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1 Proofs

Proof of Lemma 1 and 2. We will prove Lemma 1 and 2 simultaneously. The f in Lemma 1 and
Lemma 2 are the same and all notation is consistent between the two lemmas. First we will show
that || ga,g|| . is continuous in cv. Let {a, }7° be a non-negative sequence in R converging to arbitrary
a > 0. Since g,, g is dominated by 5 f and g,, g converges to g, g pointwise, by the dominated
convergence theorem we know ||ga, sl/;1 — |[9a,s]/ ;1. thus proving the continuity of ||ga, s, :-
Since [|go,gll;. = 8 > 1 and ||ga,gll,. — 0as a — oo, by the intermediate value theorem there

exists o’ such that ||g, gl|;. = 1. This proves the existence part of Lemma 1. Let fg = Gu'.8-
Clearly D is convex so the closure (in L?) D is also convex. Since D is a closed and convex set in
a Hilbert space, argming¢p ||g — Bf|| . admits a unique minimizer. Note that fg being the unique
minimizer is equivalent to showing that, for all ¢ in D (Theorem 3.14 in [11])

(c=Jauf —Ja) <0

Because this is continuous over the ¢ term and D is dense in D we need only show that the inequality
holds over all ¢ € D. To this end, note that for all x,

Bf () —max{0,8f (z) —a'} <o
and that if fﬂ(a:) > 0 then

fa(@) = Bf(x) — o,

From this we have
(c=JaB1 = Ts)
= (e8f~Fs) = (F5.8F ~ Js)
[e@ (5 @) - Fi @) ds
- [ (3@ - Fo @) o

/c (x) ' dz
- [ 5@ (6F @) - (67 @) - @) do

/ /
= 0 —«

0.
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From this we get that f is the unique minimizer. If there existed o’ # o such that g, 3 was also
a pdf, then there would be two minimizers of arg min ¢p ||g — Bf|| >, which is impossible since
the minimizer is unique, thus proving the uniqueness of «'. O

Proof of Proposition 3. In this proof we will be working with a hypothetical f;,,- and f.o, in D.
Define “Assumption B” to be that there exists two sets S C supp(fia,) and T C R?, which have
nonzero Lebesgue measure, such that feo, (1) > feon(S). We will now show that Assumption A
not holding is equivalent to Assumption B.

A=-not B: Let S C supp( fiqr) and T C R? both have nonzero Lebesgue measure. From Assump-
tion A we know for Lebesgue almost all s € S that f.,,(s) = u, for some u and feon, (T) < u
Lebesgue almost everywhere.

not A=-B: If Assumption A is not satisfied either f.,,, is not almost Lebesgue everywhere uniform
over supp( fiar) Or feon is Lebesgue almost everywhere uniform on supp ( fq,-) with value u but
there exists some set Q C R? of nonzero Lebesgue measure such that f.,,, (Q) > u. Both of these
situations clearly imply Assumption B.

This proves that the negation of Assumption A is Assumption B.

Let feon and fi,, satisfy Assumption B and ¢ € (0, 1) be arbitrary. By Lemma 1 we know there
exists a unique « such that max {l—is ((1 =€) frar(") + €fcon) — @, 0 } is a pdf. First we will show
that v < esssup, 1= feon (). If esssup,, 5= feon () = oo then clearly a < esssup,, 15 feon ().

Let 7 = esssup, 1o feon(7) < o0. Let S,T C R? satisfy the properties in the definition of
Assumption B. Observe that

/max {115 (1 = &) frar(x) + efeon(x)) — 7,0 }dx
- /max {fmr(w) + %_é:fwn(ac) — 7“70} dx
= /Smax {ftar(a:) + %_gfcon(x) -7, O} dz + /SC max {ftar(x) + %_gfcon(x) -7 0} dz.

Note that on the set S we have that max {ftm(:z:) + 15 feon () — 1, 0} < ftar. Now we have

/S max {fm@c) T fean(a) 0} d + /S max {fm@c) T feon(a) 1, o} de

<mem%égm@m
<1

and thus < r (i.e. the cutoff value for R;“ (fobs) is lower than the essential supremum
of feon). Because a < esssup, 1= feon(®), on the set for which = f.,n(-) > a (which

has nonzero Lebesgue measure) we have that max{ Jtar () + 152 feon — a,O} > ftar, SO

max { frar () + 152 foon = @0} # frar. m

Proof of Theorem 1. Given a set S C L? (Rd) let Pg be the projection operator onto .S. Consider
the following decomposition

\f2s—f5ll,, = || PoeBfd — PoBfl| -
|| Pon BF2 — PoBf|| 2 + || PonBf — PoBf| 2
Note that we are projecting onto D rather than D does not matter as was shown in the proof of

Lemma 1 and 2. Furthermore note that f é = Py f. The projection operator onto a closed convex
set is Lipschitz continuous with constant 1 (Proposition 4.8 in [1]]) so the first term goes to zero by
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standard KDE consistency (which we prove later). Convergence of the second term is a bit more
involved. First we will show that || Pp»8f — Bf| 12 L |PsBf — Bl 2> and then we will show

that this implies HPDg Bf — féH 2o,

We know D C D so HPDnﬂf 6f||L2 > ||[PpBf —Bf|l .- We also know that for all
b € D7, nfBf— ﬁfHL2 < ||6 = Bf|l 2. Because of these two facts, in order to show

| Pon Bf —BfHL2 L \|PpBf — Bf| 2 it is sufficient to find a sequence {g7”} C D? such
that

— féHL2 %0. Since Bf > fé we can generate g, by applying rejection sampling to

Xi,..., X, to generate a subsample X7, ..., X;, ~which are iid from fj. For all i the event of
X, getting rejected is independent with equal probability. The probability of a sample not being
rejected is greater than zero so there exists a b > 0 such that E [m,,] > bn. From this and the

strong law of large numbers we have that P° (mnad — oo) = 1. Using this subsample we can con-
struct g7 = % 1" ko (-, X]) € D} which is a KDE of f}, so by standard KDE consistency

7

. %0, and thus || PprBf — Bf|| .. = | PsBf — Bfll -

Let fﬁﬁ £ Pp.f3f. Finally we are going to show that || P, 8f — Bf||,, 2 IPpBf — Bf| 1
implies that H s =15 ) %,0. The functional ||3f — || 12 is strongly convex with convexity
' L

constant 2 (Example 10.7 in [1]]). This means that for any a € (0, 1), we have

fB

Hﬁf— (afg6+(1_a fﬁ)H +a(l—a)

SaHﬁf—fﬁ,B L2+(1_a)||6f_f[/3|’m'

Letting a = 1/2 gives us

o
HMW R T Y T
Since
185 - 13015, < ||8s - 72
and N )
los = 1, < |jor - Liatle
we have -

~ 2
< |87 - 724,

1 N?’L
185 = £4ll50 + 7 | 72s

or equivalently

~ 2 — 12 9
|75 =13, =<4 <Hﬁf — s, —18f - f,é||L2> .
The right side of the last equation goes to zero in probability, thus finishing our proof. O
Proof of KDE L? consistency. Let f, = E[k, ( f ko x) dz. Using the triangle

inequality we have

1 = 72 lpe < 1F = Follpa + 11 Fo = 721l

The left summand goes to zero as 0 — 0 by elementary analysis (see Theorem 8.14 in [2]). To take
care of the right side with use the following lemma which is a Hilbert space version of Hoeffding’s
inequality from Steinwart & Christmann [3]], Corollary 6.15.



Lemma (Hoeffding’s inequality in Hilbert space). Let (2, A, P) be a probability space, H be
a separable Hilbert space, and B > 0. Furthermore, let &1,...&, : Q — H be independent
H-valued random variables satisfying ||&;|| ., < B for alli. Then, for all T > 0, we have

2 1 4B
P( ZB\/T—‘FB\/»—FT)SeT..
n n 3n
H
Note that ||&;|| ., = esssup,,cq ||&i (w)]| ;- Plugging in &§; = ko (-, X;) we get
7 121
P(Hfo’ _.f(THL2 > ||k<7('7X7?)||L2 ;
1 4k ( Xi)ll2 7 -
ko (-, X; - <e .
ko Xl £ 4 A X ‘
It is straightforward to show that there exists @ > 0 such that ||k, (-, X;)|| ;> = Qo~%2, giving us
T _ 2T
P15 = fols 2 Qo2
—d/2
+Q0—d/2\/T+ 4QU T) < e T,
n 3n

Letting no? — oo sends all of the summands in the previous expression to zero for fixed 7. Because
of this there exists a positive sequence {7;}," such that 7, — oc and but increases slowly enough

that Qo—/2, /20 _|_Q0.—d/2\ﬁ+ %
From this it is clear that ||f§ — ngLQ 0. H

> (& -E&)

1
n

= — — 0 asn — oo, where o depends implicitly on n.

Proof of Corollary 1. Let \ be the Lebesgue measure. Let S C R? be such that A (S) < oo. By
Holders inequality we have

175 = 158) xsll e < 1175 = Fopl o xslza

= 7 F2l, VA
From this we have that, that f ; converges in probability to f [’3 in L' norm, when restricted to a set
of finite Lebesgue measure. Let § > 0 be arbitrary. Choose S to be a set of finite measure large

enough that [ f} (z) dz < §/8. Note that this implies ‘
Notice that

faxs H > 16, a fact we will use later.
L1

145 = 158l = 1(F5 = f8) xsll o + 1 (F5 = Fo6) xsell -

We have already shown that the left summand in the converges in probability to zero, so it becomes
bounded by §/8 with probability going to one. To finish the proof we need only show that the right

summand is bounded by %5 with probability going to one. Using the triangle inequality we have

[(fs = fos) xselln < [faxsell, + 1£7axse | .
< §/8+ | f7axsellp.-

Now it is sufficient to show that ’ fo pXsc || becomes bounded by %5 with probability going to one.
’ 1
To finish the proof,
175 x50 + o pxse ]l =1
therefore

17 pxsell e =1 = (175 x5

>

and we know that ‘

f,é XS H ) > %5 so with probability going to one ’
L

D,
s, | s,

0/2. O
L1</

/2 and thus ’ f3axse




Proof of Theorem 2. By the triangle inequality we have ‘

Hfé - ftar I
is sufficient to show that the right term is zero. The rest of this proof will effectively prove Propo-
sition 2. Again let g, g (-) = max {0, 5fops (-) — a}. From Assumption A we know that Lebesgue
almost everywhere on the support of f;,;, that f.., is equal to some value u and that f,, is less
than or equal to u Lebesgue almost everywhere on R¢. We will show that, o/ = -, gives us
9o’,3 = frar Which, by Lemma 1, implies fiq, = fé. Let K be the support of fiq,.

fg;ﬂfftm’ I S ‘

. The left summand in the previous inequality goes to zero by Corollary 1, so it

/
op o),

First consider z € K©. Almost everywhere on K¢ have

U
ga’,ﬁ('r) = max{ovﬁfobs(x)_l_g}
= max40 Lf (x)e — v
- 7175 con 1—6
< max<0 Lu _ s
e Bl TP

= 0.

So ga g is zero almost everywhere not on the support of fi,,.. Now let x € K, then Lebesgue
almost everywhere in K we have

9or,5 ()

— ma,X{O7BfObS (l‘)_ 18_u5}

0 1 (1= ) for () + fom (0)8) = 12}

1—¢ 1—¢

{
- maX{Ov (1) fuar (@) +0) = }
{

Eu (1)
vatar(x)+ 1—87 1_5}

From this we have that g g = fiq,» Which is a pdf, which by Lemma 1 is therefore equal to f é O



2 Experimental Results

Table 1: Mean and Standard Deviation of Dy, (ﬂ | fo)

Dataset

Algorithm

51

0.00 0.05 0.10 0.15 0.20 0.25 0.30
SPKDE | 0.19£0.04 | 0.154+0.03 | 0.14£0.03 | 0.174+0.07 | 0.23+0.08 | 0.35+0.1 0.514+0.2
banana KDE 0.1940.1 0.3240.1 0.53+0.2 | 0.66£0.2 | 0.8440.2 1.1£0.2 1.240.2
RKDE 0.814+0.3 0.78+0.3 0.77+0.3 0.71+£0.4 | 0.61+0.3 0.63+0.3 0.664+0.3
rejKDE 0.19+0.2 | 0.35£0.2 | 0.524+0.2 0.74+0.2 0.8410.2 1.1£0.2 1.34+0.2
SPKDE 3.2£0.7 3.4£0.8 3.240.8 3.5£0.9 3.7+1 3.9+1 4241
breast-cancer KDE 4£0.9 4.1+1 4+1 43+1 4.6+1 4.8+1 5+1
RKDE 3.1£0.7 3.24£0.7 3+0.5 3.2£0.6 3.5+0.8 3.7£0.9 4+0.9
rejKDE 4+0.8 4.1+1 4.1+£1 43+1 4.6+1 4.8+1 4.9+1
SPKDE 0.8+0.05 | 0.84+0.09 | 0.8+0.1 0.8440.1 0.87+0.1 | 0.91£0.08 | 0.89%0.09
diabetis KDE 1.5+£0.2 1.6£0.3 1.840.3 1.8+0.4 1.94+0.4 2+0.3 2404
RKDE 0.9940.1 110.1 0.96+0.1 0.98+0.1 1+0.1 1£0.1 0.9840.1
rejKDE 1.5+£0.2 1.64+0.2 1.84+0.4 1.940.5 1.940.5 2+0.4 2.1£0.5
SPKDE 6.6+0.9 6.8+1 6.9+0.9 7£0.9 6.9+1 7.2+0.7 7.4+£0.7
german KDE 71 7+£1 7.3+0.9 7.4+1 7.4+1 7.61+0.8 7.8+0.8
RKDE 5.4+0.7 5.61+0.8 5.84+0.7 5.84+0.8 5.94+0.8 6£0.7 6.21+0.6
rejKDE 7+1 7.2+1 7.4+1 7.5+1 7.5+1 7.7+0.8 7.8+0.7
SPKDE 4+0.7 4+0.9 4.24+0.7 4.54+0.8 4.8+1 5.1+l 5.1+£1
heart KDE 4.7+1 5.1%1 5.3+1 5.6+1 5.8+1 6.2+1 6.6+1
RKDE 3.8£0.9 3.8£0.8 3.9+0.6 4.240.8 42409 4.5+1 4.9+1
rejKDE 4.8+£0.9 53+1 5.2+1 5.6+1 5.6+1 6.3+1 6.4+1
SPKDE 13£2 13+2 13£2 13+2 12£2 112 11+£1
ionosphere scale KDE 1542 1442 1442 15+£2 1442 1342 1442
RKDE 10+2 10£2 9.942 9.242 8+3 6.742 7.5£3
rejKDE 162 1542 15+2 14+1 14+2 1442 14+2
SPKDE 4.8+0.4 5.3+0.9 6.3+1 7.3+1 8+1 9.2+1 9+0.9
ringnorm KDE 49404 5.7£0.9 7.4+1 8.6+1 11+£2 13+2 14+0.7
RKDE 44+0.2 3.840.6 4+£0.6 4.1£0.6 4.7+1 5.7£0.6 6.1+0.5
rejKDE 5+0.3 5.84£0.8 7.3£1 8.5£1 10+2 13+1 14+0.8
SPKDE 3047 3148 30+8 3347 3317 3347 3547
sonar scale KDE 3146 3149 3148 3248 3447 3548 3548
RKDE 3249 3247 3247 3147 3348 3447 3547
rejKDE 3149 3248 3249 3447 3348 33+7 368
SPKDE 21+0.3 21+0.2 21103 21+0.3 214+0.2 211+0.2 204+0.4
splice KDE 21+0.3 214+0.2 214+0.2 21+0.3 21+0.3 214+0.2 20+0.2
RKDE 21+0.5 21£0.5 214+0.6 21+04 21+04 2010.6 2040.6
rejKDE 214+0.3 21+0.3 214+0.2 2140.2 21+0.3 2140.2 20+0.2
SPKDE 0.59+£0.2 | 0.69+0.4 1.1£0.8 1.3+0.8 1.2+0.7 1.1+0.7 1.3+0.6
thyroid KDE 0.6+0.2 4.543 11+7 16+7 20+7 2245 3248
RKDE 0.56£0.1 0.88+0.5 1.3+0.9 1.6+1 1.54+0.8 1.3£0.6 1.44+0.8
rejKDE 0.594+0.2 4943 8.6+5 17+6 2249 2547 3348
SPKDE 4.8+0.4 4.6£0.5 4.6£0.5 4.8+0.7 5+0.9 5.4+0.9 6.2+1
twonorm KDE 4.840.4 4.840.5 49405 5.14+0.6 52409 5.7+0.9 6.6+1
RKDE 4.2+0.4 3.8+0.4 3.91+0.5 4+0.5 4.1£0.7 4.7£0.9 5.5+0.8
rejKDE 4.94+0.5 4.74+0.6 4.940.5 5+0.7 5.240.8 5.7+0.9 6.6+1
SPKDE 4.84+0.8 4.840.8 5241 5.6+0.9 6.1£0.8 6.24+0.8 6.7£0.5
waveform KDE 5+0.7 4.9+0.7 5.3+1 5.7+1 6.3+0.9 6.2+0.8 6.8+0.4
RKDE 4.5+0.7 4.440.6 4.7+0.9 5.2+1 5.6+0.8 5.74+0.7 6.1+0.4
rejKDE 4.9+0.7 4.9+0.7 54+1 5.8+£0.9 6.21+0.9 6.3+0.8 6.8+0.4




Table 2: Mean and Standard Deviation of D, ( fol |f)

3

Dataset Algorithm 0.00 0.05 0.10 0.15 020 025 030
SPKDE | 057402 | -0.60202 | 073502 | 078402 | 081502 | 079402 | 075502
banana KDE | -085402 | -0.83402 | -0.840.1 | -08+0.1 | -08+0.1 | -0.7740.1 | -0.74-£0.1
RKDE | 15+l1e+01 | 1249 1149 8.649 5747 6.519 7.149
rejKDE | -0.73+02 | -0.8402 | -0.8402 | -0.82+0.1 | -0.8240.1 | -0.7940.1 | -0.75+0.1
SPKDE | -1740.7 | -18%07 | 2406 | 2506 | 22106 | 24106 | 2.6507
breast-cancer KDE 18407 | -1.9406 | 21406 | 21406 | -23406 | 24406 | 26407
RKDE 2042 1843 1442 0.77+2 02942 | -0.02542 | -0.43+2
rejKDE 0442 0142 | 03542 | -0.69+1 41 A241 | o144
SPKDE | 34208 | 37E07 | 4106 | 42106 | 45105 | 46104 | 48%05
diabetis KDE 39405 | 41405 | 43404 | -44403 | -46+04 | -47+03 | -5+03
RKDE 1341 1742 | -17+1 241 2142 2642 | 2541
rejKDE | -3.7407 | -39406 | 42405 | -43+404 | -45+04 | -46+04 | -49+04
SPKDE | -0.067004 | -0.15004 | 021504 | 026004 | -032004 | 041504 | 0.48504
german KDE | -0.043404 | -0.12404 | -0.19404 | -0.23404 | -029404 | -0.3840.4 | -0.45:0.4
RKDE | 071405 | 062405 | 056+0.7 | 0.5240.6 | 045406 | 035+0.6 | 0.2940.6
rejKDE | 026405 | 0.1640.5 | 0.07+05 | 0.039+0.5 | -0.026+0.5 | -0.1240.5 | -0.240.5
SPKDE | 07407 | 044L00 | 0.1750.7 | 0.07150.7 | -0.044208 | 021508 | 032108
heart KDE 0.7140.7 | 04608 | 02407 | 0.1240.7 | 0.0049£0.8 | -0.15+0.8 | -0.26+0.7
RKDE 2441 19409 | 15408 1441 12408 1409 | 082408
r¢jKDE | 1.3+0.9 1409 | 0.68+£09 | 06409 | 042409 | 023409 | 0.12+08
SPKDE T5L1 T3L1 TaL1 UAES! 7L 7L 7512
jonosphere scale | KDE 7.8+1 7.64+1 75+1 7341 7341 73+1 7742
RKDE 7641 7541 7441 7442 7.642 8.9+4 9.9+4
rejKDE 7741 7.64+1 74+1 7041 7241 7241 7642
SPKDE | 3404 s 10408 | 12008 | -13107 | -13104 | -14104
ringnorm KDE 3404 78+1 | -98408 | -11408 | -12407 | -13404 | -14+04
RKDE | -32404 | -81+1 | -10408 | -12408 | -13407 | -13404 | -14404
rejKDE | -3.1404 | -79+1 | 99408 | -12408 | -12407 | -13404 | -14+04
SPKDE 1616 1655 1755 1755 1855 1955 1955
sonar scale KDE 1646 16£5 1745 1745 1845 1945 1945
RKDE 1646 1645 1745 1647 1845 1945 1945
rejKDE | -8.2-49 9448 | -9.648 1048 1148 1148 1148
SPKDE | 34103 | 34503 | 34103 | 34%02 34102 34102 | 34102
splice KDE 34403 | 34403 | 34403 | 34402 34402 34402 | 34402
RKDE 34403 | 34403 | 34402 | 34402 34402 34402 | 34402
refKDE | 34403 | 34403 | 34403 | 34402 34402 34402 | 34402
SPKDE | 086209 | 41509 | 51L&l | 594505 | 64504 | 67502 | 68502
thyroid KDE | -089407 | -4407 | -5408 | -56404 | -61403 | -63+202 | -64=02
RKDE | 071409 | -3.9409 | -5+I 58404 | -63+03 | -6.6402 | -6.8+0.2
rejKDE | -0.88408 | -4.1407 | 51408 | -5.7404 | -6.1403 | -64+02 | -6.5+40.2
SPKDE | 32406 | 38405 | 4105 | 44104 | 46103 | 48104 | -5.1104
twonorm KDE 31406 | 37405 | 39404 | -43404 | -45+03 | -47+04 | -5+05
RKDE | 33406 | -39405 | -41+405 | -45+04 | -47403 | -49404 | -52+05
rejKDE | -3240.6 | -38405 | -4405 | 43404 | -46+03 | -48+04 | -5.140.5
SPKDE | -7.6403 | 77403 | 79503 | 8404 | 81103 | 83103 | 83103
waveform KDE 75403 | 77404 | -78404 | 8404 | -81404 | -82+04 | -83+03
RKDE | -7.6403 | -7.8403 | -8404 | -8.1404 | -82404 | -84404 | -8.4+03
rejKDE | -7.640.3 | -78404 | 79404 | -8404 | -82+04 | -83+04 | -84+03
References

[1] H.H. Bauschke and P.L. Combettes. Convex analysis and monotone operator theory in hilbert
spaces. CMS Books in Mathematics, Ouvrages de mathématiques de la SMC. Springer New

York, 2011.

[2] G.B. Folland. Real analysis: modern techniques and their applications. Pure and applied

mathematics. Wiley, 1999.

[3] I Steinwart and A. Christmann. Support Vector Machines. Springer, 2008.




	Proofs
	Experimental Results

