
A Bounding the widths of confidence sets

We present elementary arguments which culminate in a proof of Theorem 3.
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We now provide a corollary of this result which allows for episodic delays in updating visit counts
n
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(x). We imagine that we will only update our counts every · steps.
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Proof. By an argument of visiting times similar to lemma 4 we can see that the worst case scenario
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is to visit each x exactly · ≠ 1
times before the start of an episode, and then spend the entirety of the following episode within
the state. Here we have upper bounded 2· ≠ 1 by 2· and |X | ≠ 1 by |X | to complete our result.
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Where g(n)(‘) denotes the composition of g(·) n-times acting on ‘. If we take n to be the lowest
integer such that g(n)(‘) >
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Using these results we are finally able to complete our proof of Theorem 3 We first note that,
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Which completes the proof of Theorem 3.

B Clean bounds for the symmetric problem

We now provide concrete clean upper bounds for Theorems 1 and 2 in the simple symmetric case
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For a non-trivial problem setting we assume that K Ø 2, m Ø 2, · Ø 2.

From Section 7.3 we have that
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Through looking at the constant term we know that the bounds are trivially satisfied for all T Æ 56,
from here we can certainly upper bound 4/(T ≠ 4) Æ 1/13. From here we can say that:
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Where in the last steps we have used that � Æ · and min(a, b) Æ
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ab. We now repeat a similar
procedure of upper bounds for UCRL-Factored, immediately replicating D by · in our analysis to
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Where in the last step we used a similar argument
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