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S1 Humans vs. Poisson population codes

Here we unpack the rough comparison of decoding performance in humans and ideal (conditionally indepen-
dent) Poisson population codes provided in the Introduction.

Burr & Wijesundra 1991 [27] reports orientation discrimination thresholds (�s) as low as 0.5 deg in human
observers, where threshold is defined as the angular difference at which observes achieve 81.6% correct perfor-
mance in a 2AFC task.

We can relate this threshold to sensitivity (d’) and Fisher information using the formula (eq. 4.4 in [10]):

(�s) � d0⇢
1p
IF

(23)

where IF is the Fisher information and d0⇢ is the sensitivity (d0) for two stimuli that can be correctly discrimi-
nated with an error probability of ⇢, given by

d0⇢ =

p
2�

�1
(1� ⇢), (24)

where ��1
(·) is the inverse normal cumulative density function (cdf). For probability of correct 1�⇢ = 0.816,

this gives d0⇢ ⇡ 1.27. Plugging this value into (Eq. 23), it’s clear that to obtain human-level discrimination
performance, we need FI of at least:

If � (d0⇢)
2/(ds)2 ⇡ (1.27/0.5)2 = 6.45. (25)

Now, consider a population of 500 V1 neurons with tuning curves spaced evenly around the circle (� = 0.72
deg), with a maximum spike rate of 50 spikes/sec, and a full bandwidth at half-height of 60 degrees (near the
upper end of the range reported in monkeys [28] ). This corresponds to a Gaussian tuning width of �t =

30

p
�1/(2 ⇤ log .5) ⇡ 25 deg. This population (which clearly tiles) achieves Fisher Information (eq. 8)

of approximately IF =

p
2⇡ ⇥ 50/(0.72 ⇥ 25) = 7, for all stimuli, so it is sufficient to reproduce human

performance. For a population of 2000 neurons with identical characteristics, an efficient decoder could achieve
a discrimination threshold twice as low as a human observer, or (�s) = d0⇢/

p
IF ⇡ 0.25 deg.
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Figure S1: Number of neurons necessary to discriminate �s = 1 degree with 80% probability correct
as a function of noise �

n

. We optimised Eq. 20 to match I
F

of the noiseless case.

S2 Derivation of average Fisher information for tiling Poisson neurons

Fisher information for Poisson neurons and Gaussian tuning curves:
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The average IF per neuron equals,

IiF =

1

S
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Assuming S � �t (i.e. for neurons well away from the ends of the s-domain), we get

IiF =

A
S�4

t

p
2⇡�3

t =

A
p
2⇡

S�t

Thus, each neuron contributes a similar average IF , summing to:

IF = N
A
p
2⇡

S�t
=

A
p
2⇡

��t

S3 Derivation of MSE for Poisson population code

The formula for mean squared error (MSE) in a standard Poisson population code (eq. 11) can be derived using
the following series representation of the holomorphic extension of the lower incomplete Gamma function
([26], equation 8.7.1):

�⇤
(a, z) =

1

�(a)

1X

k=0

(�z)k

k!(k + a)
. (26)

If we substitute ⇢ = (�2
t /�

2
s) and �� for a and z, respectively, then (beginning from the r.h.s. of eq. 11), we

have:
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p(R)

= MSE, (27)

as stated in the main text, where p(R) is the Poisson distribution with mean �.

S4 Derivation of IF for the input noise

IF = E


R

�2
t +R�2

n
2

�

p(R)

(28)

=

1X

R=0

R
�2
t +R�2

n

�R

R!

e�� (29)

= e��
1X

R=1

1

�2
t +R�2

n

�R

(R� 1)!

(30)

= e��
1X

R=1

1

�2
t + �2

n + (R� 1)�2
n

�R

(R� 1)!

(31)

= �e��
1X

R=0

1

�2
t + �2

n +R�2
n

�R

R!

(32)

=

1

�2
n
�e��

1X

R=0

1

�2
t /�2

n + 1 +R
�R

R!

(33)

=

1

�2
n
�e��

�(1 + ⇢)�⇤
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where ⇢ = �2
t /�

2
n. Combining this derivation with the above derivation for MSE (Supplement section S3)

yields the terms necessary for the exact MSE under input noise (eq. 21).

S5 Optimal tuning widths for very broad priors.

The effect of the prior width on optimal tuning width is much stronger for MSE than for MI. Empirically, we
have noticed that for broad priors, the shared input noise model yields similar optimal tuning widths as the
noiseless input model. From the approximation introduced in (eq. 12), we can see that the main contribution to
the MSE for broad priors is �2

se
��. Thus, by setting � / 2 log �s, we reduce the contribution of that factor to

a constant. See results in Fig. S2.
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Figure S2: Optimal tuning widths. Different shades of color correspond to increasing tuning am-
plitude, A. Blue depicts the optimal �

t

for the noise-less case (as in Figs 2–3), whereas green
corresponds to the input noise �

n

= 1. As we increase �
n

(not shown here), the optimal tuning
curves increase systematically for MI, and for MSE when �

s

<�
n

. However, for MSE, predictions
of the noise-free and full model still converge for priors �

s

>�
n

. The dashed gray lines are optimal
tuning curves obtained from the approximate lower bounds for the noiseless case (eq. 12 and 14).
�=1 degree.

S6 Effects of imperfect tuning curve tiling

One of our main assumptions was that the tuning curves should ”tile”. However, the cases we considered often
ventured into a range �t ⇠ �, for which the tiling is not supposed to hold. We thus estimated the effect of
the uneven tiling for our neuromorphic functions. We conclude that our estimates are true on average for a
broad range of �t, reaching well below �. That is, despite the local dependence on s, our metrics hold true on
average.

We performed Monte Carlo simulations, whereby per each true stimulus s (x-axis in Fig. 3), we simulated 1000
network responses. We estimated posteriors per each response, their MSE and entropy. In Fig. 3, 3rd and
4th column, we report the mean of these estimates as a function of s. One can see that even for �t = �/2,
both MSE and MI are relatively constant in s. However, even for the most drastic cases of �t = �/4 and
�t = �/10, where fluctuations around the mean are clearly distinguishable, the average still matches our
analytical predictions (depicted with red line in Fig. 3).

We compare the numerical and analytical predictions directly in Fig. 4. We see a robust match between the two,
with small discrepancies showing only for the lowest values of �t/� in MI (top). In fact, discrepancies in MI

most likely result from a finite sample of responses. At A=1, only neurons very close to the stimulus are likely
to fire, with a big range of stimuli in between the peaks of tuning curves which have a much lower firing rate,
and a much higher MI gain, for any of neurons that spikes for such ”non-preferred” stimuli.

S7 Correlations induced by input noise

We start by expressing changes induced by the noise in the most generic way (i.e. independent of the likelihood
function). By writing response as composed of the deterministic and the noisy part: ri = fi + ⌘, where by
definition E [⌘] = 0, we can write:

E [ri|s] =
Z

1p
2⇡�n

e
� n2

2�2
n fi(s+ n) dn (35a)

E
⇥
r2i |s

⇤
=

Z
1p

2⇡�n
e
� n2

2�2
n

�
fi(s+ n)2 + E

⇥
⌘2
i

⇤�
dn (35b)

E [rirj |s] =
Z

1p
2⇡�n

e
� n2

2�2
n

�
fi(s+ n)fj(s+ n) + E [⌘i⌘j ]

�
dn (35c)

As we see, the mean will change in the same way regardless of the neurons’ noise distribution, let us call it
˜fi ⌘ E [ri|s]. The higher order statistics however, will depend on the noise model. For independent Poisson
neurons:

var[ri|s] =
Z

fi(s+ n)2 1p
2⇡�n

e
� n2

2�2
n dn+

˜fi(s)� ˜fi(s)
2 (36)

cov[ri, rj |s] =
Z

fi(s+ n)fj(s+ n) 1p
2⇡�n

e
� n2

2�2
n dn� ˜fi(s) ˜fj(s) (37)
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Figure S3: Analyses of imperfect tuning curve tiling. Each row shows a different value of tuning
width �

t

; A=1. Only neurons from the middle of the coding range are shown. Average MSE (3rd
column) and mutual information MI (4th column) were estimated from 1000 sample responses. The
red lines in the MSE and MI columns depict our analytical predictions. Dashed lines in the fourth
column demarcate mean±std (for the MSE, the standard deviation is too large to fit on the plots).

For our Gaussian tuning curves, these statistics are easy to compute, using

˜f(s) = A�tp
�2
n+�2

t

e
� (

s� ?
s i)

2

2(�2
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�

(
?
s i�

?
s j)

2

4�2
t

�
(s�(

?
s i+
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2

2(�2
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t /2) .

In Fig. 5, we illustrate how neural statistics change due to input noise. For �t = 2 and a strong input noise of
�n =

1
4�s, the effects on the mean and variance are barely visible if the expected spike count is 1 (top plot).

The covariance between identically tuned neurons (top right) also doesn’t exceed 2% of the variance, leading
to correlations not exceeding 0.05. Only for higher firing rates, the effects of noise become more visible, with
covariance of identically tuned neurons reaching 20% of variance (⇢ ⇠ 0.4) for A = 10. However, the time
scale of the input noise and basic neural computations (i.e. excluding temporal integration) is about 10 ms. At
such short spike count windows, available number of spikes is low.
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Figure S4: Comparison of exact performance measures (computed numerically by Monte Carlo
simulations, 1000 samples, black pluses) with formulas derived under the assumption of a perfectly
tiling tuning curves (red line), for mutual information (above, (eq. 13), and mean square error (below,
(eq. 11).
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