
A Bounding the widths of confidence sets

We present elementary arguments which culminate in a proof of Theorem 3.
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We now provide a corollary of this result which allows for episodic delays in updating visit counts
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Proof. By an argument of visiting times similar to lemma 4 we can see that the worst case scenario
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Where g(n)(‘) denotes the composition of g(·) n-times acting on ‘. If we take n to be the lowest
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Which completes the proof of Theorem 3.

B Clean bounds for the symmetric problem

We now provide concrete clean upper bounds for Theorems 1 and 2 in the simple symmetric case
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Where in the last step we used a similar argument
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