z̃ (Y|X) = E [ln p(Y,S|X,Φ,Ψ)]− E [ln q (S)] (37)

which is the normalisation constant we calculate during the forward-back step (see above).
Therefore, the lower bound reduces to

L = ln Z̃ (Y|X)

+ E [ln p(Φ|λ)] + E [ln p(Ψ|ν)] + E [ln p(λ)] + E [ln p(ν)]

− E [ln q (Φ)]− E [ln q (Ψ)]− E [ln q (λ)]− E [ln q (ν)] .

(38)
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2 Bayesian Logistic Regression

Logistic regression is a common choice for modelling conditional probabilities of a target
variable which follows a Bernoulli distribution. It takes the form of

p (y = 1|x,w) = σ (wᵀx) =
1

1 + exp (−wᵀx)
(39)

where y is the target variable with y ∈ {0, 1}, x is a vector of covariates and w are the linear
weights for each covariate. σ (a) ∈ [0, 1] is called the logistic sigmoid which is symmetric
around zero such that

σ (a) = 1− σ (−a) . (40)

From this property, it can be shown that the conditional probability can be written as (see
[3, Ch. 10.6.1])

p (y|w,x) = σ (wᵀx)
y

(1− σ (wᵀx))
(1−y)

= exp ((wᵀx) y)σ (−wᵀx)
(41)

The logistic regression is a generalised linear model which makes model parameter inference
simple if we want to perform maximum likelihood estimation. However, for a Bayesian
treatment the posterior distribution over the parameters of a logistic regression is intractable.

To overcome this problem we will consider the approach by [9] for performing Bayesian
logistic regression. The authors introduce a variational lower bound to the logistic sigmoid
which is quadratic in its exponent. This enables us to estimate the posterior distribution in
closed form for parameters with a Gaussian prior. The descriptions on this approach will
be kept to a minimum in this section. The interested reader is referred to [9] and [3, Ch.
10.5 & 10.6].

The lower bound on the logistic sigmoid can be written as

σ (a) ≥ σ (ξ) exp
(
(a− ξ) /2− λ (ξ)

(
a2 − ξ2

))
(42)

where

λ (ξ) =
1

4ξ
tanh

(
ξ

2

)
(43)

and ξ is a local variational parameter which is specific to any single observation. By substi-
tuting this equation into 41 the Bernoulli likelihood can be lower bounded by

p (t|x,w) ≥ exp ((wᵀx) y)σ (ξ) exp
(
− (wᵀx + ξ) /2− λ (ξ)

(
(wᵀx)

2 − ξ2
))

= p (y|x,w, ξ)
(44)

where we refer to the lower bound on the likelihood as p (y|x,w, ξ) because we introduced
the additional parameter ξ.

2.1 Parameter priors

In order to perform Bayesian inference on the logistic regression, we define Gaussian priors
over the parameters of the logistic regression. For each parameter we assume independent
univariate Gaussian priors with zero mean. Furthermore, we introduce hyperpriors over the
precision of each Gaussian prior. This enables us to define an anisotropic prior over the
model parameters allowing us to perform automatic relevance determination (ARD) [10].
In the following section we will focus on the ARD prior. For derivations using an isotropic
prior the reader is referred to [3, Ch. 10.6].

The anisotropic Gaussian prior takes the form

p(w|α) =

D∏
d=1

N (wd|0, α−1
d ) =

|A|−1/2

√
2π

D
exp

(
−1

2
wᵀAw

)
(45)

where D is the number of parameters and A is a diagonal matrix with Add = α−1
d .
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We define the hyperpriors over the precision of the Gaussian prior as

p(α) =

D∏
d=1

Gam(αd|a(0)d ,b
(0)
d ) =

D∏
d=1

(
b
(0)
d

)a(0)d

Γ
(

a
(0)
d

) α
a
(0)
d −1

d exp
(
−b

(0)
d αd

)
, (46)

where a
(0)
d > 0 and b

(0)
d > 0 are shape and rate parameters which are initially set. Although

it will not be described in this section it is possible to also perform inference over those
parameters via gradient or sampling methods.

2.2 Update equations

To derive the variational posterior we can use the result from 34 such that the log-factor
q?(w) has the form

ln q?(w) =

T−1∑
t=0

ηt ln p (yt|xt,w) + Eα [ln p(w|α)] + const.

≥
T−1∑
t=0

ηt ln p (yt|xt,w, ξt) + Eα [ln p(w|α)] + const.

=

T−1∑
t=0

ηt ln ln p (yt|xt,w, ξt)−
1

2

D∑
d=1

Eα [αd]w2
d + const.

=

T−1∑
t=0

ηt

(
lnσ (ξt)−

ξt
2

+ λ(ξt)ξ
2
t + wᵀxt(yt − 0.5)− λ (ξt) wᵀxtx

ᵀ
t w

)
− 1

2
wᵀEα [A] w + const.

=wᵀ
T−1∑
t=0

ηtxt (yt − 0.5)− 1

2
wᵀ

(
Eα [A] + 2

T−1∑
t=0

ηtλ (ξt) xnxᵀ
n

)
w + const.

(47)

where the first line of this equation is as 34. We have brought ln q?(w) into a quadratic
function of w. By reading out the linear and quadratic terms in w we find the mean and
and covariance of the Gaussian posterior

q?(w) = N (µ,Σ) (48)

with

Σ−1 = Eα [A] + 2

N∑
n=1

ηnλ (ξn) xnxᵀ
n (49)

µ = Σ

N∑
n=1

ηnxn (yn − 0.5) (50)

and Eα [A] is a diagonal matrix with E [αd] as elements.

We now derive the approximate posterior over the hyperparameters where we again start
by taking the the expectation of the logarithm of the joint distribution. By moving terms
independent of α into the constant term we find

ln q?(α) = Ew

[
ln p(w|α−1)

]
+ ln p (α) + const.

=

D∑
d=1

(
Ewd

[
ln p(wd|α−1

d )
]

+ ln p (αd)
)

+ const.
(51)
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where we made use of 46. It can be seen that ln q?(α) factorises into D independent
components. We can therefore derive the posterior for each αd by

ln q?(αd) = Ewd

[
ln p(wd|α−1

d )
]

+ ln p (αd) + const.

=

∫ (
1

2
lnαd −

1

2
ln 2π − 1

2
αdw

2
d

)
q (wd) dwd + (a

(0)
d − 1) lnαd − b

(0)
d αd + const.

=
1

2
lnαd −

1

2
αd

[
σ2
d + µ2

d

]
+ (a

(0)
d − 1) lnαd − b

(0)
d αd + const.

= (a
(0)
d −

1

2
)︸ ︷︷ ︸

(ad−1)

lnαd −
[
b
(0)
d +

1

2

[
σ2
d + µ2

d

]]
︸ ︷︷ ︸

bd

αd + const.

= lnGam (αd|ad,bd) .
(52)

which takes the form of the logarithm of a Gamma distribution. We come to these results
via the conjugate-exponential relationship of the Gaussian distribution and the Gamma
distribution. The corresponding shape and rate parameters can be read out with

ad = a
(0)
d +

1

2
(53)

and

bd = b
(0)
d +

1

2

[
σ2
d + µ2

d

]
(54)

The mean of the gamma distribution is given by

E [αd] =
ad
bd

(55)

The expectation of the log-probability with respect to q(w) is evaluated by

Ew [ln p (yn|xn,w, ξn)]

= Ew [wᵀxn(yn − 0.5)− λ(ξn)wᵀxnxᵀ
nw] + lnσ(ξn)− ξn

2
+ λ(ξn)ξ2n

= µᵀxn(yn − 0.5)− λ(ξn) (xᵀ
nEw[wwᵀ]xn) + lnσ(ξn)− ξn

2
+ λ(ξn)ξ2n

= µᵀxn (yn − 0.5)− λ (ξn) (xᵀ
n (Σ + µµᵀ) xn) + lnσ(ξn)− ξn

2
+ λ(ξn)ξ2n

(56)

This function is used for calculating the expectations necessary to perform the forward-
backward algorithm.

2.2.1 Optimising the variational parameters

The variational parameters are updated by maximising the variational lower bound with
respect to the parameters. The lower bound is only dependent on

L̃ (q, ξ) =EZ,w [ln p(t|η,X,w)] + const.

=

∫∫ T−1∑
t=0

ηt ln p (yt|xt,w) dηdw + const.

=

T−1∑
t=0

ηtEw [ln p (yt|xt,w)] + const.

=

T−1∑
t=0

ηt

(
−λ (ξt) (xᵀ

t (Σ + µµᵀ) xt) + lnσ(ξt)−
ξt
2

+ λ(ξt)ξ
2
t

)
+ const.

(57)
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This factorises into t parts for each variational parameter. Taking the partial derivative
with respect to ξt we get

∂L̃ (q, ξ)

∂ξt
=ηt

∂

∂ξt

(
−λ (ξt) (xᵀ

t (Σ + µµᵀ) xt) + lnσ(ξt)−
ξt
2

+ λ(ξn)ξ2t

)
. (58)

By setting this function to zero, and by solving for ξt we get (see [3, Ch. 10.6.2]):

(ξnewt )
2

= xᵀ
t (Σ + µµᵀ) xt (59)

for the re-estimation of ξt.

2.3 Variational Lower Bound

As described earlier, the variational lower bound can be used for model comparison, to test
convergence and as a sanity check. Below we calculate the expectations need for calculating
the lower bound in equation (38):

Ew,α [ln p(w|α)] =Ew,α

[
D∑

d=1

−1

2
lnαd −

1

2
ln (2π)− 1

2
αdw

2
d

]

=− Dk

2
ln (2π) +

D∑
d=1

(
−1

2
E [lnαd]− 1

2
E [αd]E

[
w2

d

])

=− D

2
ln (2π) +

D∑
d=1

(
−1

2
(ψ (ad)− ln bd)− 1

2

ad
bd

(
σ2
d + µ2

d

))
(60)

Eα [ln p(α)] =Eα

[
D∑

d=1

− ln Γ
(

a
(0)
d

)
+ a

(0)
d ln b

(0)
d +

(
a
(0)
d − 1

)
lnαd − b

(0)
d αd

]

=

D∑
d=1

− ln Γ
(

a
(0)
d

)
+ a

(0)
d ln b

(0)
d +

(
a
(0)
d − 1

)
E [lnαd]− b

(0)
d E [αd]

=

D∑
d=1

− ln Γ
(

a
(0)
d

)
+ a

(0)
d ln b

(0)
d +

(
a
(0)
d − 1

)
(ψ (ad)− ln bd)− b

(0)
d

ad
bd

(61)

Ew [ln q(w)] =Ew

[
−1

2
ln |Σ| − D

2
ln (2π)− 1

2
(w− µ)

ᵀ
Σ−1 (w− µ)

]
=− 1

2
ln |Σ| − D

2
ln (2π)− 1

2
Ew

[
(w− µ)

ᵀ
Σ−1 (w− µ)

]︸ ︷︷ ︸
D

=− 1

2
ln |Σ| − D

2
ln (2π)− 1

2
D

=− 1

2
ln |Σ| − D

2
(1 + ln (2π)) (62)
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Figure 2: Graphical model for
hierarchical Bayesian inference
with Gaussian priors on the pa-
rameter means as described in
the text. Here m and wi are prior
distributions for the mean of their
children, αi and β are independent
Gamma priors on the precisions of
their respective children (Gaussians)
and µ is the prior mean for m which
can be either a Gaussian again or a
constant. This hierarchical structure
can be extended further upwards de-
pendent on the depth of the HMDT.

Eα [ln q(α)] =Eα

[
D∑

d=1

− ln Γ (ad) + ad ln bd + (ad − 1) lnαd − bdαd

]

=

D∑
d=1

− ln Γ (ad) + ad ln bd + (ad − 1)E [lnαd]− bdE [αd]

=

D∑
d=1

− ln Γ (ad) + ad ln bd + (ad − 1) (ψ (ad)− ln bd)− bd
ad
bd

=

D∑
d=1

− ln Γ (ad) + (ad − 1)ψ (ad)− ln bd − ad (63)

where ψ(...) is the digamma function.

3 Hierarchical Bayesian inference

We start from a situation with I independent logistic regressions pi (y|wi,x). Say those
regressions model the spiking probability for a neuron in I states. In the following description
we will assume that the regression parameters for each state are similar. This way it is
possible to model prior assumptions about similar receptive field for state close-by in the
HMDT. To implement such an assumption we chose a common mean (instead of zero mean)
for the parameter priors such that the anisotropic Gaussian from earlier takes the form

p(wi|m,αi) =

D∏
d=1

N (wi,d|md, α
−1
i,d ) =

|Ai|−1/2

√
2π

D
exp

(
−1

2
(wi −m)ᵀAi(wi −m)

)
,

(64)
where the Gamma prior on the precision takes the same form as before:

p(αi) =

D∏
d=1

Gam(αi,d|a(0)i,d ,b
(0)
i,d ) =

D∏
d=1

(
b
(0)
i,d

)a(0)i,d

Γ
(

a
(0)
i,d

) α
a
(0)
i,d−1

i,d exp
(
−b

(0)
i,dαi,d

)
(65)

We will further assume that the common prior mean m from above follows a Gaussian
distribution. Bayesian inference for this structure is straightforward because the Gaussian is
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the conjugate prior for the mean of a Gaussian [3]. Similarly to before the prior distribution
over m takes the form of an anisotropic Gaussian of the form

p(m|µ,β) =

D∏
d=1

N (m
(i)
d |µd, β

−1
d ) =

|B|−1/2

√
2π

D
exp

(
−1

2
(m− µ)

ᵀ
B (m− µ)

)
(66)

with independent Gamma priors on it’s precision matrix:

p(β) =

D∏
d=1

Gam(βd|c(0)d ,d
(0)
d ) =

D∏
d=1

(
d
(0)
d

)c(0)d

Γ
(

c
(0)
d

) β
c
(0)
d −1

d exp
(
−d

(0)
d βd

)
(67)

This hierarchical structure can be further extended by defining a prior over µ. A graphical
model to show the hierarchical Bayesian network is depicted in figure 2. From this represen-
tation it should become clear how the HMDT can give rise to a hierarchical prior structure.
States in the same sub-tree of the HMDT share the same prior mean, this prior mean follows
a distribution which has a shared mean with states further away in the tree, and so on.

The resulting update equation for the posterior distributions over parameters are given by

Σ−1
ji = Eαi [Ai] + 2

N∑
n=1

ηnλ (ξn) xnxᵀ
n (68)

µi = Σi

[
Eαi

[Ai]µm +

N∑
n=1

ηnxn (yn − 0.5)

]
(69)

for the regression parameters and by

Σ−1
m = Eβ [B] +

I∑
i=1

Eαi
[Ai] (70)

µm = Σm

[
Eβ [B]Eµ [µ] +

I∑
i=1

Eαi
[Ai]µi

]
(71)

for the higher level prior parameters. Posterior inference over the precision parameters αo

and β works as above. Those posterior distributions can be alternatively updated as part
of the VBEM algorithm.
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