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6 Identification of Input-Space Neighborhoods

Proof of Lemma 3. Each output-space neighborhood R ∈ PL has as preimages all input-space
neighborhoods that areR-identified by ηL (i.e., the input-space neighborhoods whose image by ηL, the
function computed by the first L-layers of the network, equalsR). The number of input-space preimages
ofR is denotedNL

R . If eachR ∈ PL is the image of a distinct linear region of the function hL = gL ◦ fL
computed by the last layer, then, by continuity, all preimages of all differentR ∈ PL belong to different lin-
ear regions of ηL. Therefore, the number of linear regions of functions computed by the entire network is at
least equal to the sum of the number of preimages of allR ∈ PL, which is justN =

∑
R∈PLNL−1

R .

7 Rectifier Networks

Proof of Theorem 5. The proof is done by counting the number of regions for a suitable choice of
network parameters. The idea of the construction is to divide the first L− 1 layers of the network into
n0 independent parts; one part for each input neuron. The parameters of each part are chosen in such
a way that it folds its one-dimensional input-space many times into itself. For each part, the number of
foldings per layer is equal to the number of units per layer. See Fig. 5.

As outlined above, we organize the units of each layer into n0 non-empty groups of units of sizes
p1, . . . , pn0 . A simple choice of these sizes is, for example, p1 = · · · = pn0 = bnl/n0c for a layer of
width nl, dropping the remainder units. We define the input weights of each group in such a way that the
units in that group are sensitive to only one coordinate of the n0-dimensional input-space. By the discussion
from Sec. 3.1, choosing the input and bias weights in the right way, the alternating sum of the activations
of the p units within one group folds their input-space coordinate p times into itself. Since the alternating
sum of activations is an affine map, it can be absorbed in the preactivation function of the next layer. In
order to make the arguments more transparent, we view the alternating sum h̃ = h1 − h2 + · · · ± hp
of the activations of the p units in a group as the activation of a fictitious intermediary unit. The compound
output of all these n0 intermediary units partitions the input-space, Rn0 , into a grid of

∏n0

i=1 pi identified
regions. Each of these input-space regions is mapped to the n0-dimensional unit cube in the output-space
of the intermediary layer. We view this unit cube as the effective inputs for the next hidden layer, and
repeat the construction. In this way, with each layer of the network, the number of identified regions is
multiplied by

∏n0

i=1 pi, according to Lemma 3. In the following we discuss the folding details explicitly.

Consider one of the network parts and consider the weights used in Sec. 3.1. The function h̃ computes
an alternating sum of the responses hk for k ∈ [p]. It is sufficient to show that this sum folds the
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Figure 5: Left: Illustration of the proof of Theorem 5. The figure shows a rectifier network that has been
divided into n0 independent parts. Each part is sensitive only to one coordinate of the input-space. Each
layer of each part is fed to a fictitious intermediary affine unit (computed by the preactivation function
of the next layer), which computes the activation value that is passed to the next layer. Right: Illustration
of a function computed by the depicted rectifier network for n0 = 2 at the intermediary layer. The function
is composed of two foldings; the first pair of hidden units fold the input-space R2 along a line parallel
to the x-axis, and the second pair, along a line parallel to the y-axis.

input-coordinate p times into the interval (0,1). Inspecting the values of hk, we see that we only need
to explore the intervals (0,1), (1,2), . . . , (p− 1, p).

Consider one of these intervals, (k − 1, k), for some k ∈ [p]. Then, for all x ∈ (k − 1, k), we
have h̃(x) = x + 2

∑k−1
i=1 (−1)i(x − i) = (−1)k−1(x − (k − 1)) − 1

2((−1)k−1 − 1). Hence
h̃(k−1) = −1

2((−1)k−1−1) and h̃(k) = (−1)k−1− 1
2((−1)k−1−1). One of the two values is always

zero and the other one, and so h̃({k − 1, k}) = {0,1}. Since the function is linear between k − 1 and
k, we obtain that h̃maps the interval (k− 1, k) to the interval (0,1).

In total, the number of input-space neighborhoods that are mapped by the first L− 1 layers onto the (open)
unit hypercube (0,1)n0 of the (effective) output space of the (L− 1)-th layer is given by

NL−1
(0,1)n0

=

L−1∏
l=1

n0∏
i=1

pl,i, (5)

where pl,i is the number of units in the i-th group of units in the l-th layer.

The inputs and bias of the last hidden layer can be chosen in such a way that the function hL partitions
its (effective) input neighborhood (0,1)n0 by an arrangement of nL hyperplanes in general position, i.e.,
into

∑n0

j=0

(
nL

j

)
regions (see Sec. 2.2).

Let ml denote the remainder of nl divided by n0. Choosing pl,1 = · · · = pl,n0−ml
= bnl/n0c and

pl,n0−ml+1 = · · · = pl,n0 = bnl/n0c+ 1, we obtain a total of linear regions(
L−1∏
l=1

⌊
nl
n0

⌋n0−ml
(⌊

nl
n0

⌋
+ 1

)ml
)

n0∑
j=0

(
nL
j

)
. (6)

This is equal to the bound given in theorem when all remainders ml = nl − n0bnl/n0c are zero, and
otherwise it is larger. This completes the proof.

8 Our Bounds in terms of Parameters

We computed bounds for the maximal number of linear regions of the functions computable by different
networks in terms of their number of hidden units. It is not difficult to express these results in terms of
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the number of parameters of the networks and to derive expressions for the asymptotic rate of growth of
the number of linear regions per added parameter. This kind of expansions have been computed in Pascanu
et al. (2013; Proposition 8). The number of parameters of a deep model with L layers of width n behaves
as Θ(Ln2), i.e., it is bounded above and below by Ln2, asymptotically. The number of parameters of
a shallow model with Ln hidden units behaves as Θ(Ln). Our Theorem 5 and the discussion of shallow
networks given in Sec. 2.2, imply the following asymptotic rates (number of linear regions per parameter):

• For a deep model: Ω
(

(n/n0
)
n0(L−1) nn0−2

L

)
.

• For a shallow model: O
(
Ln0−1nn0−1

)
.

This shows that, for deep models, the maximal number of linear regions grows exponentially fast with
the number of parameters, whereas, for shallow models, it grows only polynomially fast with the number
of parameters.

9 Maxout Networks

Proof of Proposition 8. Here we investigate the maximal number of linear regions of a rank-k maxout
layer with n inputs and m outputs. In the case of rectifier units, the solutions is simply the maximal
number of regions of a hyperplane arrangement. In the case of maxout units, we do not have hyperplane
arrangements. However, we can upper bound the number of linear regions of a maxout layer by the
number of regions of a hyperplane arrangement. The arguments are as follows.

As mentioned in Sec. 4, each maxout unit divides its input into the linear regions of an upper envelope of
k real valued linear functions. In other words, the input space is divided by pieces of hyperplanes defining
the boundaries between inputs where one entry of the preactivation vector is larger than another. There
are at most k2 such boundaries, since each of them corresponds to the solution set of an equation of the
form fi(x) = fj(x). If we extend each such boundary to a hyperplane, then the number of regions can
only go up.

The linear regions of the layer are given by the intersections of the regions of the individual units. Hence,
the number of linear regions of the layer is upper bounded (very loosely) by the number of regions of an
arrangement of k2 ·m hyperplanes in n-dimensional space. By Zaslavsky (1975), the latter is

∑n
j=0

(
k2m
j

)
,

which behaves asO((k2m)n), i.e., polynomially in k and inm.

Proof of Theorem 9. Consider a network with n = n0 maxout units of rank k in each layer. See Fig. 6.
We define the seeds of the maxout unit qj such that {Wi,:}i are unit vectors pointing in the positive and
negative direction of bk/2c coordinate vectors. If k is larger than 2n0, then we forget about k − 2n0 of
them (just choose Wi,: = 0 for i > 2n0). In this case, qj is symmetric about the coordinate hyperplanes
with normals ei with i ≤ bk/2c and has one linear region for each such i, with gradient ei. For the
remaining qj we consider similar functions, whereby we change the coordinate system by a slight rotation
in some independent direction.

This implies that the output of each qj ◦ (f1, . . . , fk) is an interval [0,∞). The linear regions of each such
composition divide the input space into r regions Rj,1, . . . ,Rj,k. Since the change of coordinates used
for each of them is a slight rotation in independent directions, we have that Ri := ∩jRj,i is a cone of
dimension n0 for all i ∈ [k]. Furthermore, the gradients of qj ◦ fj for j ∈ [n0] on eachRi are a basis of
Rn0 . Hence the image of eachRi by the maxout layer contains an open cone of Rn0 which is identical for
all i ∈ [k]. This image can be shifted by bias terms such that the effective input of the next layer contains
an open neighborhood of the origin of Rn0 .

The above arguments show that a maxout layer of width n0 and rank k can identify at least k regions
of its input. A network with L− 1 layers with therefore identify kL−1 regions of the input.

In Sec. 4 we mentioned that maxout layers can compute functions whose linear regions correspond to
intersections of Voronoi diagrams. Describing intersections of Voronoi diagrams is difficult, in general.
There are some superpositions of Voronoi diagrams that correspond to hyperplane arrangements which
are well understood. Here are two particularly nice examples:
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Figure 6: Left: Illustration of a rank-2 maxout layer with n = 3 inputs andm = 2 outputs. The preactiva-
tion function maps the input intomk-dimensional space, where k = 2 is the rank of the layer. The activation
function maximizes over groups of k preactivation values. Right: Illustration of the 3-dimensional Shi
arrangement S3 ⊂ R3 (depicted is the intersection with {x ∈ R3 : x1 +x2 +x3 = 1}). This arrangement
corresponds an input-space partition of a rank-3 maxout layer withn = 3 inputs andm = 3 outputs (for one
choice of the parameters). Each pair of parallel hyperplanes delimits the linear regions of one maxout unit.

Example 10. Consider a layer with n inputs and m = n(n− 1)/2 rank-3 maxout units labeled by the
pairs (i, j), 1 ≤ i < j ≤ n. The input and bias weights can be chosen in such a way that the regions
of unit (i, j) are delimited by the two hyperplanes H(i,j),s = {x ∈ Rn : xi − xj = s} for s ∈ {0,1}.
The intersections of the regions of all units are given by the regions of the hyperplane arrangement
{H(i,j),s}1≤i<j≤n,s=1,2, which is known as the Shi arrangement Sn and has (n+ 1)n−1 regions. The
right panel of Fig. 6 illustrates the Shi arrangement S3.

Example 11. A related arrangement, corresponding to rank-4 maxout units, is the Catalan arrangement,
which has triplets of parallel hyperplanes, and a total of n!Cn regions, where Cn := 1

n+1

(
2n
n

)
is the

Catalan number. For details on these arrangements see (Stanley 2004; Corollary 5.1 and Proposition 5.15).

10 Other Networks

In the introduction we mention that our analysis of rectifier and maxout networks serves as a platform
to study other types of feedforward neural networks. Without going into many details, we exemplify this
for the particular case of convolutional networks. A convolutional network is a network whose units take
values in a space of features (real valued arrays) and whose edges pass features by convolution with filters
(real valued arrays). Since convolution is a linear map, the preactivation function of a convolutional network
is of the same form as the preactivation functions considered in this paper. Its output is a feature, but it
can be written as a vector, like the fl,i’s that we considered. Hence convolutional networks with piecewise
linear activations fall in the class of networks that we considered here. The only difference lies in that
the corresponding input weight matrices of convolutional networks belong to restricted classes of matrices.

11 Sinusoidal Boundary Experiment

Here, we describe the experiments we performed to obtain Fig. 1 in the main text.

In this experiment we considered two MLPs, of which one has a single hidden layer with 20 hidden
units and the other has two hidden layers with 10 hidden unit each. The MLPs were trained on the
same synthetic dataset using a conjugate natural gradient (Pascanu and Bengio 2014) which was used
to minimize the effect of optimization. We plot the best of several runs. The shallow model misclassified
123 examples, whereas the deep model did only 24 examples. The two-layer model is better at capturing
a sinusoidal decision boundary, because it can define more linear regions.
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12 Visualizing the Behavior of Hidden Units in Higher Layers

In this section, we describe the details on how one can visualize the effect of folding in rectifier MLPs,
discussed in Sec. 2.6.

Any piecewise linear function is fully defined by the different linear pieces from which it is composed.
Each piece is given by its domain (a region of the input space Ri ⊆ Rn0) and the linear map fi that
describes its behavior on Ri. Because fi is an affine map, it can be interpreted in the same way hidden
units in a shallow model are. Namely, we can write fi as:

fi(x) = u>x + c, x ∈ Ri,

where u> is a row vector, and u> ∈ Rn0 . Then fi measures the (unnormalized) cosine distance between
x and u>. If x is some image, u> is also an image and shows the pattern (template) to which the unit
responds whenever x ∈ Ri.

Given an input examplex from an arbitrary regionRi of the input space we can construct the corresponding
linear map fi generated by the j-th unit at the l-th layer. Specifically, the weight u> of the linear map
fi is computed by

u> = (Wl)j: diag
(
Ifl−1>0 (x)

)
Wl−1 · · ·diag (If1>0 (x))W1. (7)

The bias of the linear map can be computed in a similar way.

From Eq. (7), we see that the linear map of a specific hidden unit fl,j at the l-th layer can be found by
keeping track of which linear piece is used at each layer until the l-th layer (Ifp>0, p < l, which is the
indicator function). At the end, the j-th row (Wl)j: of the weight matrix Wl is multiplied. Although
we present a formula specific to the rectifier MLP, it is straightforward to adapt this to any MLP with
piecewise linear activations (to convolutional neural networks with maxout activation, for example).

The linear map computed by Eq. (7) depends on the specific point x, and so, we need to traverse a set
of points (e.g., training samples) in order to identify different linear responses of a hidden unit. While
this does not necessarily give all possible responses (say if there are less training samples than distinct
response regions), if the set of points is large enough, we can get sufficiently many to provide a better
understanding of its behavior.

We trained a rectifier MLP with three hidden layers on the Toronto Faces Dataset (TFD) (Susskind et al.
2010). The first two hidden layers having 1000 hidden units each and the last one 100. We trained the
model using stochastic gradient descent. We used, as regularization, an L2 penalty with a coefficient of
10−3, dropout on the first two hidden layers (with a drop probability of 0.5) and we enforced the weights
to have unit norm column-wise by projecting the weights after each SGD step. We used a learning rate of
0.1 and an output layer composed of sigmoid units. The purpose of these regularization schemes, and the
sigmoid output layer is to obtain cleaner and sharper filters. The model was trained on fold 1 of the dataset
and achieved an error of 20.49% which is reasonable for this dataset and a non-convolutional model.

Since each unit in the first hidden layer only responds to one linear region, we directly visualize the learned
weight vectors of 16 randomly selected units in that layer. These are shown on the top row of Fig. 7. For each
other hidden layer, we randomly pick 20 units and visualize the most interesting 4, based on the maximal
Euclidean distance between the different linear responses of each unit. The linear responses of each unit are
computed by clustering the responses obtained on the training set (we only consider those responses where
the activation was positive) into four clusters using K-means algorithm. We show the representative linear
response in each of the clusters (see the second and third rows of Fig. 7). Similarly, we visualize the linear
maps learned by each of the output units. Fig. 8 shows a visualization for all seven units in the output layer.

By looking at the differences among the distinct linear regions that a hidden unit responds to, we can
investigate the type of invariance the unit learned. In Fig. 9, we show the differences among the four
linear maps learned by the last visualized hidden unit of the third hidden layer (the last column of the
visualized linear maps). From these visualizations, we can see that a hidden unit learns to be invariant to
more abstract and interesting translations at higher layers. We also see the types of invariance of a hidden
unit in a higher layer clearly.

Zeiler and Fergus (2013) attempt to visualize the behavior of units in the upper layer, specifically, of
a deep convolutional network with rectifiers. This approach is to some extent similar to our approach
proposed here, except that we do not make any other assumption beside that a hidden unit in a networks
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Figure 7: Visualizations of the linear maps learned by a selection of units in each hidden layer of a
rectifier MLP trained on the TFD dataset. Each row block corresponds to one hidden layer. The first block
column shows the unnormalized linear maps, and the second block column shows the normalized linear
map (shown is only the direction of each map). For the first layer, shown are the maps of 16 units. For
the second and third layers, shown are 4 maps for each of 4 units (each column corresponds to one unit).
Colors are only used to improve the distinction among different filters.

uses a piece-wise linear activation function. The perspective from which the visualization is considered is
also different. Zeiler and Fergus (2013) approaches the problem of visualization from the perspective of
(approximately) inverting the feedforward computation of the neural network, whereas our approach is
derived by identifying a set of linear maps per hidden unit. This difference leads to a number of minor
differences in the actual implementation. For instance, Zeiler and Fergus (2013) approximates the inverse
of a rectifier by simply using another rectifier. On the other hand, we do not need to approximate the
inverse of the rectifier. Rather, we try to identify regions in the input space that maps to the same activation.

In our approach, it is possible to visualize an actual point in the input space that maps to the same activation
of a hidden unit. In Fig. 10, we show three distinct points in the input space that activate a randomly chosen
hidden unit in the third hidden layer to be exactly 2.5. We found these points by first finding three training
samples that map to an activation close to 2.5 of the same hidden unit, and from each found sample, we
search along the linear map (computed by Eq. (7)) for a point that exactly results in the activation of 2.5.
Obviously, the found point is not one of the training samples. From those three points, we can see that the
chosen hidden unit responds to a face with wide-open mouth and a set of open eyes while being invariant
to other features of a face (e.g., eye brows). By the perturbation analysis, we can assume that there is
an open set around each of these points that are identified by the hidden unit.
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Figure 8: Linear maps of the output units of the rectifier MLP trained on TFD dataset. The corresponding
class labels for the columns are (1) anger, (2) disgust, (3) fear, (4) happy, (5) sad, (6) surprise and (7) neutral.

Difference Normalized

Figure 9: Differences between four linear regions of one hidden unit at the third hidden layer of the rectifier
MLP trained on TFD.

Figure 10: Visualization of three distinct points in the input space that map to the same activation of a
randomly chosen unit at the third hidden layer. The top row shows three points (not training/test samples)
in the input space, and for each point, we plot the linear map below.

7



References

R. Pascanu and Y. Bengio. Revisiting natural gradient for deep networks. In International Conference
on Learning Representations, 2014.
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