A Bounding the widths of confidence sets

We present elementary arguments which culminate in a proof of Theorem 3.

Lemma 4 (Concentration results for /dr/n¢(z)).
For all finite sets X and any dr,e > 0:

i {\/m>hd% } i { dT/mmt)>e}+|X|,

t=1

Where h(dr,€) := \/dre?/(dr + €2).

Proof. Let (2s,,.., s, ) be the largest subsequence of 1 such that \/dr/ns, (zs,) € (h(dr, €), €] Vi.
Now for any « € X, let T, = {s; | s; = x}. Suppose there exist two distinct elements o, p € T, with
o < p so that n,(z) > no(z) + 1. We note that for any n € Ry, h(dr, \/dT/n) = \/dT/(n +1) so

that:
dr /no(x) = h(dr,€) > \/dr/(ne(x) + 1) > \/dr /n,(z)

This contradicts our assumption \/dr/n,(z) € (h(d,€), €] and so we must conclude that |7, < 1

for all z € X. This means that (xs,, .., s, ) forms a subsequence of unique elements in X, the total
length of which must be bounded by |X]. O

We now provide a corollary of this result which allows for episodic delays in updating visit counts
n:(x). We imagine that we will only update our counts every 7 steps.

Corollary 3 (Concentration results for /dr/n¢, (x) in the episodic setting).
Let us associate times within episodes of length 7, t = tx +1i fori=1,..,7 and T = M x 7. For all
finite sets X and any dr,e > 0:

iZn{ dr frn, (@, 00) > K (dr,0) | < Sy {Var/n o) > e + 2012,

k=1 i=1

Where h<7)(dT, €) is the T-fold composition of h(dr,-) acting on e.

Proof. By an argument of visiting times similar to lemma 4 we can see that the worst case scenario
for the episodic case Z;J:I:l >, 1 { dr [ne,, (x4, +4) > b7 (dr, e)} is to visit each x exactly 7—1

times before the start of an episode, and then spend the entirety of the following episode within
the state. Here we have upper bounded 27 — 1 by 27 and |X| — 1 by |X| to complete our result. [

It will be useful to define notion of radius for each confidence set at each z € X, rg,(x) :=
supsc 7, |(f — fe)(x)]|. By the triangle inequality, we have wr, (z) < 2rF, () for all x € X.

Lemma 5 (Bounding the number of large radii).

Let us write Fi for Fi, and associate times within episodes of length 7, t = tx + @ fori=1,..,7T
and T = M x 7. For all finite sets X, measurable spaces (¥,Xy), function classes F C Mx.y,
non-decreasing sequences {d; : t € N}, any T € N and € > 0:

M

ZZIL{T;k (i) > €} < (% + 1) 27| X|

k=1 i=1

Proof. By construction of F; and noting that d; is non-decreasing in ¢, we can say that rx, (z:) <
dr/ne, (x¢) for all t = 1,..,T so that

Zzﬂ{rfk(xt+k+1) > e} < Zzﬂ{m> e}.

k=1 i=1 k=1 i=1

Now let g(e) = +/dre?/(dr — 7€?) be the e-inverse of h(™)(dr,e€) such that g(h\™ (dr,€)) = e.

Applying Corollary 3 to our expression n times repeatedly we can say:

ii 1{\/dr e, (o 40) > €} < ZZ {Var/n o) > 6@} + 2072,

k=1 i=1 k=1 i=1
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Where g™ (e) denotes the composition of g(-) n-times acting on e. If we take n to be the lowest

integer such that g™ (¢) > \/dr/7 then, 224:1 Y1 {1/dT/7’Ltk (i) > g(")(e)} < 27|X| so

that the whole expression is bounded by (n + 1) 27|X|. Note that for all N € R4, g(y/dr/N) =
dr/(N — 1), if we write e = y/dp /Ny then n < Ny /7 = %7 which completes the proof.
O

Using these results we are finally able to complete our proof of Theorem 3 We first note that,
via the triangle inequality 224:1 22:1 wr, (Tey4i) < 2 Zi\il Z;l 17, (T, +i). We streamline our
notation by letting ri; = rz, (2, +i). Reordering the sequence (r1,1,..,7a,7) — (Tiy,..,Tip) such
riy > .. > 1 We have that:

-

M T T
Z erk (Tey+i) = Zm <1+ Zmﬂ{m >T7'}
t=1

k=1 i=1 i=1

We can see that r;, > e > T7! «— 23:1 1{r;, > €} > t. From Lemma 5 this means that
t < (% + 1) 27]X|, so that € < 4/ il;lld;‘. This means that r;, < min{Cr, il;lfil }. Therefore,

T T
_ [ 2dr|X
Z’r‘itﬂ{mt >T 1} < 27Cr|X| + Z t7T77!|)(!|

=1 t=27|X|+1

T
27O |X| +/ w/QthW dt
0

2TC]:|X| +2\/2dT|X‘T

A
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Which completes the proof of Theorem 3.

B Clean bounds for the symmetric problem

We now provide concrete clean upper bounds for Theorems 1 and 2 in the simple symmetric case
I+1=m,C=0=1,|S| = |X| =K and |Z{'| = |Z]| = ¢ for all suitable i and write J = K¢.
For a non-trivial problem setting we assume that K > 2, m > 2, 7 > 2.

From Section 7.3 we have that

E [Regret(T, 7", M")] < 4+2VT+m {4(7’] +1)+4,/8 log(4mJT2/T)JT}

+ E[Y] (1 n ﬁ) m {4(7’J +1) +4,/8K 10g(4mJT2/T)JT}

Through looking at the constant term we know that the bounds are trivially satisfied for all 7" < 56,
from here we can certainly upper bound 4/(T — 4) < 1/13. From here we can say that:

E [Regret(T,7v°, M")] < {4+4m <1+ %IE)[\I/]) (7 + 1)}
+VT {2 +4y/8 log(dmJT2/7) + 4\/3JK log(4mJT? /) %IE[\IJ}}
< 501+ E)mrd +VT {12«/J10g(2mJT) + 12E[9]\/JK log(?mJT)}
< 5(1+E[W])mrJ + 12m (1 + E[WVK) \/JT log(2m.JT)
< min(6m7>J,T) + 12m7+/JKT log(2mJT)
< 15m7y/JKTlog(2mJT)

Where in the last steps we have used that ¥ < 7 and min(a,b) < vab. We now repeat a similar
procedure of upper bounds for UCRL-Factored, immediately replicating D by 7 in our analysis to
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say that with probability > 1 — 30:

Regret(T, 7oC, M*) < 7+/2Tlog(2/6) +2VT +m {4(TJ +1) +44/8 log(4mJT/6)JT}

+m {4(7’J +1) +44/8K 10g(4mJT/6)JT}

(14 7)ma(rJ +1) +

VT {7/2108(2/8) + 2 + mAy/Slog(4mJT/5)] + rmd/Slogdm I T/5) IK |
5(1 4+ 1)ym7J + 12m(1 + 7VK)\/JT log(4mJT/3)

< 15m7\/JKTlog(4mJT/5)

IN

IN

Where in the last step we used a similar argument
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